This repository has been archived on 2024-12-16. You can view files and clone it, but cannot push or open issues or pull requests.
CodeBlocksPortable/MinGW/lib/gcc/mingw32/6.3.0/adainclude/a-ciorma.adb

1687 lines
46 KiB
Ada
Raw Permalink Normal View History

------------------------------------------------------------------------------
-- --
-- GNAT LIBRARY COMPONENTS --
-- --
-- ADA.CONTAINERS.INDEFINITE_ORDERED_MAPS --
-- --
-- B o d y --
-- --
-- Copyright (C) 2004-2015, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- This unit was originally developed by Matthew J Heaney. --
------------------------------------------------------------------------------
with Ada.Unchecked_Deallocation;
with Ada.Containers.Helpers; use Ada.Containers.Helpers;
with Ada.Containers.Red_Black_Trees.Generic_Operations;
pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Operations);
with Ada.Containers.Red_Black_Trees.Generic_Keys;
pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Keys);
with System; use type System.Address;
package body Ada.Containers.Indefinite_Ordered_Maps is
pragma Suppress (All_Checks);
pragma Warnings (Off, "variable ""Busy*"" is not referenced");
pragma Warnings (Off, "variable ""Lock*"" is not referenced");
-- See comment in Ada.Containers.Helpers
-----------------------------
-- Node Access Subprograms --
-----------------------------
-- These subprograms provide a functional interface to access fields
-- of a node, and a procedural interface for modifying these values.
function Color (Node : Node_Access) return Color_Type;
pragma Inline (Color);
function Left (Node : Node_Access) return Node_Access;
pragma Inline (Left);
function Parent (Node : Node_Access) return Node_Access;
pragma Inline (Parent);
function Right (Node : Node_Access) return Node_Access;
pragma Inline (Right);
procedure Set_Parent (Node : Node_Access; Parent : Node_Access);
pragma Inline (Set_Parent);
procedure Set_Left (Node : Node_Access; Left : Node_Access);
pragma Inline (Set_Left);
procedure Set_Right (Node : Node_Access; Right : Node_Access);
pragma Inline (Set_Right);
procedure Set_Color (Node : Node_Access; Color : Color_Type);
pragma Inline (Set_Color);
-----------------------
-- Local Subprograms --
-----------------------
function Copy_Node (Source : Node_Access) return Node_Access;
pragma Inline (Copy_Node);
procedure Free (X : in out Node_Access);
function Is_Equal_Node_Node
(L, R : Node_Access) return Boolean;
pragma Inline (Is_Equal_Node_Node);
function Is_Greater_Key_Node
(Left : Key_Type;
Right : Node_Access) return Boolean;
pragma Inline (Is_Greater_Key_Node);
function Is_Less_Key_Node
(Left : Key_Type;
Right : Node_Access) return Boolean;
pragma Inline (Is_Less_Key_Node);
--------------------------
-- Local Instantiations --
--------------------------
package Tree_Operations is
new Red_Black_Trees.Generic_Operations (Tree_Types);
procedure Delete_Tree is
new Tree_Operations.Generic_Delete_Tree (Free);
function Copy_Tree is
new Tree_Operations.Generic_Copy_Tree (Copy_Node, Delete_Tree);
use Tree_Operations;
package Key_Ops is
new Red_Black_Trees.Generic_Keys
(Tree_Operations => Tree_Operations,
Key_Type => Key_Type,
Is_Less_Key_Node => Is_Less_Key_Node,
Is_Greater_Key_Node => Is_Greater_Key_Node);
procedure Free_Key is
new Ada.Unchecked_Deallocation (Key_Type, Key_Access);
procedure Free_Element is
new Ada.Unchecked_Deallocation (Element_Type, Element_Access);
function Is_Equal is
new Tree_Operations.Generic_Equal (Is_Equal_Node_Node);
---------
-- "<" --
---------
function "<" (Left, Right : Cursor) return Boolean is
begin
if Checks and then Left.Node = null then
raise Constraint_Error with "Left cursor of ""<"" equals No_Element";
end if;
if Checks and then Right.Node = null then
raise Constraint_Error with "Right cursor of ""<"" equals No_Element";
end if;
if Checks and then Left.Node.Key = null then
raise Program_Error with "Left cursor in ""<"" is bad";
end if;
if Checks and then Right.Node.Key = null then
raise Program_Error with "Right cursor in ""<"" is bad";
end if;
pragma Assert (Vet (Left.Container.Tree, Left.Node),
"Left cursor in ""<"" is bad");
pragma Assert (Vet (Right.Container.Tree, Right.Node),
"Right cursor in ""<"" is bad");
return Left.Node.Key.all < Right.Node.Key.all;
end "<";
function "<" (Left : Cursor; Right : Key_Type) return Boolean is
begin
if Checks and then Left.Node = null then
raise Constraint_Error with "Left cursor of ""<"" equals No_Element";
end if;
if Checks and then Left.Node.Key = null then
raise Program_Error with "Left cursor in ""<"" is bad";
end if;
pragma Assert (Vet (Left.Container.Tree, Left.Node),
"Left cursor in ""<"" is bad");
return Left.Node.Key.all < Right;
end "<";
function "<" (Left : Key_Type; Right : Cursor) return Boolean is
begin
if Checks and then Right.Node = null then
