This repository has been archived on 2024-12-16. You can view files and clone it, but cannot push or open issues or pull requests.
CodeBlocksPortable/MinGW/lib/gcc/mingw32/6.3.0/adainclude/g-sechas.adb

462 lines
14 KiB
Ada
Raw Permalink Normal View History

------------------------------------------------------------------------------
-- --
-- GNAT LIBRARY COMPONENTS --
-- --
-- G N A T . S E C U R E _ H A S H E S --
-- --
-- B o d y --
-- --
-- Copyright (C) 2009-2014, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with System; use System;
with Interfaces; use Interfaces;
package body GNAT.Secure_Hashes is
Hex_Digit : constant array (Stream_Element range 0 .. 15) of Character :=
"0123456789abcdef";
type Fill_Buffer_Access is
access procedure
(M : in out Message_State;
S : String;
First : Natural;
Last : out Natural);
-- A procedure to transfer data from S, starting at First, into M's block
-- buffer until either the block buffer is full or all data from S has been
-- consumed.
procedure Fill_Buffer_Copy
(M : in out Message_State;
S : String;
First : Natural;
Last : out Natural);
-- Transfer procedure which just copies data from S to M
procedure Fill_Buffer_Swap
(M : in out Message_State;
S : String;
First : Natural;
Last : out Natural);
-- Transfer procedure which swaps bytes from S when copying into M. S must
-- have even length. Note that the swapping is performed considering pairs
-- starting at S'First, even if S'First /= First (that is, if
-- First = S'First then the first copied byte is always S (S'First + 1),
-- and if First = S'First + 1 then the first copied byte is always
-- S (S'First).
procedure To_String (SEA : Stream_Element_Array; S : out String);
-- Return the hexadecimal representation of SEA
----------------------
-- Fill_Buffer_Copy --
----------------------
procedure Fill_Buffer_Copy
(M : in out Message_State;
S : String;
First : Natural;
Last : out Natural)
is
Buf_String : String (M.Buffer'Range);
for Buf_String'Address use M.Buffer'Address;
pragma Import (Ada, Buf_String);
Length : constant Natural :=
Natural'Min (M.Block_Length - M.Last, S'Last - First + 1);
begin
pragma Assert (Length > 0);
Buf_String (M.Last + 1 .. M.Last + Length) :=
S (First .. First + Length - 1);
M.Last := M.Last + Length;
Last := First + Length - 1;
end Fill_Buffer_Copy;
----------------------
-- Fill_Buffer_Swap --
----------------------
procedure Fill_Buffer_Swap
(M : in out Message_State;
S : String;
First : Natural;
Last : out Natural)
is
pragma Assert (S'Length mod 2 = 0);
Length : constant Natural :=
Natural'Min (M.Block_Length - M.Last, S'Last - First + 1);
begin
Last := First;
while Last - First < Length loop
M.Buffer (M.Last + 1 + Last - First) :=
(if (Last - S'First) mod 2 = 0
then S (Last + 1)
else S (Last - 1));
Last := Last + 1;
end loop;
M.Last := M.Last + Length;
Last := First + Length - 1;
end Fill_Buffer_Swap;
---------------
-- To_String --
---------------
procedure To_String (SEA : Stream_Element_Array; S : out String) is
pragma Assert (S'Length = 2 * SEA'Length);
begin
for J in SEA'Range loop
declare
S_J : constant Natural := 1 + Natural (J - SEA'First) * 2;
begin
S (S_J) := Hex_Digit (SEA (J) / 16);
S (S_J + 1) := Hex_Digit (SEA (J) mod 16);
end;
end loop;
end To_String;
-------
-- H --
-------
package body H is
procedure Update
(C : in out Context;
S : String;
Fill_Buffer : Fill_Buffer_Access);
-- Internal common routine for all Update procedures
procedure Final
(C : Context;
Hash_Bits : out Ada.Streams.Stream_Element_Array);
-- Perform final hashing operations (data padding) and extract the
-- (possibly truncated) state of C into Hash_Bits.
------------
-- Digest --
------------
function Digest (C : Context) return Message_Digest is
Hash_Bits : Stream_Element_Array
(1 .. Stream_Element_Offset (Hash_Length));
begin
Final (C, Hash_Bits);
return MD : Message_Digest do
To_String (Hash_Bits, MD);
end return;
end Digest;
function Digest (S : String) return Message_Digest is
C : Context;
begin
Update (C, S);
return Digest (C);
end Digest;
function Digest (A : Stream_Element_Array) return Message_Digest is
C : Context;
begin
Update (C, A);
return Digest (C);
end Digest;
function Digest (C : Context) return Binary_Message_Digest is
Hash_Bits : Stream_Element_Array
(1 .. Stream_Element_Offset (Hash_Length));
begin
Final (C, Hash_Bits);
return Hash_Bits;
end Digest;
function Digest (S : String) return Binary_Message_Digest is
C : Context;
begin
Update (C, S);
return Digest (C);
end Digest;
function Digest
(A : Stream_Element_Array) return Binary_Message_Digest
is
C : Context;
begin
Update (C, A);
return Digest (C);
end Digest;
-----------
-- Final --
-----------
-- Once a complete message has been processed, it is padded with one 1
-- bit followed by enough 0 bits so that the last block is 2 * Word'Size
-- bits short of being completed. The last 2 * Word'Size bits are set to
-- the message size in bits (excluding padding).
procedure Final
(C : Context;
Hash_Bits : out Stream_Element_Array)
is
FC : Context := C;
Zeroes : Natural;
-- Number of 0 bytes in padding
Message_Length : Unsigned_64 := FC.M_State.Length;
-- Message length in bytes
Size_Length : constant Natural :=
2 * Hash_State.Word'Size / 8;
-- Length in bytes of the size representation
begin
Zeroes := (Block_Length - 1 - Size_Length - FC.M_State.Last)
mod FC.M_State.Block_Length;
declare
Pad : String (1 .. 1 + Zeroes + Size_Length) :=
(1 => Character'Val (128), others => ASCII.NUL);
Index : Natural;
First_Index : Natural;
begin
First_Index := (if Hash_Bit_Order = Low_Order_First
then Pad'Last - Size_Length + 1
else Pad'Last);
Index := First_Index;
while Message_Length > 0 loop
if Index = First_Index then
-- Message_Length is in bytes, but we need to store it as
-- a bit count).
