1398 lines
39 KiB
Ada
1398 lines
39 KiB
Ada
|
------------------------------------------------------------------------------
|
||
|
-- --
|
||
|
-- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
|
||
|
-- --
|
||
|
-- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
|
||
|
-- --
|
||
|
-- B o d y --
|
||
|
-- --
|
||
|
-- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
|
||
|
-- --
|
||
|
-- GNARL is free software; you can redistribute it and/or modify it under --
|
||
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
||
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
||
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
||
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
||
|
-- or FITNESS FOR A PARTICULAR PURPOSE. --
|
||
|
-- --
|
||
|
-- As a special exception under Section 7 of GPL version 3, you are granted --
|
||
|
-- additional permissions described in the GCC Runtime Library Exception, --
|
||
|
-- version 3.1, as published by the Free Software Foundation. --
|
||
|
-- --
|
||
|
-- You should have received a copy of the GNU General Public License and --
|
||
|
-- a copy of the GCC Runtime Library Exception along with this program; --
|
||
|
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
|
||
|
-- <http://www.gnu.org/licenses/>. --
|
||
|
-- --
|
||
|
-- GNARL was developed by the GNARL team at Florida State University. --
|
||
|
-- Extensive contributions were provided by Ada Core Technologies, Inc. --
|
||
|
-- --
|
||
|
------------------------------------------------------------------------------
|
||
|
|
||
|
-- This is a NT (native) version of this package
|
||
|
|
||
|
-- This package contains all the GNULL primitives that interface directly with
|
||
|
-- the underlying OS.
|
||
|
|
||
|
pragma Polling (Off);
|
||
|
-- Turn off polling, we do not want ATC polling to take place during tasking
|
||
|
-- operations. It causes infinite loops and other problems.
|
||
|
|
||
|
with Interfaces.C;
|
||
|
with Interfaces.C.Strings;
|
||
|
|
||
|
with System.Float_Control;
|
||
|
with System.Interrupt_Management;
|
||
|
with System.Multiprocessors;
|
||
|
with System.OS_Primitives;
|
||
|
with System.Task_Info;
|
||
|
with System.Tasking.Debug;
|
||
|
with System.Win32.Ext;
|
||
|
|
||
|
with System.Soft_Links;
|
||
|
-- We use System.Soft_Links instead of System.Tasking.Initialization because
|
||
|
-- the later is a higher level package that we shouldn't depend on. For
|
||
|
-- example when using the restricted run time, it is replaced by
|
||
|
-- System.Tasking.Restricted.Stages.
|
||
|
|
||
|
package body System.Task_Primitives.Operations is
|
||
|
|
||
|
package SSL renames System.Soft_Links;
|
||
|
|
||
|
use Interfaces.C;
|
||
|
use Interfaces.C.Strings;
|
||
|
use System.OS_Interface;
|
||
|
use System.OS_Primitives;
|
||
|
use System.Parameters;
|
||
|
use System.Task_Info;
|
||
|
use System.Tasking;
|
||
|
use System.Tasking.Debug;
|
||
|
use System.Win32;
|
||
|
use System.Win32.Ext;
|
||
|
|
||
|
pragma Link_With ("-Xlinker --stack=0x200000,0x1000");
|
||
|
-- Change the default stack size (2 MB) for tasking programs on Windows.
|
||
|
-- This allows about 1000 tasks running at the same time. Note that
|
||
|
-- we set the stack size for non tasking programs on System unit.
|
||
|
-- Also note that under Windows XP, we use a Windows XP extension to
|
||
|
-- specify the stack size on a per task basis, as done under other OSes.
|
||
|
|
||
|
---------------------
|
||
|
-- Local Functions --
|
||
|
---------------------
|
||
|
|
||
|
procedure InitializeCriticalSection (pCriticalSection : access RTS_Lock);
|
||
|
procedure InitializeCriticalSection
|
||
|
(pCriticalSection : access CRITICAL_SECTION);
|
||
|
pragma Import
|
||
|
(Stdcall, InitializeCriticalSection, "InitializeCriticalSection");
|
||
|
|
||
|
procedure EnterCriticalSection (pCriticalSection : access RTS_Lock);
|
||
|
procedure EnterCriticalSection
|
||
|
(pCriticalSection : access CRITICAL_SECTION);
|
||
|
pragma Import (Stdcall, EnterCriticalSection, "EnterCriticalSection");
|
||
|
|
||
|
procedure LeaveCriticalSection (pCriticalSection : access RTS_Lock);
|
||
|
procedure LeaveCriticalSection (pCriticalSection : access CRITICAL_SECTION);
|
||
|
pragma Import (Stdcall, LeaveCriticalSection, "LeaveCriticalSection");
|
||
|
|
||
|
procedure DeleteCriticalSection (pCriticalSection : access RTS_Lock);
|
||
|
procedure DeleteCriticalSection
|
||
|
(pCriticalSection : access CRITICAL_SECTION);
|
||
|
pragma Import (Stdcall, DeleteCriticalSection, "DeleteCriticalSection");
|
||
|
|
||
|
----------------
|
||
|
-- Local Data --
|
||
|
----------------
|
||
|
|
||
|
Environment_Task_Id : Task_Id;
|
||
|
-- A variable to hold Task_Id for the environment task
|
||
|
|
||
|
Single_RTS_Lock : aliased RTS_Lock;
|
||
|
-- This is a lock to allow only one thread of control in the RTS at
|
||
|
-- a time; it is used to execute in mutual exclusion from all other tasks.
