This repository has been archived on 2024-12-16. You can view files and clone it, but cannot push or open issues or pull requests.
CodeBlocksPortable/MinGW/lib/gcc/mingw32/6.3.0/adainclude/a-ngelfu.adb

996 lines
26 KiB
Ada
Raw Permalink Normal View History

------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- ADA.NUMERICS.GENERIC_ELEMENTARY_FUNCTIONS --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- This body is specifically for using an Ada interface to C math.h to get
-- the computation engine. Many special cases are handled locally to avoid
-- unnecessary calls or to meet Annex G strict mode requirements.
-- Uses functions sqrt, exp, log, pow, sin, asin, cos, acos, tan, atan, sinh,
-- cosh, tanh from C library via math.h
with Ada.Numerics.Aux;
package body Ada.Numerics.Generic_Elementary_Functions is
use type Ada.Numerics.Aux.Double;
Sqrt_Two : constant := 1.41421_35623_73095_04880_16887_24209_69807_85696;
Log_Two : constant := 0.69314_71805_59945_30941_72321_21458_17656_80755;
Half_Log_Two : constant := Log_Two / 2;
subtype T is Float_Type'Base;
subtype Double is Aux.Double;
Two_Pi : constant T := 2.0 * Pi;
Half_Pi : constant T := Pi / 2.0;
Half_Log_Epsilon : constant T := T (1 - T'Model_Mantissa) * Half_Log_Two;
Log_Inverse_Epsilon : constant T := T (T'Model_Mantissa - 1) * Log_Two;
Sqrt_Epsilon : constant T := Sqrt_Two ** (1 - T'Model_Mantissa);
-----------------------
-- Local Subprograms --
-----------------------
function Exp_Strict (X : Float_Type'Base) return Float_Type'Base;
-- Cody/Waite routine, supposedly more precise than the library version.
-- Currently only needed for Sinh/Cosh on X86 with the largest FP type.
function Local_Atan
(Y : Float_Type'Base;
X : Float_Type'Base := 1.0) return Float_Type'Base;
-- Common code for arc tangent after cycle reduction
----------
-- "**" --
----------
function "**" (Left, Right : Float_Type'Base) return Float_Type'Base is
A_Right : Float_Type'Base;
Int_Part : Integer;
Result : Float_Type'Base;
R1 : Float_Type'Base;
Rest : Float_Type'Base;
begin
if Left = 0.0
and then Right = 0.0
then
raise Argument_Error;
elsif Left < 0.0 then
raise Argument_Error;
elsif Right = 0.0 then
return 1.0;
elsif Left = 0.0 then
if Right < 0.0 then
raise Constraint_Error;
else
return 0.0;
end if;
elsif Left = 1.0 then
return 1.0;
elsif Right = 1.0 then
return Left;
else
begin
if Right = 2.0 then
return Left * Left;
elsif Right = 0.5 then
return Sqrt (Left);
else
A_Right := abs (Right);
-- If exponent is larger than one, compute integer exponen-
-- tiation if possible, and evaluate fractional part with more
-- precision. The relative error is now proportional to the
-- fractional part of the exponent only.
if A_Right > 1.0
and then A_Right < Float_Type'Base (Integer'Last)
then
Int_Part := Integer (Float_Type'Base'Truncation (A_Right));
Result := Left ** Int_Part;
Rest := A_Right - Float_Type'Base (Int_Part);
-- Compute with two leading bits of the mantissa using
-- square roots. Bound to be better than logarithms, and
-- easily extended to greater precision.