raise Constraint_Error with "Right cursor of ""<"" equals No_Element";
end if;
if Checks and then Right.Node.Key = null then
raise Program_Error with "Right cursor in ""<"" is bad";
end if;
pragma Assert (Vet (Right.Container.Tree, Right.Node),
"Right cursor in ""<"" is bad");
return Left < Right.Node.Key.all;
end "<";
---------
-- "=" --
---------
function "=" (Left, Right : Map) return Boolean is
begin
return Is_Equal (Left.Tree, Right.Tree);
end "=";
---------
-- ">" --
---------
function ">" (Left, Right : Cursor) return Boolean is
begin
if Checks and then Left.Node = null then
raise Constraint_Error with "Left cursor of "">"" equals No_Element";
end if;
if Checks and then Right.Node = null then
raise Constraint_Error with "Right cursor of "">"" equals No_Element";
end if;
if Checks and then Left.Node.Key = null then
raise Program_Error with "Left cursor in ""<"" is bad";
end if;
if Checks and then Right.Node.Key = null then
raise Program_Error with "Right cursor in ""<"" is bad";
end if;
pragma Assert (Vet (Left.Container.Tree, Left.Node),
"Left cursor in "">"" is bad");
pragma Assert (Vet (Right.Container.Tree, Right.Node),
"Right cursor in "">"" is bad");
return Right.Node.Key.all < Left.Node.Key.all;
end ">";
function ">" (Left : Cursor; Right : Key_Type) return Boolean is
begin
if Checks and then Left.Node = null then
raise Constraint_Error with "Left cursor of "">"" equals No_Element";
end if;
if Checks and then Left.Node.Key = null then
raise Program_Error with "Left cursor in ""<"" is bad";
end if;
pragma Assert (Vet (Left.Container.Tree, Left.Node),
"Left cursor in "">"" is bad");
return Right < Left.Node.Key.all;
end ">";
function ">" (Left : Key_Type; Right : Cursor) return Boolean is
begin
if Checks and then Right.Node = null then
raise Constraint_Error with "Right cursor of "">"" equals No_Element";
end if;
if Checks and then Right.Node.Key = null then
raise Program_Error with "Right cursor in ""<"" is bad";
end if;
pragma Assert (Vet (Right.Container.Tree, Right.Node),
"Right cursor in "">"" is bad");
return Right.Node.Key.all < Left;
end ">";
------------
-- Adjust --
------------
procedure Adjust is new Tree_Operations.Generic_Adjust (Copy_Tree);
procedure Adjust (Container : in out Map) is
begin
Adjust (Container.Tree);
end Adjust;
------------
-- Assign --
------------
procedure Assign (Target : in out Map; Source : Map) is
procedure Insert_Item (Node : Node_Access);
pragma Inline (Insert_Item);
procedure Insert_Items is
new Tree_Operations.Generic_Iteration (Insert_Item);
-----------------
-- Insert_Item --
-----------------
procedure Insert_Item (Node : Node_Access) is
begin
Target.Insert (Key => Node.Key.all, New_Item => Node.Element.all);
end Insert_Item;
-- Start of processing for Assign
begin
if Target'Address = Source'Address then
return;
end if;
Target.Clear;
Insert_Items (Source.Tree);
end Assign;
-------------
-- Ceiling --
-------------
function Ceiling (Container : Map; Key : Key_Type) return Cursor is
Node : constant Node_Access := Key_Ops.Ceiling (Container.Tree, Key);
begin
return (if Node = null then No_Element
else Cursor'(Container'Unrestricted_Access, Node));
end Ceiling;
-----------
-- Clear --
-----------
procedure Clear is new Tree_Operations.Generic_Clear (Delete_Tree);
procedure Clear (Container : in out Map) is
begin
Clear (Container.Tree);
end Clear;
-----------
-- Color --
-----------
function Color (Node : Node_Access) return Color_Type is
begin
return Node.Color;
end Color;
------------------------
-- Constant_Reference --
------------------------
function Constant_Reference
(Container : aliased Map;
Position : Cursor) return Constant_Reference_Type
is
begin
if Checks and then Position.Container = null then
raise Constraint_Error with
"Position cursor has no element";
end if;
if Checks and then Position.Container /= Container'Unrestricted_Access
then
raise Program_Error with
"Position cursor designates wrong map";
end if;
if Checks and then Position.Node.Element = null then
raise Program_Error with "Node has no element";
end if;
pragma Assert (Vet (Container.Tree, Position.Node),
"Position cursor in Constant_Reference is bad");
declare
TC : constant Tamper_Counts_Access :=
Container.Tree.TC'Unrestricted_Access;
begin
return R : constant Constant_Reference_Type :=
(Element => Position.Node.Element.all'Access,
Control => (Controlled with TC))
do
Lock (TC.all);
end return;
end;
end Constant_Reference;
function Constant_Reference
(Container : aliased Map;
Key : Key_Type) return Constant_Reference_Type
is
Node : constant Node_Access := Key_Ops.Find (Container.Tree, Key);
begin
if Checks and then Node = null then
raise Constraint_Error with "key not in map";
end if;
if Checks and then Node.Element = null then
raise Program_Error with "Node has no element";