|
||
|
-- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
|
||
|
|
||
|
Time_Slice_Val : Integer;
|
||
|
pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
|
||
|
|
||
|
Dispatching_Policy : Character;
|
||
|
pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
|
||
|
|
||
|
function Get_Policy (Prio : System.Any_Priority) return Character;
|
||
|
pragma Import (C, Get_Policy, "__gnat_get_specific_dispatching");
|
||
|
-- Get priority specific dispatching policy
|
||
|
|
||
|
Foreign_Task_Elaborated : aliased Boolean := True;
|
||
|
-- Used to identified fake tasks (i.e., non-Ada Threads)
|
||
|
|
||
|
Null_Thread_Id : constant Thread_Id := 0;
|
||
|
-- Constant to indicate that the thread identifier has not yet been
|
||
|
-- initialized.
|
||
|
|
||
|
------------------------------------
|
||
|
-- The thread local storage index --
|
||
|
------------------------------------
|
||
|
|
||
|
TlsIndex : DWORD;
|
||
|
pragma Export (Ada, TlsIndex);
|
||
|
-- To ensure that this variable won't be local to this package, since
|
||
|
-- in some cases, inlining forces this variable to be global anyway.
|
||
|
|
||
|
--------------------
|
||
|
-- Local Packages --
|
||
|
--------------------
|
||
|
|
||
|
package Specific is
|
||
|
|
||
|
function Is_Valid_Task return Boolean;
|
||
|
pragma Inline (Is_Valid_Task);
|
||
|
-- Does executing thread have a TCB?
|
||
|
|
||
|
procedure Set (Self_Id : Task_Id);
|
||
|
pragma Inline (Set);
|
||
|
-- Set the self id for the current task
|
||
|
|
||
|
end Specific;
|
||
|
|
||
|
package body Specific is
|
||
|
|
||
|
function Is_Valid_Task return Boolean is
|
||
|
begin
|
||
|
return TlsGetValue (TlsIndex) /= System.Null_Address;
|
||
|
end Is_Valid_Task;
|
||
|
|
||
|
procedure Set (Self_Id : Task_Id) is
|
||
|
Succeeded : BOOL;
|
||
|
begin
|
||
|
Succeeded := TlsSetValue (TlsIndex, To_Address (Self_Id));
|
||
|
pragma Assert (Succeeded = Win32.TRUE);
|
||
|
end Set;
|
||
|
|
||
|
end Specific;
|
||
|
|
||
|
----------------------------------
|
||
|
-- ATCB allocation/deallocation --
|
||
|
----------------------------------
|
||
|
|
||
|
package body ATCB_Allocation is separate;
|
||
|
-- The body of this package is shared across several targets
|
||
|
|
||
|
---------------------------------
|
||
|
-- Support for foreign threads --
|
||
|
---------------------------------
|
||
|
|
||
|
function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
|
||
|
-- Allocate and Initialize a new ATCB for the current Thread
|
||
|
|
||
|
function Register_Foreign_Thread
|
||
|
(Thread : Thread_Id) return Task_Id is separate;
|
||
|
|
||
|
----------------------------------
|
||
|
-- Condition Variable Functions --
|
||
|
----------------------------------
|
||
|
|
||
|
procedure Initialize_Cond (Cond : not null access Condition_Variable);
|
||
|
-- Initialize given condition variable Cond
|
||
|
|
||
|
procedure Finalize_Cond (Cond : not null access Condition_Variable);
|
||
|
-- Finalize given condition variable Cond
|
||
|
|
||
|
procedure Cond_Signal (Cond : not null access Condition_Variable);
|
||
|
-- Signal condition variable Cond
|
||
|
|
||
|
procedure Cond_Wait
|
||
|
(Cond : not null access Condition_Variable;
|
||
|
L : not null access RTS_Lock);
|
||
|
-- Wait on conditional variable Cond, using lock L
|
||
|
|
||
|
procedure Cond_Timed_Wait
|
||
|
(Cond : not null access Condition_Variable;
|
||
|
L : not null access RTS_Lock;
|
||
|
Rel_Time : Duration;
|
||
|
Timed_Out : out Boolean;
|
||
|
Status : out Integer);
|
||
|
-- Do timed wait on condition variable Cond using lock L. The duration
|
||
|
-- of the timed wait is given by Rel_Time. When the condition is
|
||
|
-- signalled, Timed_Out shows whether or not a time out occurred.