if Rest >= 0.5 then
R1 := Sqrt (Left);
Result := Result * R1;
Rest := Rest - 0.5;
if Rest >= 0.25 then
Result := Result * Sqrt (R1);
Rest := Rest - 0.25;
end if;
elsif Rest >= 0.25 then
Result := Result * Sqrt (Sqrt (Left));
Rest := Rest - 0.25;
end if;
Result := Result *
Float_Type'Base (Aux.Pow (Double (Left), Double (Rest)));
if Right >= 0.0 then
return Result;
else
return (1.0 / Result);
end if;
else
return
Float_Type'Base (Aux.Pow (Double (Left), Double (Right)));
end if;
end if;
exception
when others =>
raise Constraint_Error;
end;
end if;
end "**";
------------
-- Arccos --
------------
-- Natural cycle
function Arccos (X : Float_Type'Base) return Float_Type'Base is
Temp : Float_Type'Base;
begin
if abs X > 1.0 then
raise Argument_Error;
elsif abs X < Sqrt_Epsilon then
return Pi / 2.0 - X;
elsif X = 1.0 then
return 0.0;
elsif X = -1.0 then
return Pi;
end if;
Temp := Float_Type'Base (Aux.Acos (Double (X)));
if Temp < 0.0 then
Temp := Pi + Temp;
end if;
return Temp;
end Arccos;
-- Arbitrary cycle
function Arccos (X, Cycle : Float_Type'Base) return Float_Type'Base is
Temp : Float_Type'Base;
begin
if Cycle <= 0.0 then
raise Argument_Error;
elsif abs X > 1.0 then
raise Argument_Error;
elsif abs X < Sqrt_Epsilon then
return Cycle / 4.0;
elsif X = 1.0 then
return 0.0;
elsif X = -1.0 then
return Cycle / 2.0;
end if;
Temp := Arctan (Sqrt ((1.0 - X) * (1.0 + X)) / X, 1.0, Cycle);
if Temp < 0.0 then
Temp := Cycle / 2.0 + Temp;
end if;
return Temp;
end Arccos;
-------------
-- Arccosh --
-------------
function Arccosh (X : Float_Type'Base) return Float_Type'Base is
begin
-- Return positive branch of Log (X - Sqrt (X * X - 1.0)), or the proper
-- approximation for X close to 1 or >> 1.
if X < 1.0 then
raise Argument_Error;
elsif X < 1.0 + Sqrt_Epsilon then
return Sqrt (2.0 * (X - 1.0));
elsif X > 1.0 / Sqrt_Epsilon then
return Log (X) + Log_Two;
else
return Log (X + Sqrt ((X - 1.0) * (X + 1.0)));
end if;
end Arccosh;
------------
-- Arccot --
------------
-- Natural cycle
function Arccot
(X : Float_Type'Base;
Y : Float_Type'Base := 1.0)
return Float_Type'Base
is
begin
-- Just reverse arguments
return Arctan (Y, X);
end Arccot;
-- Arbitrary cycle
function Arccot
(X : Float_Type'Base;
Y : Float_Type'Base := 1.0;
Cycle : Float_Type'Base)
return Float_Type'Base
is
begin
-- Just reverse arguments
return Arctan (Y, X, Cycle);
end Arccot;
-------------
-- Arccoth --
-------------
function Arccoth (X : Float_Type'Base) return Float_Type'Base is
begin
if abs X > 2.0 then
return Arctanh (1.0 / X);
elsif abs X = 1.0 then
raise Constraint_Error;
elsif abs X < 1.0 then
raise Argument_Error;
else
-- 1.0 < abs X <= 2.0. One of X + 1.0 and X - 1.0 is exact, the other
-- has error 0 or Epsilon.
return 0.5 * (Log (abs (X + 1.0)) - Log (abs (X - 1.0)));
end if;
end Arccoth;
------------
-- Arcsin --
------------
-- Natural cycle
function Arcsin (X : Float_Type'Base) return Float_Type'Base is
begin
if abs X > 1.0 then
raise Argument_Error;
elsif abs X < Sqrt_Epsilon then
return X;
elsif X = 1.0 then
return Pi / 2.0;
elsif X = -1.0 then
return -(Pi / 2.0);
end if;
return Float_Type'Base (Aux.Asin (Double (X)));
end Arcsin;
-- Arbitrary cycle
function Arcsin (X, Cycle : Float_Type'Base) return Float_Type'Base is
begin
if Cycle <= 0.0 then
raise Argument_Error;
elsif abs X > 1.0 then
raise Argument_Error;
elsif X = 0.0 then
return X;
elsif X = 1.0 then
return Cycle / 4.0;
elsif X = -1.0 then
return -(Cycle / 4.0);
end if;
