This repository has been archived on 2024-12-16. You can view files and clone it, but cannot push or open issues or pull requests.
CodeBlocksPortable/MinGW/lib/gcc/mingw32/6.3.0/adainclude/a-cofove.adb

645 lines
18 KiB
Ada
Raw Permalink Normal View History

------------------------------------------------------------------------------
-- --
-- GNAT LIBRARY COMPONENTS --
-- --
-- A D A . C O N T A I N E R S . F O R M A L _ V E C T O R S --
-- --
-- B o d y --
-- --
-- Copyright (C) 2010-2015, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
------------------------------------------------------------------------------
with Ada.Containers.Generic_Array_Sort;
with Ada.Unchecked_Deallocation;
with System; use type System.Address;
package body Ada.Containers.Formal_Vectors with
SPARK_Mode => Off
is
Growth_Factor : constant := 2;
-- When growing a container, multiply current capacity by this. Doubling
-- leads to amortized linear-time copying.
type Int is range System.Min_Int .. System.Max_Int;
type UInt is mod System.Max_Binary_Modulus;
procedure Free is
new Ada.Unchecked_Deallocation (Elements_Array, Elements_Array_Ptr);
type Maximal_Array_Ptr is access all Elements_Array (Array_Index)
with Storage_Size => 0;
type Maximal_Array_Ptr_Const is access constant Elements_Array (Array_Index)
with Storage_Size => 0;
function Elems (Container : in out Vector) return Maximal_Array_Ptr;
function Elemsc
(Container : Vector) return Maximal_Array_Ptr_Const;
-- Returns a pointer to the Elements array currently in use -- either
-- Container.Elements_Ptr or a pointer to Container.Elements. We work with
-- pointers to a bogus array subtype that is constrained with the maximum
-- possible bounds. This means that the pointer is a thin pointer. This is
-- necessary because 'Unrestricted_Access doesn't work when it produces
-- access-to-unconstrained and is returned from a function.
--
-- Note that this is dangerous: make sure calls to this use an indexed
-- component or slice that is within the bounds 1 .. Length (Container).
function Get_Element
(Container : Vector;
Position : Capacity_Range) return Element_Type;
---------
-- "=" --
---------
function "=" (Left, Right : Vector) return Boolean is
begin
if Left'Address = Right'Address then
return True;
end if;
if Length (Left) /= Length (Right) then
return False;
end if;
for J in 1 .. Length (Left) loop
if Get_Element (Left, J) /= Get_Element (Right, J) then
return False;
end if;
end loop;
return True;
end "=";
------------
-- Append --
------------
procedure Append (Container : in out Vector; New_Item : Vector) is
begin
for X in First_Index (New_Item) .. Last_Index (New_Item) loop
Append (Container, Element (New_Item, X));
end loop;
end Append;
procedure Append
(Container : in out Vector;
New_Item : Element_Type)
is
New_Length : constant UInt := UInt (Length (Container) + 1);
begin
if not Bounded and then
Capacity (Container) < Capacity_Range (New_Length)
then
Reserve_Capacity
(Container,
Capacity_Range'Max (Capacity (Container) * Growth_Factor,
Capacity_Range (New_Length)));
end if;
if Container.Last = Index_Type'Last then
raise Constraint_Error with "vector is already at its maximum length";
end if;
-- TODO: should check whether length > max capacity (cnt_t'last) ???