|
||
|
-- Status is only valid if Timed_Out is False, in which case it
|
||
|
-- shows whether Cond_Timed_Wait completed successfully.
|
||
|
|
||
|
---------------------
|
||
|
-- Initialize_Cond --
|
||
|
---------------------
|
||
|
|
||
|
procedure Initialize_Cond (Cond : not null access Condition_Variable) is
|
||
|
hEvent : HANDLE;
|
||
|
begin
|
||
|
hEvent := CreateEvent (null, Win32.TRUE, Win32.FALSE, Null_Ptr);
|
||
|
pragma Assert (hEvent /= 0);
|
||
|
Cond.all := Condition_Variable (hEvent);
|
||
|
end Initialize_Cond;
|
||
|
|
||
|
-------------------
|
||
|
-- Finalize_Cond --
|
||
|
-------------------
|
||
|
|
||
|
-- No such problem here, DosCloseEventSem has been derived.
|
||
|
-- What does such refer to in above comment???
|
||
|
|
||
|
procedure Finalize_Cond (Cond : not null access Condition_Variable) is
|
||
|
Result : BOOL;
|
||
|
begin
|
||
|
Result := CloseHandle (HANDLE (Cond.all));
|
||
|
pragma Assert (Result = Win32.TRUE);
|
||
|
end Finalize_Cond;
|
||
|
|
||
|
-----------------
|
||
|
-- Cond_Signal --
|
||
|
-----------------
|
||
|
|
||
|
procedure Cond_Signal (Cond : not null access Condition_Variable) is
|
||
|
Result : BOOL;
|
||
|
begin
|
||
|
Result := SetEvent (HANDLE (Cond.all));
|
||
|
pragma Assert (Result = Win32.TRUE);
|
||
|
end Cond_Signal;
|
||
|
|
||
|
---------------
|
||
|
-- Cond_Wait --
|
||
|
---------------
|
||
|
|
||
|
-- Pre-condition: Cond is posted
|
||
|
-- L is locked.
|
||
|
|
||
|
-- Post-condition: Cond is posted
|
||
|
-- L is locked.
|
||
|
|
||
|
procedure Cond_Wait
|
||
|
(Cond : not null access Condition_Variable;
|
||
|
L : not null access RTS_Lock)
|
||
|
is
|
||
|
Result : DWORD;
|
||
|
Result_Bool : BOOL;
|
||
|
|
||
|
begin
|
||
|
-- Must reset Cond BEFORE L is unlocked
|
||
|
|
||
|
Result_Bool := ResetEvent (HANDLE (Cond.all));
|
||
|
pragma Assert (Result_Bool = Win32.TRUE);
|
||
|
Unlock (L, Global_Lock => True);
|
||
|
|
||
|
-- No problem if we are interrupted here: if the condition is signaled,
|
||
|
-- WaitForSingleObject will simply not block
|
||
|
|
||
|
Result := WaitForSingleObject (HANDLE (Cond.all), Wait_Infinite);
|
||
|
pragma Assert (Result = 0);
|
||
|
|
||
|
Write_Lock (L, Global_Lock => True);
|
||
|
end Cond_Wait;
|
||
|
|
||
|
---------------------
|
||
|
-- Cond_Timed_Wait --
|
||
|
---------------------
|
||
|
|
||
|
-- Pre-condition: Cond is posted
|
||
|
-- L is locked.
|
||
|
|
||
|
-- Post-condition: Cond is posted
|
||
|
-- L is locked.
|
||
|
|
||
|
procedure Cond_Timed_Wait
|
||
|
(Cond : not null access Condition_Variable;
|
||
|
L : not null access RTS_Lock;
|
||
|
Rel_Time : Duration;
|
||
|
Timed_Out : out Boolean;
|
||
|
Status : out Integer)
|
||
|
is
|
||
|
Time_Out_Max : constant DWORD := 16#FFFF0000#;
|
||
|
-- NT 4 can't handle excessive timeout values (e.g. DWORD'Last - 1)
|
||
|
|
||
|
Time_Out : DWORD;
|
||
|
Result : BOOL;
|
||
|
Wait_Result : DWORD;
|
||
|
|
||
|
begin
|
||
|
-- Must reset Cond BEFORE L is unlocked
|
||
|
|
||
|
Result := ResetEvent (HANDLE (Cond.all));
|
||
|
pragma Assert (Result = Win32.TRUE);
|
||
|
Unlock (L, Global_Lock => True);
|
||
|
|
||
|
-- No problem if we are interrupted here: if the condition is signaled,
|
||
|
-- WaitForSingleObject will simply not block.