end if;
declare
TC : constant Tamper_Counts_Access :=
Container.Tree.TC'Unrestricted_Access;
begin
return R : constant Constant_Reference_Type :=
(Element => Node.Element.all'Access,
Control => (Controlled with TC))
do
Lock (TC.all);
end return;
end;
end Constant_Reference;
--------------
-- Contains --
--------------
function Contains (Container : Map; Key : Key_Type) return Boolean is
begin
return Find (Container, Key) /= No_Element;
end Contains;
----------
-- Copy --
----------
function Copy (Source : Map) return Map is
begin
return Target : Map do
Target.Assign (Source);
end return;
end Copy;
---------------
-- Copy_Node --
---------------
function Copy_Node (Source : Node_Access) return Node_Access is
K : Key_Access := new Key_Type'(Source.Key.all);
E : Element_Access;
begin
E := new Element_Type'(Source.Element.all);
return new Node_Type'(Parent => null,
Left => null,
Right => null,
Color => Source.Color,
Key => K,
Element => E);
exception
when others =>
Free_Key (K);
Free_Element (E);
raise;
end Copy_Node;
------------
-- Delete --
------------
procedure Delete
(Container : in out Map;
Position : in out Cursor)
is
begin
if Checks and then Position.Node = null then
raise Constraint_Error with
"Position cursor of Delete equals No_Element";
end if;
if Checks and then
(Position.Node.Key = null or else Position.Node.Element = null)
then
raise Program_Error with "Position cursor of Delete is bad";
end if;
if Checks and then Position.Container /= Container'Unrestricted_Access
then
raise Program_Error with
"Position cursor of Delete designates wrong map";
end if;
pragma Assert (Vet (Container.Tree, Position.Node),
"Position cursor of Delete is bad");
Tree_Operations.Delete_Node_Sans_Free (Container.Tree, Position.Node);
Free (Position.Node);
Position.Container := null;
end Delete;
procedure Delete (Container : in out Map; Key : Key_Type) is
X : Node_Access := Key_Ops.Find (Container.Tree, Key);
begin
if Checks and then X = null then
raise Constraint_Error with "key not in map";
end if;
Delete_Node_Sans_Free (Container.Tree, X);
Free (X);
end Delete;
------------------
-- Delete_First --
------------------
procedure Delete_First (Container : in out Map) is
X : Node_Access := Container.Tree.First;
begin
if X /= null then
Tree_Operations.Delete_Node_Sans_Free (Container.Tree, X);
Free (X);
end if;
end Delete_First;
-----------------
-- Delete_Last --
-----------------
procedure Delete_Last (Container : in out Map) is
X : Node_Access := Container.Tree.Last;
begin
if X /= null then
Tree_Operations.Delete_Node_Sans_Free (Container.Tree, X);
Free (X);
end if;
end Delete_Last;
-------------
-- Element --
-------------
function Element (Position : Cursor) return Element_Type is
begin
if Checks and then Position.Node = null then
raise Constraint_Error with
"Position cursor of function Element equals No_Element";
end if;
if Checks and then Position.Node.Element = null then
raise Program_Error with
"Position cursor of function Element is bad";
end if;
pragma Assert (Vet (Position.Container.Tree, Position.Node),
"Position cursor of function Element is bad");
return Position.Node.Element.all;
end Element;
function Element (Container : Map; Key : Key_Type) return Element_Type is
Node : constant Node_Access := Key_Ops.Find (Container.Tree, Key);
begin
if Checks and then Node = null then
raise Constraint_Error with "key not in map";
end if;
return Node.Element.all;
end Element;
---------------------
-- Equivalent_Keys --
---------------------
function Equivalent_Keys (Left, Right : Key_Type) return Boolean is
begin
return (if Left < Right or else Right < Left then False else True);
end Equivalent_Keys;
-------------
-- Exclude --
-------------
procedure Exclude (Container : in out Map; Key : Key_Type) is
X : Node_Access := Key_Ops.Find (Container.Tree, Key);
begin
if X /= null then
Tree_Operations.Delete_Node_Sans_Free (Container.Tree, X);
Free (X);
end if;
end Exclude;
--------------
-- Finalize --
--------------
procedure Finalize (Object : in out Iterator) is
begin
if Object.Container /= null then
Unbusy (Object.Container.Tree.TC);
end if;
end Finalize;
----------
-- Find --
----------
function Find (Container : Map; Key : Key_Type) return Cursor is
Node : constant Node_Access := Key_Ops.Find (Container.Tree, Key);
begin
return (if Node = null then No_Element
else Cursor'(Container'Unrestricted_Access, Node));
end Find;
-----------
-- First --
-----------
function First (Container : Map) return Cursor is
T : Tree_Type renames Container.Tree;
begin
return (if T.First = null then No_Element
else Cursor'(Container'Unrestricted_Access, T.First));
end First;
function First (Object : Iterator) return Cursor is
begin
-- The value of the iterator object's Node component influences the
-- behavior of the First (and Last) selector function.
