171 lines
7.9 KiB
Ada
171 lines
7.9 KiB
Ada
|
------------------------------------------------------------------------------
|
||
|
-- --
|
||
|
-- GNAT RUN-TIME COMPONENTS --
|
||
|
-- --
|
||
|
-- ADA.NUMERICS.GENERIC_ELEMENTARY_FUNCTIONS --
|
||
|
-- --
|
||
|
-- S p e c --
|
||
|
-- --
|
||
|
-- Copyright (C) 2012-2015, Free Software Foundation, Inc. --
|
||
|
-- --
|
||
|
-- This specification is derived from the Ada Reference Manual for use with --
|
||
|
-- GNAT. The copyright notice above, and the license provisions that follow --
|
||
|
-- apply solely to the Post aspects that have been added to the spec. --
|
||
|
-- --
|
||
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
||
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
||
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
||
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
||
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
||
|
-- or FITNESS FOR A PARTICULAR PURPOSE. --
|
||
|
-- --
|
||
|
-- As a special exception under Section 7 of GPL version 3, you are granted --
|
||
|
-- additional permissions described in the GCC Runtime Library Exception, --
|
||
|
-- version 3.1, as published by the Free Software Foundation. --
|
||
|
-- --
|
||
|
-- You should have received a copy of the GNU General Public License and --
|
||
|
-- a copy of the GCC Runtime Library Exception along with this program; --
|
||
|
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
|
||
|
-- <http://www.gnu.org/licenses/>. --
|
||
|
-- --
|
||
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
||
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
||
|
-- --
|
||
|
------------------------------------------------------------------------------
|
||
|
|
||
|
generic
|
||
|
type Float_Type is digits <>;
|
||
|
|
||
|
package Ada.Numerics.Generic_Elementary_Functions is
|
||
|
pragma Pure;
|
||
|
|
||
|
function Sqrt (X : Float_Type'Base) return Float_Type'Base with
|
||
|
Post => Sqrt'Result >= 0.0
|
||
|
and then (if X = 0.0 then Sqrt'Result = 0.0)
|
||
|
and then (if X = 1.0 then Sqrt'Result = 1.0)
|
||
|
|
||
|
-- Finally if X is positive, the result of Sqrt is positive (because
|
||
|
-- the sqrt of numbers greater than 1 is greater than or equal to 1,
|
||
|
-- and the sqrt of numbers less than 1 is greater than the argument).
|
||
|
|
||
|
-- This property is useful in particular for static analysis. The
|
||
|
-- property that X is positive is not expressed as (X > 0.0), as
|
||
|
-- the value X may be held in registers that have larger range and
|
||
|
-- precision on some architecture (for example, on x86 using x387
|
||
|
-- FPU, as opposed to SSE2). So, it might be possible for X to be
|
||
|
-- 2.0**(-5000) or so, which could cause the number to compare as
|
||
|
-- greater than 0, but Sqrt would still return a zero result.
|
||
|
|
||
|
-- Note: we use the comparison with Succ (0.0) here because this is
|
||
|
-- more amenable to CodePeer analysis than the use of 'Machine.
|
||
|
|
||
|
and then (if X >= Float_Type'Succ (0.0) then Sqrt'Result > 0.0);
|
||
|
|
||
|
function Log (X : Float_Type'Base) return Float_Type'Base with
|
||
|
Post => (if X = 1.0 then Log'Result = 0.0);
|
||
|
|
||
|
function Log (X, Base : Float_Type'Base) return Float_Type'Base with
|
||
|
Post => (if X = 1.0 then Log'Result = 0.0);
|
||
|
|
||
|
function Exp (X : Float_Type'Base) return Float_Type'Base with
|
||
|
Post => (if X = 0.0 then Exp'Result = 1.0);
|
||
|
|
||
|
function "**" (Left, Right : Float_Type'Base) return Float_Type'Base with
|
||
|
Post => "**"'Result >= 0.0
|
||
|
and then (if Right = 0.0 then "**"'Result = 1.0)
|
||
|
and then (if Right = 1.0 then "**"'Result = Left)
|
||
|
and then (if Left = 1.0 then "**"'Result = 1.0)