|
||
|
|
||
|
if Rel_Time <= 0.0 then
|
||
|
Timed_Out := True;
|
||
|
Wait_Result := 0;
|
||
|
|
||
|
else
|
||
|
Time_Out :=
|
||
|
(if Rel_Time >= Duration (Time_Out_Max) / 1000
|
||
|
then Time_Out_Max
|
||
|
else DWORD (Rel_Time * 1000));
|
||
|
|
||
|
Wait_Result := WaitForSingleObject (HANDLE (Cond.all), Time_Out);
|
||
|
|
||
|
if Wait_Result = WAIT_TIMEOUT then
|
||
|
Timed_Out := True;
|
||
|
Wait_Result := 0;
|
||
|
else
|
||
|
Timed_Out := False;
|
||
|
end if;
|
||
|
end if;
|
||
|
|
||
|
Write_Lock (L, Global_Lock => True);
|
||
|
|
||
|
-- Ensure post-condition
|
||
|
|
||
|
if Timed_Out then
|
||
|
Result := SetEvent (HANDLE (Cond.all));
|
||
|
pragma Assert (Result = Win32.TRUE);
|
||
|
end if;
|
||
|
|
||
|
Status := Integer (Wait_Result);
|
||
|
end Cond_Timed_Wait;
|
||
|
|
||
|
------------------
|
||
|
-- Stack_Guard --
|
||
|
------------------
|
||
|
|
||
|
-- The underlying thread system sets a guard page at the bottom of a thread
|
||
|
-- stack, so nothing is needed.
|
||
|
-- ??? Check the comment above
|
||
|
|
||
|
procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
|
||
|
pragma Unreferenced (T, On);
|
||
|
begin
|
||
|
null;
|
||
|
end Stack_Guard;
|
||
|
|
||
|
--------------------
|
||
|
-- Get_Thread_Id --
|
||
|
--------------------
|
||
|
|
||
|
function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
|
||
|
begin
|
||
|
return T.Common.LL.Thread;
|
||
|
end Get_Thread_Id;
|
||
|
|
||
|
----------
|
||
|
-- Self --
|
||
|
----------
|
||
|
|
||
|
function Self return Task_Id is
|
||
|
Self_Id : constant Task_Id := To_Task_Id (TlsGetValue (TlsIndex));
|
||
|
begin
|
||
|
if Self_Id = null then
|
||
|
return Register_Foreign_Thread (GetCurrentThread);
|
||
|
else
|
||
|
return Self_Id;
|
||
|
end if;
|
||
|
end Self;
|
||
|
|
||
|
---------------------
|
||
|
-- Initialize_Lock --
|
||
|
---------------------
|
||
|
|
||
|
-- Note: mutexes and cond_variables needed per-task basis are initialized
|
||
|
-- in Initialize_TCB and the Storage_Error is handled. Other mutexes (such
|
||
|
-- as RTS_Lock, Memory_Lock...) used in the RTS is initialized before any
|
||
|
-- status change of RTS. Therefore raising Storage_Error in the following
|
||
|
-- routines should be able to be handled safely.
|
||
|
|
||
|
procedure Initialize_Lock
|
||
|
(Prio : System.Any_Priority;
|
||
|
L : not null access Lock)
|
||
|
is
|
||
|
begin
|
||
|
InitializeCriticalSection (L.Mutex'Access);
|
||
|
L.Owner_Priority := 0;
|
||
|
L.Priority := Prio;
|
||
|
end Initialize_Lock;
|
||
|
|
||
|
procedure Initialize_Lock
|
||
|
(L : not null access RTS_Lock; Level : Lock_Level)
|
||
|
is
|
||
|
pragma Unreferenced (Level);
|
||
|
begin
|
||
|
InitializeCriticalSection (L);
|
||
|
end Initialize_Lock;
|
||
|
|
||
|
-------------------
|
||
|
-- Finalize_Lock --
|
||
|
-------------------
|
||
|
|
||
|
procedure Finalize_Lock (L : not null access Lock) is
|
||
|
begin
|
||
|
DeleteCriticalSection (L.Mutex'Access);
|
||
|
end Finalize_Lock;
|
||
|
|
||
|
procedure Finalize_Lock (L : not null access RTS_Lock) is
|
||
|
begin
|
||
|
DeleteCriticalSection (L);
|
||
|
end Finalize_Lock;
|
||
|
|
||
|
----------------
|
||
|
-- Write_Lock --
|
||
|
----------------
|
||
|
|
||
|
procedure Write_Lock
|
||
|
(L : not null access Lock; Ceiling_Violation : out Boolean) is
|
||
|
begin
|
||
|
L.Owner_Priority := Get_Priority (Self);
|
||
|
|
||
|
if L.Priority < L.Owner_Priority then
|
||
|
Ceiling_Violation := True;
|
||
|
return;
|
||
|
end if;
|
||
|
|
||
|
EnterCriticalSection (L.Mutex'Access);
|
||
|
|
||
|
Ceiling_Violation := False;
|
||
|
end Write_Lock;
|
||
|
|
||
|
procedure Write_Lock
|
||
|
(L : not null access RTS_Lock;
|
||
|
Global_Lock : Boolean := False)
|
||
|
is
|
||
|