return Arctan (X / Sqrt ((1.0 - X) * (1.0 + X)), 1.0, Cycle);
end Arcsin;
-------------
-- Arcsinh --
-------------
function Arcsinh (X : Float_Type'Base) return Float_Type'Base is
begin
if abs X < Sqrt_Epsilon then
return X;
elsif X > 1.0 / Sqrt_Epsilon then
return Log (X) + Log_Two;
elsif X < -(1.0 / Sqrt_Epsilon) then
return -(Log (-X) + Log_Two);
elsif X < 0.0 then
return -Log (abs X + Sqrt (X * X + 1.0));
else
return Log (X + Sqrt (X * X + 1.0));
end if;
end Arcsinh;
------------
-- Arctan --
------------
-- Natural cycle
function Arctan
(Y : Float_Type'Base;
X : Float_Type'Base := 1.0)
return Float_Type'Base
is
begin
if X = 0.0 and then Y = 0.0 then
raise Argument_Error;
elsif Y = 0.0 then
if X > 0.0 then
return 0.0;
else -- X < 0.0
return Pi * Float_Type'Copy_Sign (1.0, Y);
end if;
elsif X = 0.0 then
return Float_Type'Copy_Sign (Half_Pi, Y);
else
return Local_Atan (Y, X);
end if;
end Arctan;
-- Arbitrary cycle
function Arctan
(Y : Float_Type'Base;
X : Float_Type'Base := 1.0;
Cycle : Float_Type'Base)
return Float_Type'Base
is
begin
if Cycle <= 0.0 then
raise Argument_Error;
elsif X = 0.0 and then Y = 0.0 then
raise Argument_Error;
elsif Y = 0.0 then
if X > 0.0 then
return 0.0;
else -- X < 0.0
return Cycle / 2.0 * Float_Type'Copy_Sign (1.0, Y);
end if;
elsif X = 0.0 then
return Float_Type'Copy_Sign (Cycle / 4.0, Y);
else
return Local_Atan (Y, X) * Cycle / Two_Pi;
end if;
end Arctan;
-------------
-- Arctanh --
-------------
function Arctanh (X : Float_Type'Base) return Float_Type'Base is
A, B, D, A_Plus_1, A_From_1 : Float_Type'Base;
Mantissa : constant Integer := Float_Type'Base'Machine_Mantissa;
begin
-- The naive formula:
-- Arctanh (X) := (1/2) * Log (1 + X) / (1 - X)
-- is not well-behaved numerically when X < 0.5 and when X is close
-- to one. The following is accurate but probably not optimal.
if abs X = 1.0 then
raise Constraint_Error;
elsif abs X >= 1.0 - 2.0 ** (-Mantissa) then
if abs X >= 1.0 then
raise Argument_Error;
else
-- The one case that overflows if put through the method below:
-- abs X = 1.0 - Epsilon. In this case (1/2) log (2/Epsilon) is
-- accurate. This simplifies to:
return Float_Type'Copy_Sign (
Half_Log_Two * Float_Type'Base (Mantissa + 1), X);
end if;
-- elsif abs X <= 0.5 then
-- why is above line commented out ???
else
-- Use several piecewise linear approximations. A is close to X,
-- chosen so 1.0 + A, 1.0 - A, and X - A are exact. The two scalings
-- remove the low-order bits of X.
A := Float_Type'Base'Scaling (
Float_Type'Base (Long_Long_Integer
(Float_Type'Base'Scaling (X, Mantissa - 1))), 1 - Mantissa);
B := X - A; -- This is exact; abs B <= 2**(-Mantissa).
A_Plus_1 := 1.0 + A; -- This is exact.
A_From_1 := 1.0 - A; -- Ditto.
D := A_Plus_1 * A_From_1; -- 1 - A*A.
-- use one term of the series expansion:
-- f (x + e) = f(x) + e * f'(x) + ..
-- The derivative of Arctanh at A is 1/(1-A*A). Next term is
-- A*(B/D)**2 (if a quadratic approximation is ever needed).
return 0.5 * (Log (A_Plus_1) - Log (A_From_1)) + B / D;
end if;
end Arctanh;
---------
-- Cos --
---------
-- Natural cycle
function Cos (X : Float_Type'Base) return Float_Type'Base is
begin
if abs X < Sqrt_Epsilon then
return 1.0;
end if;
return Float_Type'Base (Aux.Cos (Double (X)));
end Cos;
-- Arbitrary cycle
function Cos (X, Cycle : Float_Type'Base) return Float_Type'Base is
begin
-- Just reuse the code for Sin. The potential small loss of speed is
-- negligible with proper (front-end) inlining.