-- When the Node component is null, this means the iterator object was
-- constructed without a start expression, in which case the (forward)
-- iteration starts from the (logical) beginning of the entire sequence
-- of items (corresponding to Container.First for a forward iterator).
-- Otherwise, this is iteration over a partial sequence of items. When
-- the Node component is non-null, the iterator object was constructed
-- with a start expression, that specifies the position from which the
-- (forward) partial iteration begins.
if Object.Node = null then
return Object.Container.First;
else
return Cursor'(Object.Container, Object.Node);
end if;
end First;
-------------------
-- First_Element --
-------------------
function First_Element (Container : Map) return Element_Type is
T : Tree_Type renames Container.Tree;
begin
if Checks and then T.First = null then
raise Constraint_Error with "map is empty";
end if;
return T.First.Element.all;
end First_Element;
---------------
-- First_Key --
---------------
function First_Key (Container : Map) return Key_Type is
T : Tree_Type renames Container.Tree;
begin
if Checks and then T.First = null then
raise Constraint_Error with "map is empty";
end if;
return T.First.Key.all;
end First_Key;
-----------
-- Floor --
-----------
function Floor (Container : Map; Key : Key_Type) return Cursor is
Node : constant Node_Access := Key_Ops.Floor (Container.Tree, Key);
begin
return (if Node = null then No_Element
else Cursor'(Container'Unrestricted_Access, Node));
end Floor;
----------
-- Free --
----------
procedure Free (X : in out Node_Access) is
procedure Deallocate is
new Ada.Unchecked_Deallocation (Node_Type, Node_Access);
begin
if X = null then
return;
end if;
X.Parent := X;
X.Left := X;
X.Right := X;
begin
Free_Key (X.Key);
exception
when others =>
X.Key := null;
begin
Free_Element (X.Element);
exception
when others =>
X.Element := null;
end;
Deallocate (X);
raise;
end;
begin
Free_Element (X.Element);
exception
when others =>
X.Element := null;
Deallocate (X);
raise;
end;
Deallocate (X);
end Free;
------------------------
-- Get_Element_Access --
------------------------
function Get_Element_Access
(Position : Cursor) return not null Element_Access is
begin
return Position.Node.Element;
end Get_Element_Access;
-----------------
-- Has_Element --
-----------------
function Has_Element (Position : Cursor) return Boolean is
begin
return Position /= No_Element;
end Has_Element;
-------------
-- Include --
-------------
procedure Include
(Container : in out Map;
Key : Key_Type;
New_Item : Element_Type)
is
Position : Cursor;
Inserted : Boolean;
K : Key_Access;
E : Element_Access;
begin
Insert (Container, Key, New_Item, Position, Inserted);
if not Inserted then
TE_Check (Container.Tree.TC);
K := Position.Node.Key;
E := Position.Node.Element;
Position.Node.Key := new Key_Type'(Key);
declare
-- The element allocator may need an accessibility check in the
-- case the actual type is class-wide or has access discriminants
-- (see RM 4.8(10.1) and AI12-0035).
pragma Unsuppress (Accessibility_Check);
begin
Position.Node.Element := new Element_Type'(New_Item);
exception
when others =>
Free_Key (K);
raise;
end;
Free_Key (K);
Free_Element (E);
end if;
end Include;
------------
-- Insert --
------------
procedure Insert
(Container : in out Map;
Key : Key_Type;
New_Item : Element_Type;
Position : out Cursor;
Inserted : out Boolean)
is
function New_Node return Node_Access;
pragma Inline (New_Node);
procedure Insert_Post is
new Key_Ops.Generic_Insert_Post (New_Node);
procedure Insert_Sans_Hint is
new Key_Ops.Generic_Conditional_Insert (Insert_Post);
--------------
-- New_Node --
--------------
function New_Node return Node_Access is
Node : Node_Access := new Node_Type;
-- The element allocator may need an accessibility check in the case
-- the actual type is class-wide or has access discriminants (see
-- RM 4.8(10.1) and AI12-0035).
pragma Unsuppress (Accessibility_Check);
begin
Node.Key := new Key_Type'(Key);
Node.Element := new Element_Type'(New_Item);
return Node;
exception
when others =>
-- On exception, deallocate key and elem. Note that free
-- deallocates both the key and the elem.