begin
|
||
|
if not Single_Lock or else Global_Lock then
|
||
|
EnterCriticalSection (L);
|
||
|
end if;
|
||
|
end Write_Lock;
|
||
|
|
||
|
procedure Write_Lock (T : Task_Id) is
|
||
|
begin
|
||
|
if not Single_Lock then
|
||
|
EnterCriticalSection (T.Common.LL.L'Access);
|
||
|
end if;
|
||
|
end Write_Lock;
|
||
|
|
||
|
---------------
|
||
|
-- Read_Lock --
|
||
|
---------------
|
||
|
|
||
|
procedure Read_Lock
|
||
|
(L : not null access Lock; Ceiling_Violation : out Boolean) is
|
||
|
begin
|
||
|
Write_Lock (L, Ceiling_Violation);
|
||
|
end Read_Lock;
|
||
|
|
||
|
------------
|
||
|
-- Unlock --
|
||
|
------------
|
||
|
|
||
|
procedure Unlock (L : not null access Lock) is
|
||
|
begin
|
||
|
LeaveCriticalSection (L.Mutex'Access);
|
||
|
end Unlock;
|
||
|
|
||
|
procedure Unlock
|
||
|
(L : not null access RTS_Lock; Global_Lock : Boolean := False) is
|
||
|
begin
|
||
|
if not Single_Lock or else Global_Lock then
|
||
|
LeaveCriticalSection (L);
|
||
|
end if;
|
||
|
end Unlock;
|
||
|
|
||
|
procedure Unlock (T : Task_Id) is
|
||
|
begin
|
||
|
if not Single_Lock then
|
||
|
LeaveCriticalSection (T.Common.LL.L'Access);
|
||
|
end if;
|
||
|
end Unlock;
|
||
|
|
||
|
-----------------
|
||
|
-- Set_Ceiling --
|
||
|
-----------------
|
||
|
|
||
|
-- Dynamic priority ceilings are not supported by the underlying system
|
||
|
|
||
|
procedure Set_Ceiling
|
||
|
(L : not null access Lock;
|
||
|
Prio : System.Any_Priority)
|
||
|
is
|
||
|
pragma Unreferenced (L, Prio);
|
||
|
begin
|
||
|
null;
|
||
|
end Set_Ceiling;
|
||
|
|
||
|
-----------
|
||
|
-- Sleep --
|
||
|
-----------
|
||
|
|
||
|
procedure Sleep
|
||
|
(Self_ID : Task_Id;
|
||
|
Reason : System.Tasking.Task_States)
|
||
|
is
|
||
|
pragma Unreferenced (Reason);
|
||
|
|
||
|
begin
|
||
|
pragma Assert (Self_ID = Self);
|
||
|
|
||
|
if Single_Lock then
|
||
|
Cond_Wait (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access);
|
||
|
else
|
||
|
Cond_Wait (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access);
|
||
|
end if;
|
||
|
|
||
|
if Self_ID.Deferral_Level = 0
|
||
|
and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
|
||
|
then
|
||
|
Unlock (Self_ID);
|
||
|
raise Standard'Abort_Signal;
|
||
|
end if;
|
||
|
end Sleep;
|
||
|
|
||
|
-----------------
|
||
|
-- Timed_Sleep --
|
||
|
-----------------
|
||
|
|
||
|
-- This is for use within the run-time system, so abort is assumed to be
|
||
|
-- already deferred, and the caller should be holding its own ATCB lock.
|
||
|
|
||
|
procedure Timed_Sleep
|
||
|
(Self_ID : Task_Id;
|
||
|
Time : Duration;
|
||
|
Mode : ST.Delay_Modes;
|
||
|
Reason : System.Tasking.Task_States;
|
||
|
Timedout : out Boolean;
|
||
|
Yielded : out Boolean)
|
||
|
is
|
||
|
pragma Unreferenced (Reason);
|
||
|
Check_Time : Duration := Monotonic_Clock;
|
||
|
Rel_Time : Duration;
|
||
|
Abs_Time : Duration;
|
||
|
|
||
|
Result : Integer;
|
||
|
pragma Unreferenced (Result);
|
||
|
|
||
|
Local_Timedout : Boolean;
|
||
|
|
||
|
begin
|
||
|
Timedout := True;
|
||
|
Yielded := False;
|
||
|
|
||
|
if Mode = Relative then
|
||
|
Rel_Time := Time;
|
||
|
Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time;
|
||
|
else
|
||
|
Rel_Time := Time - Check_Time;
|
||
|
Abs_Time := Time;
|
||
|
end if;
|
||
|
|
||
|
if Rel_Time > 0.0 then
|
||
|
loop
|
||
|
exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
|
||
|
|
||
|
if Single_Lock then
|
||
|
Cond_Timed_Wait
|
||
|
(Self_ID.Common.LL.CV'Access,
|
||
|
Single_RTS_Lock'Access,
|
||
|
Rel_Time, Local_Timedout, Result);
|
||
|
else
|
||
|
Cond_Timed_Wait
|
||
|
(Self_ID.Common.LL.CV'Access,
|
||
|
Self_ID.Common.LL.L'Access,
|
||
|
Rel_Time, Local_Timedout, Result);
|
||
|
end if;
|
||
|
|
||
|
Check_Time := Monotonic_Clock;