Container.Last := Container.Last + 1;
Elems (Container) (Length (Container)) := New_Item;
end Append;
------------
-- Assign --
------------
procedure Assign (Target : in out Vector; Source : Vector) is
LS : constant Capacity_Range := Length (Source);
begin
if Target'Address = Source'Address then
return;
end if;
if Bounded and then Target.Capacity < LS then
raise Constraint_Error;
end if;
Clear (Target);
Append (Target, Source);
end Assign;
--------------
-- Capacity --
--------------
function Capacity (Container : Vector) return Capacity_Range is
begin
return (if Container.Elements_Ptr = null
then Container.Elements'Length
else Container.Elements_Ptr.all'Length);
end Capacity;
-----------
-- Clear --
-----------
procedure Clear (Container : in out Vector) is
begin
Container.Last := No_Index;
-- Free element, note that this is OK if Elements_Ptr is null
Free (Container.Elements_Ptr);
end Clear;
--------------
-- Contains --
--------------
function Contains
(Container : Vector;
Item : Element_Type) return Boolean
is
begin
return Find_Index (Container, Item) /= No_Index;
end Contains;
----------
-- Copy --
----------
function Copy
(Source : Vector;
Capacity : Capacity_Range := 0) return Vector
is
LS : constant Capacity_Range := Length (Source);
C : Capacity_Range;
begin
if Capacity = 0 then
C := LS;
elsif Capacity >= LS then
C := Capacity;
else
raise Capacity_Error;
end if;
return Target : Vector (C) do
Elems (Target) (1 .. LS) := Elemsc (Source) (1 .. LS);
Target.Last := Source.Last;
end return;
end Copy;
---------------------
-- Current_To_Last --
---------------------
function Current_To_Last
(Container : Vector;
Current : Index_Type) return Vector
is
begin
return Result : Vector (Count_Type (Container.Last - Current + 1))
do
for X in Current .. Container.Last loop
Append (Result, Element (Container, X));
end loop;
end return;
end Current_To_Last;
-----------------
-- Delete_Last --
-----------------
procedure Delete_Last
(Container : in out Vector)
is
Count : constant Capacity_Range := 1;
Index : Int'Base;
begin
Index := Int'Base (Container.Last) - Int'Base (Count);
if Index < Index_Type'Pos (Index_Type'First) then
Container.Last := No_Index;
else
Container.Last := Index_Type (Index);
end if;
end Delete_Last;
-------------
-- Element --
-------------
function Element
(Container : Vector;
Index : Index_Type) return Element_Type
is
begin
if Index > Container.Last then
raise Constraint_Error with "Index is out of range";
end if;
declare
II : constant Int'Base := Int (Index) - Int (No_Index);
I : constant Capacity_Range := Capacity_Range (II);
begin
return Get_Element (Container, I);
end;
end Element;
--------------
-- Elements --
--------------
function Elems (Container : in out Vector) return Maximal_Array_Ptr is
begin
return (if Container.Elements_Ptr = null
then Container.Elements'Unrestricted_Access
else Container.Elements_Ptr.all'Unrestricted_Access);
end Elems;
function Elemsc
(Container : Vector) return Maximal_Array_Ptr_Const is
begin
return (if Container.Elements_Ptr = null
then Container.Elements'Unrestricted_Access
else Container.Elements_Ptr.all'Unrestricted_Access);
end Elemsc;
----------------
-- Find_Index --
----------------
function Find_Index
(Container : Vector;
Item : Element_Type;
Index : Index_Type := Index_Type'First) return Extended_Index
is
K : Capacity_Range;
Last : constant Index_Type := Last_Index (Container);
begin
K := Capacity_Range (Int (Index) - Int (No_Index));
for Indx in Index .. Last loop
if Get_Element (Container, K) = Item then
return Indx;
end if;
K := K + 1;
end loop;
return No_Index;
end Find_Index;
-------------------
-- First_Element --
-------------------
function First_Element (Container : Vector) return Element_Type is
begin
if Is_Empty (Container) then
raise Constraint_Error with "Container is empty";
else
return Get_Element (Container, 1);
end if;
end First_Element;
-----------------
-- First_Index --
-----------------
function First_Index (Container : Vector) return Index_Type is
pragma Unreferenced (Container);
begin
return Index_Type'First;
end First_Index;
-----------------------
-- First_To_Previous --
-----------------------
function First_To_Previous
(Container : Vector;
Current : Index_Type) return Vector
is
begin
return Result : Vector
(Count_Type (Current - First_Index (Container)))
do
for X in First_Index (Container) .. Current - 1 loop
Append (Result, Element (Container, X));
end loop;
end return;
end First_To_Previous;
---------------------
-- Generic_Sorting --
---------------------
package body Generic_Sorting with SPARK_Mode => Off is
---------------
-- Is_Sorted --
---------------
function Is_Sorted (Container : Vector) return Boolean is
L : constant Capacity_Range := Length (Container);
begin
for J in 1 .. L - 1 loop
if Get_Element (Container, J + 1) <
Get_Element (Container, J)
then
return False;
end if;
end loop;
return True;
end Is_Sorted;
----------
-- Sort --
----------
procedure Sort (Container : in out Vector)
is
procedure Sort is
new Generic_Array_Sort
(Index_Type => Array_Index,