Free (Node);
raise;
end New_Node;
-- Start of processing for Insert
begin
Insert_Sans_Hint
(Container.Tree,
Key,
Position.Node,
Inserted);
Position.Container := Container'Unrestricted_Access;
end Insert;
procedure Insert
(Container : in out Map;
Key : Key_Type;
New_Item : Element_Type)
is
Position : Cursor;
pragma Unreferenced (Position);
Inserted : Boolean;
begin
Insert (Container, Key, New_Item, Position, Inserted);
if Checks and then not Inserted then
raise Constraint_Error with "key already in map";
end if;
end Insert;
--------------
-- Is_Empty --
--------------
function Is_Empty (Container : Map) return Boolean is
begin
return Container.Tree.Length = 0;
end Is_Empty;
------------------------
-- Is_Equal_Node_Node --
------------------------
function Is_Equal_Node_Node (L, R : Node_Access) return Boolean is
begin
return (if L.Key.all < R.Key.all then False
elsif R.Key.all < L.Key.all then False
else L.Element.all = R.Element.all);
end Is_Equal_Node_Node;
-------------------------
-- Is_Greater_Key_Node --
-------------------------
function Is_Greater_Key_Node
(Left : Key_Type;
Right : Node_Access) return Boolean
is
begin
-- k > node same as node < k
return Right.Key.all < Left;
end Is_Greater_Key_Node;
----------------------
-- Is_Less_Key_Node --
----------------------
function Is_Less_Key_Node
(Left : Key_Type;
Right : Node_Access) return Boolean is
begin
return Left < Right.Key.all;
end Is_Less_Key_Node;
-------------
-- Iterate --
-------------
procedure Iterate
(Container : Map;
Process : not null access procedure (Position : Cursor))
is
procedure Process_Node (Node : Node_Access);
pragma Inline (Process_Node);
procedure Local_Iterate is
new Tree_Operations.Generic_Iteration (Process_Node);
------------------
-- Process_Node --
------------------
procedure Process_Node (Node : Node_Access) is
begin
Process (Cursor'(Container'Unrestricted_Access, Node));
end Process_Node;
Busy : With_Busy (Container.Tree.TC'Unrestricted_Access);
-- Start of processing for Iterate
begin
Local_Iterate (Container.Tree);
end Iterate;
function Iterate
(Container : Map) return Map_Iterator_Interfaces.Reversible_Iterator'Class
is
begin
-- The value of the Node component influences the behavior of the First
-- and Last selector functions of the iterator object. When the Node
-- component is null (as is the case here), this means the iterator
-- object was constructed without a start expression. This is a complete
-- iterator, meaning that the iteration starts from the (logical)
-- beginning of the sequence of items.
-- Note: For a forward iterator, Container.First is the beginning, and
-- for a reverse iterator, Container.Last is the beginning.
return It : constant Iterator :=
(Limited_Controlled with
Container => Container'Unrestricted_Access,
Node => null)
do
Busy (Container.Tree.TC'Unrestricted_Access.all);
end return;
end Iterate;
function Iterate
(Container : Map;
Start : Cursor)
return Map_Iterator_Interfaces.Reversible_Iterator'Class
is
begin
-- It was formerly the case that when Start = No_Element, the partial
-- iterator was defined to behave the same as for a complete iterator,
-- and iterate over the entire sequence of items. However, those
-- semantics were unintuitive and arguably error-prone (it is too easy
-- to accidentally create an endless loop), and so they were changed,
-- per the ARG meeting in Denver on 2011/11. However, there was no
-- consensus about what positive meaning this corner case should have,
-- and so it was decided to simply raise an exception. This does imply,
-- however, that it is not possible to use a partial iterator to specify
-- an empty sequence of items.
if Checks and then Start = No_Element then
raise Constraint_Error with
"Start position for iterator equals No_Element";
end if;
if Checks and then Start.Container /= Container'Unrestricted_Access then
raise Program_Error with
"Start cursor of Iterate designates wrong map";
end if;
pragma Assert (Vet (Container.Tree, Start.Node),
"Start cursor of Iterate is bad");
-- The value of the Node component influences the behavior of the First
-- and Last selector functions of the iterator object. When the Node
-- component is non-null (as is the case here), it means that this
-- is a partial iteration, over a subset of the complete sequence of
-- items. The iterator object was constructed with a start expression,
-- indicating the position from which the iteration begins. Note that
-- the start position has the same value irrespective of whether this
-- is a forward or reverse iteration.