|
||
|
exit when Abs_Time <= Check_Time;
|
||
|
|
||
|
if not Local_Timedout then
|
||
|
|
||
|
-- Somebody may have called Wakeup for us
|
||
|
|
||
|
Timedout := False;
|
||
|
exit;
|
||
|
end if;
|
||
|
|
||
|
Rel_Time := Abs_Time - Check_Time;
|
||
|
end loop;
|
||
|
end if;
|
||
|
end Timed_Sleep;
|
||
|
|
||
|
-----------------
|
||
|
-- Timed_Delay --
|
||
|
-----------------
|
||
|
|
||
|
procedure Timed_Delay
|
||
|
(Self_ID : Task_Id;
|
||
|
Time : Duration;
|
||
|
Mode : ST.Delay_Modes)
|
||
|
is
|
||
|
Check_Time : Duration := Monotonic_Clock;
|
||
|
Rel_Time : Duration;
|
||
|
Abs_Time : Duration;
|
||
|
|
||
|
Timedout : Boolean;
|
||
|
Result : Integer;
|
||
|
pragma Unreferenced (Timedout, Result);
|
||
|
|
||
|
begin
|
||
|
if Single_Lock then
|
||
|
Lock_RTS;
|
||
|
end if;
|
||
|
|
||
|
Write_Lock (Self_ID);
|
||
|
|
||
|
if Mode = Relative then
|
||
|
Rel_Time := Time;
|
||
|
Abs_Time := Time + Check_Time;
|
||
|
else
|
||
|
Rel_Time := Time - Check_Time;
|
||
|
Abs_Time := Time;
|
||
|
end if;
|
||
|
|
||
|
if Rel_Time > 0.0 then
|
||
|
Self_ID.Common.State := Delay_Sleep;
|
||
|
|
||
|
loop
|
||
|
exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
|
||
|
|
||
|
if Single_Lock then
|
||
|
Cond_Timed_Wait
|
||
|
(Self_ID.Common.LL.CV'Access,
|
||
|
Single_RTS_Lock'Access,
|
||
|
Rel_Time, Timedout, Result);
|
||
|
else
|
||
|
Cond_Timed_Wait
|
||
|
(Self_ID.Common.LL.CV'Access,
|
||
|
Self_ID.Common.LL.L'Access,
|
||
|
Rel_Time, Timedout, Result);
|
||
|
end if;
|
||
|
|
||
|
Check_Time := Monotonic_Clock;
|
||
|
exit when Abs_Time <= Check_Time;
|
||
|
|
||
|
Rel_Time := Abs_Time - Check_Time;
|
||
|
end loop;
|
||
|
|
||
|
Self_ID.Common.State := Runnable;
|
||
|
end if;
|
||
|
|
||
|
Unlock (Self_ID);
|
||
|
|
||
|
if Single_Lock then
|
||
|
Unlock_RTS;
|
||
|
end if;
|
||
|
|
||
|
Yield;
|
||
|
end Timed_Delay;
|
||
|
|
||
|
------------
|
||
|
-- Wakeup --
|
||
|
------------
|
||
|
|
||
|
procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
|
||
|
pragma Unreferenced (Reason);
|
||
|
begin
|
||
|
Cond_Signal (T.Common.LL.CV'Access);
|
||
|
end Wakeup;
|
||
|
|
||
|
-----------
|
||
|
-- Yield --
|
||
|
-----------
|
||
|
|
||
|
procedure Yield (Do_Yield : Boolean := True) is
|
||
|
begin
|
||
|
-- Note: in a previous implementation if Do_Yield was False, then we
|
||
|
-- introduced a delay of 1 millisecond in an attempt to get closer to
|
||
|
-- annex D semantics, and in particular to make ACATS CXD8002 pass. But
|
||
|
-- this change introduced a huge performance regression evaluating the
|
||
|
-- Count attribute. So we decided to remove this processing.
|
||
|
|
||
|
-- Moreover, CXD8002 appears to pass on Windows (although we do not
|
||
|
-- guarantee full Annex D compliance on Windows in any case).
|
||
|
|
||
|
if Do_Yield then
|
||
|
SwitchToThread;
|
||
|
end if;
|
||
|
end Yield;
|
||
|
|
||
|
------------------
|
||
|
-- Set_Priority --
|
||
|
------------------
|
||
|
|
||
|
procedure Set_Priority
|
||
|
(T : Task_Id;
|
||
|
Prio : System.Any_Priority;
|
||
|
Loss_Of_Inheritance : Boolean := False)
|
||
|
is
|
||
|
Res : BOOL;
|
||
|
pragma Unreferenced (Loss_Of_Inheritance);
|
||
|
|
||
|
begin
|
||
|
Res :=
|
||
|
SetThreadPriority
|
||
|
(T.Common.LL.Thread,
|
||
|
Interfaces.C.int (Underlying_Priorities (Prio)));
|
||
|
pragma Assert (Res = Win32.TRUE);
|
||
|
|
||
|
-- Note: Annex D (RM D.2.3(5/2)) requires the task to be placed at the
|
||
|
-- head of its priority queue when decreasing its priority as a result
|
||
|
-- of a loss of inherited priority. This is not the case, but we
|
||
|
-- consider it an acceptable variation (RM 1.1.3(6)), given this is
|
||
|
-- the built-in behavior offered by the Windows operating system.