|
||
|
and then (if Left = 0.0 then "**"'Result = 0.0);
|
||
|
|
||
|
function Sin (X : Float_Type'Base) return Float_Type'Base with
|
||
|
Post => Sin'Result in -1.0 .. 1.0
|
||
|
and then (if X = 0.0 then Sin'Result = 0.0);
|
||
|
|
||
|
function Sin (X, Cycle : Float_Type'Base) return Float_Type'Base with
|
||
|
Post => Sin'Result in -1.0 .. 1.0
|
||
|
and then (if X = 0.0 then Sin'Result = 0.0);
|
||
|
|
||
|
function Cos (X : Float_Type'Base) return Float_Type'Base with
|
||
|
Post => Cos'Result in -1.0 .. 1.0
|
||
|
and then (if X = 0.0 then Cos'Result = 1.0);
|
||
|
|
||
|
function Cos (X, Cycle : Float_Type'Base) return Float_Type'Base with
|
||
|
Post => Cos'Result in -1.0 .. 1.0
|
||
|
and then (if X = 0.0 then Cos'Result = 1.0);
|
||
|
|
||
|
function Tan (X : Float_Type'Base) return Float_Type'Base with
|
||
|
Post => (if X = 0.0 then Tan'Result = 0.0);
|
||
|
|
||
|
function Tan (X, Cycle : Float_Type'Base) return Float_Type'Base with
|
||
|
Post => (if X = 0.0 then Tan'Result = 0.0);
|
||
|
|
||
|
function Cot (X : Float_Type'Base) return Float_Type'Base;
|
||
|
|
||
|
function Cot (X, Cycle : Float_Type'Base) return Float_Type'Base;
|
||
|
|
||
|
function Arcsin (X : Float_Type'Base) return Float_Type'Base with
|
||
|
Post => (if X = 0.0 then Arcsin'Result = 0.0);
|
||
|
|
||
|
function Arcsin (X, Cycle : Float_Type'Base) return Float_Type'Base with
|
||
|
Post => (if X = 0.0 then Arcsin'Result = 0.0);
|
||
|
|
||
|
function Arccos (X : Float_Type'Base) return Float_Type'Base with
|
||
|
Post => (if X = 1.0 then Arccos'Result = 0.0);
|
||
|
|
||
|
function Arccos (X, Cycle : Float_Type'Base) return Float_Type'Base with
|
||
|
Post => (if X = 1.0 then Arccos'Result = 0.0);
|
||
|
|
||
|
function Arctan
|
||
|
(Y : Float_Type'Base;
|
||
|
X : Float_Type'Base := 1.0) return Float_Type'Base
|
||
|
with
|
||
|
Post => (if X > 0.0 and then Y = 0.0 then Arctan'Result = 0.0);
|
||
|
|
||
|
function Arctan
|
||
|
(Y : Float_Type'Base;
|
||
|
X : Float_Type'Base := 1.0;
|
||
|
Cycle : Float_Type'Base) return Float_Type'Base
|
||
|
with
|
||
|
Post => (if X > 0.0 and then Y = 0.0 then Arctan'Result = 0.0);
|
||
|
|
||
|
function Arccot
|
||
|
(X : Float_Type'Base;
|
||
|
Y : Float_Type'Base := 1.0) return Float_Type'Base
|
||
|
with
|
||
|
Post => (if X > 0.0 and then Y = 0.0 then Arccot'Result = 0.0);
|
||
|
|
||
|
function Arccot
|
||
|
(X : Float_Type'Base;
|
||
|
Y : Float_Type'Base := 1.0;
|
||
|
Cycle : Float_Type'Base) return Float_Type'Base
|
||
|
with
|
||
|
Post => (if X > 0.0 and then Y = 0.0 then Arccot'Result = 0.0);
|
||
|
|
||
|
function Sinh (X : Float_Type'Base) return Float_Type'Base with
|
||
|
Post => (if X = 0.0 then Sinh'Result = 0.0);
|
||
|
|
||
|
function Cosh (X : Float_Type'Base) return Float_Type'Base with
|
||
|
Post => Cosh'Result >= 1.0
|
||
|
and then (if X = 0.0 then Cosh'Result = 1.0);
|
||
|
|
||
|
function Tanh (X : Float_Type'Base) return Float_Type'Base with
|
||
|
Post => Tanh'Result in -1.0 .. 1.0
|
||
|
and then (if X = 0.0 then Tanh'Result = 0.0);
|
||
|
|
||
|
function Coth (X : Float_Type'Base) return Float_Type'Base with
|
||
|
Post => abs Coth'Result >= 1.0;
|
||
|
|
||
|
function Arcsinh (X : Float_Type'Base) return Float_Type'Base with
|
||
|
Post => (if X = 0.0 then Arcsinh'Result = 0.0);
|
||
|
|
||
|
function Arccosh (X : Float_Type'Base) return Float_Type'Base with
|
||
|
Post => Arccosh'Result >= 0.0
|
||
|
and then (if X = 1.0 then Arccosh'Result = 0.0);
|
||
|
|
||
|
function Arctanh (X : Float_Type'Base) return Float_Type'Base with
|
||
|
Post => (if X = 0.0 then Arctanh'Result = 0.0);
|
||
|
|
||
|
function Arccoth (X : Float_Type'Base) return Float_Type'Base;
|
||
|
|
||
|
end Ada.Numerics.Generic_Elementary_Functions;
|