return It : constant Iterator :=
(Limited_Controlled with
Container => Container'Unrestricted_Access,
Node => Start.Node)
do
Busy (Container.Tree.TC'Unrestricted_Access.all);
end return;
end Iterate;
---------
-- Key --
---------
function Key (Position : Cursor) return Key_Type is
begin
if Checks and then Position.Node = null then
raise Constraint_Error with
"Position cursor of function Key equals No_Element";
end if;
if Checks and then Position.Node.Key = null then
raise Program_Error with
"Position cursor of function Key is bad";
end if;
pragma Assert (Vet (Position.Container.Tree, Position.Node),
"Position cursor of function Key is bad");
return Position.Node.Key.all;
end Key;
----------
-- Last --
----------
function Last (Container : Map) return Cursor is
T : Tree_Type renames Container.Tree;
begin
return (if T.Last = null then No_Element
else Cursor'(Container'Unrestricted_Access, T.Last));
end Last;
function Last (Object : Iterator) return Cursor is
begin
-- The value of the iterator object's Node component influences the
-- behavior of the Last (and First) selector function.
-- When the Node component is null, this means the iterator object was
-- constructed without a start expression, in which case the (reverse)
-- iteration starts from the (logical) beginning of the entire sequence
-- (corresponding to Container.Last, for a reverse iterator).
-- Otherwise, this is iteration over a partial sequence of items. When
-- the Node component is non-null, the iterator object was constructed
-- with a start expression, that specifies the position from which the
-- (reverse) partial iteration begins.
if Object.Node = null then
return Object.Container.Last;
else
return Cursor'(Object.Container, Object.Node);
end if;
end Last;
------------------
-- Last_Element --
------------------
function Last_Element (Container : Map) return Element_Type is
T : Tree_Type renames Container.Tree;
begin
if Checks and then T.Last = null then
raise Constraint_Error with "map is empty";
end if;
return T.Last.Element.all;
end Last_Element;
--------------
-- Last_Key --
--------------
function Last_Key (Container : Map) return Key_Type is
T : Tree_Type renames Container.Tree;
begin
if Checks and then T.Last = null then
raise Constraint_Error with "map is empty";
end if;
return T.Last.Key.all;
end Last_Key;
----------
-- Left --
----------
function Left (Node : Node_Access) return Node_Access is
begin
return Node.Left;
end Left;
------------
-- Length --
------------
function Length (Container : Map) return Count_Type is
begin
return Container.Tree.Length;
end Length;
----------
-- Move --
----------
procedure Move is new Tree_Operations.Generic_Move (Clear);
procedure Move (Target : in out Map; Source : in out Map) is
begin
Move (Target => Target.Tree, Source => Source.Tree);
end Move;
----------
-- Next --
----------
function Next (Position : Cursor) return Cursor is
begin
if Position = No_Element then
return No_Element;
end if;
pragma Assert (Position.Node /= null);
pragma Assert (Position.Node.Key /= null);
pragma Assert (Position.Node.Element /= null);
pragma Assert (Vet (Position.Container.Tree, Position.Node),
"Position cursor of Next is bad");
declare
Node : constant Node_Access :=
Tree_Operations.Next (Position.Node);
begin
return (if Node = null then No_Element
else Cursor'(Position.Container, Node));
end;
end Next;
procedure Next (Position : in out Cursor) is
begin
Position := Next (Position);
end Next;
function Next
(Object : Iterator;
Position : Cursor) return Cursor
is
begin
if Position.Container = null then
return No_Element;
end if;
if Checks and then Position.Container /= Object.Container then
raise Program_Error with
"Position cursor of Next designates wrong map";
end if;
return Next (Position);
end Next;
------------
-- Parent --
------------
function Parent (Node : Node_Access) return Node_Access is
begin
return Node.Parent;
end Parent;
--------------
-- Previous --
--------------
function Previous (Position : Cursor) return Cursor is
begin
if Position = No_Element then
return No_Element;
end if;
pragma Assert (Position.Node /= null);
pragma Assert (Position.Node.Key /= null);
pragma Assert (Position.Node.Element /= null);
pragma Assert (Vet (Position.Container.Tree, Position.Node),
"Position cursor of Previous is bad");
declare
Node : constant Node_Access :=
Tree_Operations.Previous (Position.Node);
begin
return (if Node = null then No_Element
else Cursor'(Position.Container, Node));
end;
end Previous;
procedure Previous (Position : in out Cursor) is
begin
Position := Previous (Position);
end Previous;
function Previous
(Object : Iterator;
Position : Cursor) return Cursor
is
begin
if Position.Container = null then
return No_Element;
end if;