|
||
|
|
||
|
-- In older versions we attempted to better approximate the Annex D
|
||
|
-- required behavior, but this simulation was not entirely accurate,
|
||
|
-- and it seems better to live with the standard Windows semantics.
|
||
|
|
||
|
T.Common.Current_Priority := Prio;
|
||
|
end Set_Priority;
|
||
|
|
||
|
------------------
|
||
|
-- Get_Priority --
|
||
|
------------------
|
||
|
|
||
|
function Get_Priority (T : Task_Id) return System.Any_Priority is
|
||
|
begin
|
||
|
return T.Common.Current_Priority;
|
||
|
end Get_Priority;
|
||
|
|
||
|
----------------
|
||
|
-- Enter_Task --
|
||
|
----------------
|
||
|
|
||
|
-- There were two paths were we needed to call Enter_Task :
|
||
|
-- 1) from System.Task_Primitives.Operations.Initialize
|
||
|
-- 2) from System.Tasking.Stages.Task_Wrapper
|
||
|
|
||
|
-- The thread initialisation has to be done only for the first case
|
||
|
|
||
|
-- This is because the GetCurrentThread NT call does not return the real
|
||
|
-- thread handler but only a "pseudo" one. It is not possible to release
|
||
|
-- the thread handle and free the system resources from this "pseudo"
|
||
|
-- handle. So we really want to keep the real thread handle set in
|
||
|
-- System.Task_Primitives.Operations.Create_Task during thread creation.
|
||
|
|
||
|
procedure Enter_Task (Self_ID : Task_Id) is
|
||
|
procedure Get_Stack_Bounds (Base : Address; Limit : Address);
|
||
|
pragma Import (C, Get_Stack_Bounds, "__gnat_get_stack_bounds");
|
||
|
-- Get stack boundaries
|
||
|
begin
|
||
|
Specific.Set (Self_ID);
|
||
|
|
||
|
-- Properly initializes the FPU for x86 systems
|
||
|
|
||
|
System.Float_Control.Reset;
|
||
|
|
||
|
if Self_ID.Common.Task_Info /= null
|
||
|
and then
|
||
|
Self_ID.Common.Task_Info.CPU >= CPU_Number (Number_Of_Processors)
|
||
|
then
|
||
|
raise Invalid_CPU_Number;
|
||
|
end if;
|
||
|
|
||
|
Self_ID.Common.LL.Thread_Id := GetCurrentThreadId;
|
||
|
|
||
|
Get_Stack_Bounds
|
||
|
(Self_ID.Common.Compiler_Data.Pri_Stack_Info.Base'Address,
|
||
|
Self_ID.Common.Compiler_Data.Pri_Stack_Info.Limit'Address);
|
||
|
end Enter_Task;
|
||
|
|
||
|
-------------------
|
||
|
-- Is_Valid_Task --
|
||
|
-------------------
|
||
|
|
||
|
function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
|
||
|
|
||
|
-----------------------------
|
||
|
-- Register_Foreign_Thread --
|
||
|
-----------------------------
|
||
|
|
||
|
function Register_Foreign_Thread return Task_Id is
|
||
|
begin
|
||
|
if Is_Valid_Task then
|
||
|
return Self;
|
||
|
else
|
||
|
return Register_Foreign_Thread (GetCurrentThread);
|
||
|
end if;
|
||
|
end Register_Foreign_Thread;
|
||
|
|
||
|
--------------------
|
||
|
-- Initialize_TCB --
|
||
|
--------------------
|
||
|
|
||
|
procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
|
||
|
begin
|
||
|
-- Initialize thread ID to 0, this is needed to detect threads that
|
||
|
-- are not yet activated.
|
||
|
|
||
|
Self_ID.Common.LL.Thread := Null_Thread_Id;
|
||
|
|
||
|
Initialize_Cond (Self_ID.Common.LL.CV'Access);
|
||
|
|
||
|
if not Single_Lock then
|
||
|
Initialize_Lock (Self_ID.Common.LL.L'Access, ATCB_Level);
|
||
|
end if;
|
||
|
|
||
|
Succeeded := True;
|
||
|
end Initialize_TCB;
|
||
|
|
||
|
-----------------
|
||
|
-- Create_Task --
|
||
|
-----------------
|
||
|
|
||
|
procedure Create_Task
|
||
|
(T : Task_Id;
|
||
|
Wrapper : System.Address;
|
||
|
Stack_Size : System.Parameters.Size_Type;
|
||
|
Priority : System.Any_Priority;
|
||
|
Succeeded : out Boolean)
|
||
|
is
|
||
|
Initial_Stack_Size : constant := 1024;
|
||
|
-- We set the initial stack size to 1024. On Windows version prior to XP
|
||
|
-- there is no way to fix a task stack size. Only the initial stack size
|
||
|
-- can be set, the operating system will raise the task stack size if
|
||
|
-- needed.