return -Sin (abs X - Cycle * 0.25, Cycle);
end Cos;
----------
-- Cosh --
----------
function Cosh (X : Float_Type'Base) return Float_Type'Base is
Lnv : constant Float_Type'Base := 8#0.542714#;
V2minus1 : constant Float_Type'Base := 0.13830_27787_96019_02638E-4;
Y : constant Float_Type'Base := abs X;
Z : Float_Type'Base;
begin
if Y < Sqrt_Epsilon then
return 1.0;
elsif Y > Log_Inverse_Epsilon then
Z := Exp_Strict (Y - Lnv);
return (Z + V2minus1 * Z);
else
Z := Exp_Strict (Y);
return 0.5 * (Z + 1.0 / Z);
end if;
end Cosh;
---------
-- Cot --
---------
-- Natural cycle
function Cot (X : Float_Type'Base) return Float_Type'Base is
begin
if X = 0.0 then
raise Constraint_Error;
elsif abs X < Sqrt_Epsilon then
return 1.0 / X;
end if;
return 1.0 / Float_Type'Base (Aux.Tan (Double (X)));
end Cot;
-- Arbitrary cycle
function Cot (X, Cycle : Float_Type'Base) return Float_Type'Base is
T : Float_Type'Base;
begin
if Cycle <= 0.0 then
raise Argument_Error;
end if;
T := Float_Type'Base'Remainder (X, Cycle);
if T = 0.0 or else abs T = 0.5 * Cycle then
raise Constraint_Error;
elsif abs T < Sqrt_Epsilon then
return 1.0 / T;
elsif abs T = 0.25 * Cycle then
return 0.0;
else
T := T / Cycle * Two_Pi;
return Cos (T) / Sin (T);
end if;
end Cot;
----------
-- Coth --
----------
function Coth (X : Float_Type'Base) return Float_Type'Base is
begin
if X = 0.0 then
raise Constraint_Error;
elsif X < Half_Log_Epsilon then
return -1.0;
elsif X > -Half_Log_Epsilon then
return 1.0;
elsif abs X < Sqrt_Epsilon then
return 1.0 / X;
end if;
return 1.0 / Float_Type'Base (Aux.Tanh (Double (X)));
end Coth;
---------
-- Exp --
---------
function Exp (X : Float_Type'Base) return Float_Type'Base is
Result : Float_Type'Base;
begin
if X = 0.0 then
return 1.0;
end if;
Result := Float_Type'Base (Aux.Exp (Double (X)));
-- Deal with case of Exp returning IEEE infinity. If Machine_Overflows
-- is False, then we can just leave it as an infinity (and indeed we
-- prefer to do so). But if Machine_Overflows is True, then we have
-- to raise a Constraint_Error exception as required by the RM.
if Float_Type'Machine_Overflows and then not Result'Valid then
raise Constraint_Error;
end if;
return Result;
end Exp;
----------------
-- Exp_Strict --
----------------
function Exp_Strict (X : Float_Type'Base) return Float_Type'Base is
G : Float_Type'Base;
Z : Float_Type'Base;
P0 : constant := 0.25000_00000_00000_00000;
P1 : constant := 0.75753_18015_94227_76666E-2;
P2 : constant := 0.31555_19276_56846_46356E-4;
Q0 : constant := 0.5;
Q1 : constant := 0.56817_30269_85512_21787E-1;
Q2 : constant := 0.63121_89437_43985_02557E-3;
Q3 : constant := 0.75104_02839_98700_46114E-6;
C1 : constant := 8#0.543#;
C2 : constant := -2.1219_44400_54690_58277E-4;
Le : constant := 1.4426_95040_88896_34074;
XN : Float_Type'Base;
P, Q, R : Float_Type'Base;
begin
if X = 0.0 then
return 1.0;
end if;
XN := Float_Type'Base'Rounding (X * Le);
G := (X - XN * C1) - XN * C2;
Z := G * G;
P := G * ((P2 * Z + P1) * Z + P0);
Q := ((Q3 * Z + Q2) * Z + Q1) * Z + Q0;
R := 0.5 + P / (Q - P);
R := Float_Type'Base'Scaling (R, Integer (XN) + 1);
-- Deal with case of Exp returning IEEE infinity. If Machine_Overflows
-- is False, then we can just leave it as an infinity (and indeed we
-- prefer to do so). But if Machine_Overflows is True, then we have to
-- raise a Constraint_Error exception as required by the RM.