if Checks and then Position.Container /= Object.Container then
raise Program_Error with
"Position cursor of Previous designates wrong map";
end if;
return Previous (Position);
end Previous;
----------------------
-- Pseudo_Reference --
----------------------
function Pseudo_Reference
(Container : aliased Map'Class) return Reference_Control_Type
is
TC : constant Tamper_Counts_Access :=
Container.Tree.TC'Unrestricted_Access;
begin
return R : constant Reference_Control_Type := (Controlled with TC) do
Lock (TC.all);
end return;
end Pseudo_Reference;
-------------------
-- Query_Element --
-------------------
procedure Query_Element
(Position : Cursor;
Process : not null access procedure (Key : Key_Type;
Element : Element_Type))
is
begin
if Checks and then Position.Node = null then
raise Constraint_Error with
"Position cursor of Query_Element equals No_Element";
end if;
if Checks and then
(Position.Node.Key = null or else Position.Node.Element = null)
then
raise Program_Error with
"Position cursor of Query_Element is bad";
end if;
pragma Assert (Vet (Position.Container.Tree, Position.Node),
"Position cursor of Query_Element is bad");
declare
T : Tree_Type renames Position.Container.Tree;
Lock : With_Lock (T.TC'Unrestricted_Access);
K : Key_Type renames Position.Node.Key.all;
E : Element_Type renames Position.Node.Element.all;
begin
Process (K, E);
end;
end Query_Element;
----------
-- Read --
----------
procedure Read
(Stream : not null access Root_Stream_Type'Class;
Container : out Map)
is
function Read_Node
(Stream : not null access Root_Stream_Type'Class) return Node_Access;
pragma Inline (Read_Node);
procedure Read is
new Tree_Operations.Generic_Read (Clear, Read_Node);
---------------
-- Read_Node --
---------------
function Read_Node
(Stream : not null access Root_Stream_Type'Class) return Node_Access
is
Node : Node_Access := new Node_Type;
begin
Node.Key := new Key_Type'(Key_Type'Input (Stream));
Node.Element := new Element_Type'(Element_Type'Input (Stream));
return Node;
exception
when others =>
Free (Node); -- Note that Free deallocates key and elem too
raise;
end Read_Node;
-- Start of processing for Read
begin
Read (Stream, Container.Tree);
end Read;
procedure Read
(Stream : not null access Root_Stream_Type'Class;
Item : out Cursor)
is
begin
raise Program_Error with "attempt to stream map cursor";
end Read;
procedure Read
(Stream : not null access Root_Stream_Type'Class;
Item : out Reference_Type)
is
begin
raise Program_Error with "attempt to stream reference";
end Read;
procedure Read
(Stream : not null access Root_Stream_Type'Class;
Item : out Constant_Reference_Type)
is
begin
raise Program_Error with "attempt to stream reference";
end Read;
---------------
-- Reference --
---------------
function Reference
(Container : aliased in out Map;
Position : Cursor) return Reference_Type
is
begin
if Checks and then Position.Container = null then
raise Constraint_Error with
"Position cursor has no element";
end if;
if Checks and then Position.Container /= Container'Unrestricted_Access
then
raise Program_Error with
"Position cursor designates wrong map";
end if;
if Checks and then Position.Node.Element = null then
raise Program_Error with "Node has no element";
end if;
pragma Assert (Vet (Container.Tree, Position.Node),
"Position cursor in function Reference is bad");
declare
TC : constant Tamper_Counts_Access :=
Container.Tree.TC'Unrestricted_Access;
begin
return R : constant Reference_Type :=
(Element => Position.Node.Element.all'Access,
Control => (Controlled with TC))
do
Lock (TC.all);
end return;
end;
end Reference;
function Reference
(Container : aliased in out Map;
Key : Key_Type) return Reference_Type
is
Node : constant Node_Access := Key_Ops.Find (Container.Tree, Key);
begin
if Checks and then Node = null then
raise Constraint_Error with "key not in map";
end if;
if Checks and then Node.Element = null then
raise Program_Error with "Node has no element";
end if;
declare
TC : constant Tamper_Counts_Access :=
Container.Tree.TC'Unrestricted_Access;
begin
return R : constant Reference_Type :=
(Element => Node.Element.all'Access,
Control => (Controlled with TC))
do
Lock (TC.all);
end return;
end;
end Reference;
-------------
-- Replace --
-------------
procedure Replace
(Container : in out Map;
Key : Key_Type;
New_Item : Element_Type)
is
Node : constant Node_Access := Key_Ops.Find (Container.Tree, Key);
K : Key_Access;
E : Element_Access;
begin
if Checks and then Node = null then
raise Constraint_Error with "key not in map";
end if;
TE_Check (Container.Tree.TC);
K := Node.Key;
E := Node.Element;
Node.Key := new Key_Type'(Key);
declare
-- The element allocator may need an accessibility check in the case
-- the actual type is class-wide or has access discriminants (see
-- RM 4.8(10.1) and AI12-0035).