Element_Type => Element_Type,
Array_Type => Elements_Array,
"<" => "<");
Len : constant Capacity_Range := Length (Container);
begin
if Container.Last <= Index_Type'First then
return;
else
Sort (Elems (Container) (1 .. Len));
end if;
end Sort;
end Generic_Sorting;
-----------------
-- Get_Element --
-----------------
function Get_Element
(Container : Vector;
Position : Capacity_Range) return Element_Type
is
begin
return Elemsc (Container) (Position);
end Get_Element;
-----------------
-- Has_Element --
-----------------
function Has_Element
(Container : Vector; Position : Extended_Index) return Boolean is
begin
return Position in First_Index (Container) .. Last_Index (Container);
end Has_Element;
--------------
-- Is_Empty --
--------------
function Is_Empty (Container : Vector) return Boolean is
begin
return Last_Index (Container) < Index_Type'First;
end Is_Empty;
------------------
-- Last_Element --
------------------
function Last_Element (Container : Vector) return Element_Type is
begin
if Is_Empty (Container) then
raise Constraint_Error with "Container is empty";
else
return Get_Element (Container, Length (Container));
end if;
end Last_Element;
----------------
-- Last_Index --
----------------
function Last_Index (Container : Vector) return Extended_Index is
begin
return Container.Last;
end Last_Index;
------------
-- Length --
------------
function Length (Container : Vector) return Capacity_Range is
L : constant Int := Int (Last_Index (Container));
F : constant Int := Int (Index_Type'First);
N : constant Int'Base := L - F + 1;
begin
return Capacity_Range (N);
end Length;
---------------------
-- Replace_Element --
---------------------
procedure Replace_Element
(Container : in out Vector;
Index : Index_Type;
New_Item : Element_Type)
is
begin
if Index > Container.Last then
raise Constraint_Error with "Index is out of range";
end if;
declare
II : constant Int'Base := Int (Index) - Int (No_Index);
I : constant Capacity_Range := Capacity_Range (II);
begin
Elems (Container) (I) := New_Item;
end;
end Replace_Element;
----------------------
-- Reserve_Capacity --
----------------------
procedure Reserve_Capacity
(Container : in out Vector;
Capacity : Capacity_Range)
is
begin
if Bounded then
if Capacity > Container.Capacity then
raise Constraint_Error with "Capacity is out of range";
end if;
else
if Capacity > Formal_Vectors.Capacity (Container) then
declare
New_Elements : constant Elements_Array_Ptr :=
new Elements_Array (1 .. Capacity);
L : constant Capacity_Range := Length (Container);
begin
New_Elements (1 .. L) := Elemsc (Container) (1 .. L);
Free (Container.Elements_Ptr);
Container.Elements_Ptr := New_Elements;
end;
end if;
end if;
end Reserve_Capacity;
----------------------
-- Reverse_Elements --
----------------------
procedure Reverse_Elements (Container : in out Vector) is
begin
if Length (Container) <= 1 then
return;
end if;
declare
I, J : Capacity_Range;
E : Elements_Array renames
Elems (Container) (1 .. Length (Container));
begin
I := 1;
J := Length (Container);
while I < J loop
declare
EI : constant Element_Type := E (I);
begin
E (I) := E (J);
E (J) := EI;
end;
I := I + 1;
J := J - 1;
end loop;
end;
end Reverse_Elements;
------------------------
-- Reverse_Find_Index --
------------------------
function Reverse_Find_Index
(Container : Vector;
Item : Element_Type;
Index : Index_Type := Index_Type'Last) return Extended_Index
is
Last : Index_Type'Base;
K : Capacity_Range;
begin
if Index > Last_Index (Container) then
Last := Last_Index (Container);
else
Last := Index;
end if;
K := Capacity_Range (Int (Last) - Int (No_Index));
for Indx in reverse Index_Type'First .. Last loop
if Get_Element (Container, K) = Item then
return Indx;
end if;
K := K - 1;
end loop;
return No_Index;
end Reverse_Find_Index;
----------
-- Swap --
----------
procedure Swap (Container : in out Vector; I, J : Index_Type) is
begin
if I > Container.Last then
raise Constraint_Error with "I index is out of range";
end if;
if J > Container.Last then
raise Constraint_Error with "J index is out of range";
end if;
if I = J then
return;
end if;
declare
II : constant Int'Base := Int (I) - Int (No_Index);
JJ : constant Int'Base := Int (J) - Int (No_Index);
EI : Element_Type renames Elems (Container) (Capacity_Range (II));
EJ : Element_Type renames Elems (Container) (Capacity_Range (JJ));
EI_Copy : constant Element_Type := EI;
begin
EI := EJ;
EJ := EI_Copy;
end;
end Swap;
---------------
-- To_Vector --
---------------
function To_Vector
(New_Item : Element_Type;
Length : Capacity_Range) return Vector
is
begin
if Length = 0 then
return Empty_Vector;
end if;
declare
First : constant Int := Int (Index_Type'First);
Last_As_Int : constant Int'Base := First + Int (Length) - 1;
Last : Index_Type;
begin
if Last_As_Int > Index_Type'Pos (Index_Type'Last) then
raise Constraint_Error with "Length is out of range"; -- ???
end if;
Last := Index_Type (Last_As_Int);
return (Capacity => Length,
Last => Last,
Elements_Ptr => <>,
Elements => (others => New_Item));
end;
end To_Vector;
end Ada.Containers.Formal_Vectors;