if Float_Type'Machine_Overflows and then not R'Valid then
raise Constraint_Error;
else
return R;
end if;
end Exp_Strict;
----------------
-- Local_Atan --
----------------
function Local_Atan
(Y : Float_Type'Base;
X : Float_Type'Base := 1.0) return Float_Type'Base
is
Z : Float_Type'Base;
Raw_Atan : Float_Type'Base;
begin
Z := (if abs Y > abs X then abs (X / Y) else abs (Y / X));
Raw_Atan :=
(if Z < Sqrt_Epsilon then Z
elsif Z = 1.0 then Pi / 4.0
else Float_Type'Base (Aux.Atan (Double (Z))));
if abs Y > abs X then
Raw_Atan := Half_Pi - Raw_Atan;
end if;
if X > 0.0 then
return Float_Type'Copy_Sign (Raw_Atan, Y);
else
return Float_Type'Copy_Sign (Pi - Raw_Atan, Y);
end if;
end Local_Atan;
---------
-- Log --
---------
-- Natural base
function Log (X : Float_Type'Base) return Float_Type'Base is
begin
if X < 0.0 then
raise Argument_Error;
elsif X = 0.0 then
raise Constraint_Error;
elsif X = 1.0 then
return 0.0;
end if;
return Float_Type'Base (Aux.Log (Double (X)));
end Log;
-- Arbitrary base
function Log (X, Base : Float_Type'Base) return Float_Type'Base is
begin
if X < 0.0 then
raise Argument_Error;
elsif Base <= 0.0 or else Base = 1.0 then
raise Argument_Error;
elsif X = 0.0 then
raise Constraint_Error;
elsif X = 1.0 then
return 0.0;
end if;
return Float_Type'Base (Aux.Log (Double (X)) / Aux.Log (Double (Base)));
end Log;
---------
-- Sin --
---------
-- Natural cycle
function Sin (X : Float_Type'Base) return Float_Type'Base is
begin
if abs X < Sqrt_Epsilon then
return X;
end if;
return Float_Type'Base (Aux.Sin (Double (X)));
end Sin;
-- Arbitrary cycle
function Sin (X, Cycle : Float_Type'Base) return Float_Type'Base is
T : Float_Type'Base;
begin
if Cycle <= 0.0 then
raise Argument_Error;
-- If X is zero, return it as the result, preserving the argument sign.
-- Is this test really needed on any machine ???
elsif X = 0.0 then
return X;
end if;
T := Float_Type'Base'Remainder (X, Cycle);
-- The following two reductions reduce the argument to the interval
-- [-0.25 * Cycle, 0.25 * Cycle]. This reduction is exact and is needed
-- to prevent inaccuracy that may result if the sine function uses a
-- different (more accurate) value of Pi in its reduction than is used
-- in the multiplication with Two_Pi.
if abs T > 0.25 * Cycle then
T := 0.5 * Float_Type'Copy_Sign (Cycle, T) - T;
end if;
-- Could test for 12.0 * abs T = Cycle, and return an exact value in
-- those cases. It is not clear this is worth the extra test though.
return Float_Type'Base (Aux.Sin (Double (T / Cycle * Two_Pi)));
end Sin;
----------
-- Sinh --
----------
function Sinh (X : Float_Type'Base) return Float_Type'Base is
Lnv : constant Float_Type'Base := 8#0.542714#;
V2minus1 : constant Float_Type'Base := 0.13830_27787_96019_02638E-4;
Y : constant Float_Type'Base := abs X;
F : constant Float_Type'Base := Y * Y;
Z : Float_Type'Base;
Float_Digits_1_6 : constant Boolean := Float_Type'Digits < 7;
begin
if Y < Sqrt_Epsilon then
return X;
elsif Y > Log_Inverse_Epsilon then
Z := Exp_Strict (Y - Lnv);
Z := Z + V2minus1 * Z;
elsif Y < 1.0 then
if Float_Digits_1_6 then
-- Use expansion provided by Cody and Waite, p. 226. Note that
-- leading term of the polynomial in Q is exactly 1.0.