pragma Unsuppress (Accessibility_Check);
begin
Node.Element := new Element_Type'(New_Item);
exception
when others =>
Free_Key (K);
raise;
end;
Free_Key (K);
Free_Element (E);
end Replace;
---------------------
-- Replace_Element --
---------------------
procedure Replace_Element
(Container : in out Map;
Position : Cursor;
New_Item : Element_Type)
is
begin
if Checks and then Position.Node = null then
raise Constraint_Error with
"Position cursor of Replace_Element equals No_Element";
end if;
if Checks and then
(Position.Node.Key = null or else Position.Node.Element = null)
then
raise Program_Error with
"Position cursor of Replace_Element is bad";
end if;
if Checks and then Position.Container /= Container'Unrestricted_Access
then
raise Program_Error with
"Position cursor of Replace_Element designates wrong map";
end if;
TE_Check (Container.Tree.TC);
pragma Assert (Vet (Container.Tree, Position.Node),
"Position cursor of Replace_Element is bad");
declare
X : Element_Access := Position.Node.Element;
-- The element allocator may need an accessibility check in the case
-- the actual type is class-wide or has access discriminants (see
-- RM 4.8(10.1) and AI12-0035).
pragma Unsuppress (Accessibility_Check);
begin
Position.Node.Element := new Element_Type'(New_Item);
Free_Element (X);
end;
end Replace_Element;
---------------------
-- Reverse_Iterate --
---------------------
procedure Reverse_Iterate
(Container : Map;
Process : not null access procedure (Position : Cursor))
is
procedure Process_Node (Node : Node_Access);
pragma Inline (Process_Node);
procedure Local_Reverse_Iterate is
new Tree_Operations.Generic_Reverse_Iteration (Process_Node);
------------------
-- Process_Node --
------------------
procedure Process_Node (Node : Node_Access) is
begin
Process (Cursor'(Container'Unrestricted_Access, Node));
end Process_Node;
Busy : With_Busy (Container.Tree.TC'Unrestricted_Access);
-- Start of processing for Reverse_Iterate
begin
Local_Reverse_Iterate (Container.Tree);
end Reverse_Iterate;
-----------
-- Right --
-----------
function Right (Node : Node_Access) return Node_Access is
begin
return Node.Right;
end Right;
---------------
-- Set_Color --
---------------
procedure Set_Color (Node : Node_Access; Color : Color_Type) is
begin
Node.Color := Color;
end Set_Color;
--------------
-- Set_Left --
--------------
procedure Set_Left (Node : Node_Access; Left : Node_Access) is
begin
Node.Left := Left;
end Set_Left;
----------------
-- Set_Parent --
----------------
procedure Set_Parent (Node : Node_Access; Parent : Node_Access) is
begin
Node.Parent := Parent;
end Set_Parent;
---------------
-- Set_Right --
---------------
procedure Set_Right (Node : Node_Access; Right : Node_Access) is
begin
Node.Right := Right;
end Set_Right;
--------------------
-- Update_Element --
--------------------
procedure Update_Element
(Container : in out Map;
Position : Cursor;
Process : not null access procedure (Key : Key_Type;
Element : in out Element_Type))
is
begin
if Checks and then Position.Node = null then
raise Constraint_Error with
"Position cursor of Update_Element equals No_Element";
end if;
if Checks and then
(Position.Node.Key = null or else Position.Node.Element = null)
then
raise Program_Error with
"Position cursor of Update_Element is bad";
end if;
if Checks and then Position.Container /= Container'Unrestricted_Access
then
raise Program_Error with
"Position cursor of Update_Element designates wrong map";
end if;
pragma Assert (Vet (Container.Tree, Position.Node),
"Position cursor of Update_Element is bad");
declare
T : Tree_Type renames Position.Container.Tree;
Lock : With_Lock (T.TC'Unrestricted_Access);
K : Key_Type renames Position.Node.Key.all;
E : Element_Type renames Position.Node.Element.all;
begin
Process (K, E);
end;
end Update_Element;
-----------
-- Write --
-----------
procedure Write
(Stream : not null access Root_Stream_Type'Class;
Container : Map)
is
procedure Write_Node
(Stream : not null access Root_Stream_Type'Class;
Node : Node_Access);
pragma Inline (Write_Node);
procedure Write is
new Tree_Operations.Generic_Write (Write_Node);
----------------
-- Write_Node --
----------------
procedure Write_Node
(Stream : not null access Root_Stream_Type'Class;
Node : Node_Access)
is
begin
Key_Type'Output (Stream, Node.Key.all);
Element_Type'Output (Stream, Node.Element.all);
end Write_Node;
-- Start of processing for Write
begin
Write (Stream, Container.Tree);
end Write;
procedure Write
(Stream : not null access Root_Stream_Type'Class;
Item : Cursor)
is
begin
raise Program_Error with "attempt to stream map cursor";
end Write;
procedure Write
(Stream : not null access Root_Stream_Type'Class;
Item : Reference_Type)
is
begin
raise Program_Error with "attempt to stream reference";
end Write;
procedure Write
(Stream : not null access Root_Stream_Type'Class;
Item : Constant_Reference_Type)
is
begin
raise Program_Error with "attempt to stream reference";
end Write;
end Ada.Containers.Indefinite_Ordered_Maps;