Pad (Index) := Character'Val
(Shift_Left (Message_Length and 16#1f#, 3));
Message_Length := Shift_Right (Message_Length, 5);
else
Pad (Index) := Character'Val (Message_Length and 16#ff#);
Message_Length := Shift_Right (Message_Length, 8);
end if;
Index := Index +
(if Hash_Bit_Order = Low_Order_First then 1 else -1);
end loop;
Update (FC, Pad);
end;
pragma Assert (FC.M_State.Last = 0);
Hash_State.To_Hash (FC.H_State, Hash_Bits);
-- HMAC case: hash outer pad
if C.KL /= 0 then
declare
Outer_C : Context;
Opad : Stream_Element_Array :=
(1 .. Stream_Element_Offset (Block_Length) => 16#5c#);
begin
for J in C.Key'Range loop
Opad (J) := Opad (J) xor C.Key (J);
end loop;
Update (Outer_C, Opad);
Update (Outer_C, Hash_Bits);
Final (Outer_C, Hash_Bits);
end;
end if;
end Final;
--------------------------
-- HMAC_Initial_Context --
--------------------------
function HMAC_Initial_Context (Key : String) return Context is
begin
if Key'Length = 0 then
raise Constraint_Error with "null key";
end if;
return C : Context (KL => (if Key'Length <= Key_Length'Last
then Key'Length
else Stream_Element_Offset (Hash_Length)))
do
-- Set Key (if longer than block length, first hash it)
if C.KL = Key'Length then
declare
SK : String (1 .. Key'Length);
for SK'Address use C.Key'Address;
pragma Import (Ada, SK);
begin
SK := Key;
end;
else
C.Key := Digest (Key);
end if;
-- Hash inner pad
declare
Ipad : Stream_Element_Array :=
(1 .. Stream_Element_Offset (Block_Length) => 16#36#);
begin
for J in C.Key'Range loop
Ipad (J) := Ipad (J) xor C.Key (J);
end loop;
Update (C, Ipad);
end;
end return;
end HMAC_Initial_Context;
------------
-- Update --
------------
procedure Update
(C : in out Context;
S : String;
Fill_Buffer : Fill_Buffer_Access)
is
Last : Natural;
begin
C.M_State.Length := C.M_State.Length + S'Length;
Last := S'First - 1;
while Last < S'Last loop
Fill_Buffer (C.M_State, S, Last + 1, Last);
if C.M_State.Last = Block_Length then
Transform (C.H_State, C.M_State);
C.M_State.Last := 0;
end if;
end loop;
end Update;
------------
-- Update --
------------
procedure Update (C : in out Context; Input : String) is
begin
Update (C, Input, Fill_Buffer_Copy'Access);
end Update;
------------
-- Update --
------------
procedure Update (C : in out Context; Input : Stream_Element_Array) is
S : String (1 .. Input'Length);
for S'Address use Input'Address;
pragma Import (Ada, S);
begin
Update (C, S, Fill_Buffer_Copy'Access);
end Update;
-----------------
-- Wide_Update --
-----------------
procedure Wide_Update (C : in out Context; Input : Wide_String) is
S : String (1 .. 2 * Input'Length);
for S'Address use Input'Address;
pragma Import (Ada, S);
begin
Update
(C, S,
(if System.Default_Bit_Order /= Low_Order_First
then Fill_Buffer_Swap'Access
else Fill_Buffer_Copy'Access));
end Wide_Update;
-----------------
-- Wide_Digest --
-----------------
function Wide_Digest (W : Wide_String) return Message_Digest is
C : Context;
begin
Wide_Update (C, W);
return Digest (C);
end Wide_Digest;
function Wide_Digest (W : Wide_String) return Binary_Message_Digest is
C : Context;
begin
Wide_Update (C, W);
return Digest (C);
end Wide_Digest;
end H;
-------------------------
-- Hash_Function_State --
-------------------------
package body Hash_Function_State is
-------------
-- To_Hash --
-------------
procedure To_Hash (H : State; H_Bits : out Stream_Element_Array) is
Hash_Words : constant Natural := H'Size / Word'Size;
Result : State (1 .. Hash_Words) :=
H (H'Last - Hash_Words + 1 .. H'Last);
R_SEA : Stream_Element_Array (1 .. Result'Size / 8);
for R_SEA'Address use Result'Address;
pragma Import (Ada, R_SEA);
begin
if System.Default_Bit_Order /= Hash_Bit_Order then
for J in Result'Range loop
Swap (Result (J)'Address);
end loop;
end if;
-- Return truncated hash
pragma Assert (H_Bits'Length <= R_SEA'Length);
H_Bits := R_SEA (R_SEA'First .. R_SEA'First + H_Bits'Length - 1);
end To_Hash;
end Hash_Function_State;
end GNAT.Secure_Hashes;