declare
P0 : constant := -0.71379_3159E+1;
P1 : constant := -0.19033_3399E+0;
Q0 : constant := -0.42827_7109E+2;
begin
Z := Y + Y * F * (P1 * F + P0) / (F + Q0);
end;
else
declare
P0 : constant := -0.35181_28343_01771_17881E+6;
P1 : constant := -0.11563_52119_68517_68270E+5;
P2 : constant := -0.16375_79820_26307_51372E+3;
P3 : constant := -0.78966_12741_73570_99479E+0;
Q0 : constant := -0.21108_77005_81062_71242E+7;
Q1 : constant := 0.36162_72310_94218_36460E+5;
Q2 : constant := -0.27773_52311_96507_01667E+3;
begin
Z := Y + Y * F * (((P3 * F + P2) * F + P1) * F + P0)
/ (((F + Q2) * F + Q1) * F + Q0);
end;
end if;
else
Z := Exp_Strict (Y);
Z := 0.5 * (Z - 1.0 / Z);
end if;
if X > 0.0 then
return Z;
else
return -Z;
end if;
end Sinh;
----------
-- Sqrt --
----------
function Sqrt (X : Float_Type'Base) return Float_Type'Base is
begin
if X < 0.0 then
raise Argument_Error;
-- Special case Sqrt (0.0) to preserve possible minus sign per IEEE
elsif X = 0.0 then
return X;
end if;
return Float_Type'Base (Aux.Sqrt (Double (X)));
end Sqrt;
---------
-- Tan --
---------
-- Natural cycle
function Tan (X : Float_Type'Base) return Float_Type'Base is
begin
if abs X < Sqrt_Epsilon then
return X;
end if;
-- Note: if X is exactly pi/2, then we should raise an exception, since
-- the result would overflow. But for all floating-point formats we deal
-- with, it is impossible for X to be exactly pi/2, and the result is
-- always in range.
return Float_Type'Base (Aux.Tan (Double (X)));
end Tan;
-- Arbitrary cycle
function Tan (X, Cycle : Float_Type'Base) return Float_Type'Base is
T : Float_Type'Base;
begin
if Cycle <= 0.0 then
raise Argument_Error;
elsif X = 0.0 then
return X;
end if;
T := Float_Type'Base'Remainder (X, Cycle);
if abs T = 0.25 * Cycle then
raise Constraint_Error;
elsif abs T = 0.5 * Cycle then
return 0.0;
else
T := T / Cycle * Two_Pi;
return Sin (T) / Cos (T);
end if;
end Tan;
----------
-- Tanh --
----------
function Tanh (X : Float_Type'Base) return Float_Type'Base is
P0 : constant Float_Type'Base := -0.16134_11902_39962_28053E+4;
P1 : constant Float_Type'Base := -0.99225_92967_22360_83313E+2;
P2 : constant Float_Type'Base := -0.96437_49277_72254_69787E+0;
Q0 : constant Float_Type'Base := 0.48402_35707_19886_88686E+4;
Q1 : constant Float_Type'Base := 0.22337_72071_89623_12926E+4;
Q2 : constant Float_Type'Base := 0.11274_47438_05349_49335E+3;
Q3 : constant Float_Type'Base := 0.10000_00000_00000_00000E+1;
Half_Ln3 : constant Float_Type'Base := 0.54930_61443_34054_84570;
P, Q, R : Float_Type'Base;
Y : constant Float_Type'Base := abs X;
G : constant Float_Type'Base := Y * Y;
Float_Type_Digits_15_Or_More : constant Boolean :=
Float_Type'Digits > 14;
begin
if X < Half_Log_Epsilon then
return -1.0;
elsif X > -Half_Log_Epsilon then
return 1.0;
elsif Y < Sqrt_Epsilon then
return X;
elsif Y < Half_Ln3
and then Float_Type_Digits_15_Or_More
then
P := (P2 * G + P1) * G + P0;
Q := ((Q3 * G + Q2) * G + Q1) * G + Q0;
R := G * (P / Q);
return X + X * R;
else
return Float_Type'Base (Aux.Tanh (Double (X)));
end if;
end Tanh;
end Ada.Numerics.Generic_Elementary_Functions;