|
||
|
|
||
|
function Is_Windows_XP return Integer;
|
||
|
pragma Import (C, Is_Windows_XP, "__gnat_is_windows_xp");
|
||
|
-- Returns 1 if running on Windows XP
|
||
|
|
||
|
hTask : HANDLE;
|
||
|
TaskId : aliased DWORD;
|
||
|
pTaskParameter : Win32.PVOID;
|
||
|
Result : DWORD;
|
||
|
Entry_Point : PTHREAD_START_ROUTINE;
|
||
|
|
||
|
use type System.Multiprocessors.CPU_Range;
|
||
|
|
||
|
begin
|
||
|
-- Check whether both Dispatching_Domain and CPU are specified for the
|
||
|
-- task, and the CPU value is not contained within the range of
|
||
|
-- processors for the domain.
|
||
|
|
||
|
if T.Common.Domain /= null
|
||
|
and then T.Common.Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU
|
||
|
and then
|
||
|
(T.Common.Base_CPU not in T.Common.Domain'Range
|
||
|
or else not T.Common.Domain (T.Common.Base_CPU))
|
||
|
then
|
||
|
Succeeded := False;
|
||
|
return;
|
||
|
end if;
|
||
|
|
||
|
pTaskParameter := To_Address (T);
|
||
|
|
||
|
Entry_Point := To_PTHREAD_START_ROUTINE (Wrapper);
|
||
|
|
||
|
if Is_Windows_XP = 1 then
|
||
|
hTask := CreateThread
|
||
|
(null,
|
||
|
DWORD (Stack_Size),
|
||
|
Entry_Point,
|
||
|
pTaskParameter,
|
||
|
DWORD (Create_Suspended) or
|
||
|
DWORD (Stack_Size_Param_Is_A_Reservation),
|
||
|
TaskId'Unchecked_Access);
|
||
|
else
|
||
|
hTask := CreateThread
|
||
|
(null,
|
||
|
Initial_Stack_Size,
|
||
|
Entry_Point,
|
||
|
pTaskParameter,
|
||
|
DWORD (Create_Suspended),
|
||
|
TaskId'Unchecked_Access);
|
||
|
end if;
|
||
|
|
||
|
-- Step 1: Create the thread in blocked mode
|
||
|
|
||
|
if hTask = 0 then
|
||
|
Succeeded := False;
|
||
|
return;
|
||
|
end if;
|
||
|
|
||
|
-- Step 2: set its TCB
|
||
|
|
||
|
T.Common.LL.Thread := hTask;
|
||
|
|
||
|
-- Note: it would be useful to initialize Thread_Id right away to avoid
|
||
|
-- a race condition in gdb where Thread_ID may not have the right value
|
||
|
-- yet, but GetThreadId is a Vista specific API, not available under XP:
|
||
|
-- T.Common.LL.Thread_Id := GetThreadId (hTask); so instead we set the
|
||
|
-- field to 0 to avoid having a random value. Thread_Id is initialized
|
||
|
-- in Enter_Task anyway.
|
||
|
|
||
|
T.Common.LL.Thread_Id := 0;
|
||
|
|
||
|
-- Step 3: set its priority (child has inherited priority from parent)
|
||
|
|
||
|
Set_Priority (T, Priority);
|
||
|
|
||
|
if Time_Slice_Val = 0
|
||
|
or else Dispatching_Policy = 'F'
|
||
|
or else Get_Policy (Priority) = 'F'
|
||
|
then
|
||
|
-- Here we need Annex D semantics so we disable the NT priority
|
||
|
-- boost. A priority boost is temporarily given by the system to
|
||
|
-- a thread when it is taken out of a wait state.
|
||
|
|
||
|
SetThreadPriorityBoost (hTask, DisablePriorityBoost => Win32.TRUE);
|
||
|
end if;
|
||
|
|
||
|
-- Step 4: Handle pragma CPU and Task_Info
|
||
|
|
||
|
Set_Task_Affinity (T);
|
||
|
|
||
|
-- Step 5: Now, start it for good
|
||
|
|
||
|
Result := ResumeThread (hTask);
|
||
|
pragma Assert (Result = 1);
|
||
|
|
||
|
Succeeded := Result = 1;
|
||
|
end Create_Task;
|
||
|
|
||
|
------------------
|
||
|
-- Finalize_TCB --
|
||
|
------------------
|
||
|
|
||
|
procedure Finalize_TCB (T : Task_Id) is
|
||
|
Succeeded : BOOL;
|
||
|
|
||
|
begin
|
||
|
if not Single_Lock then
|
||
|
Finalize_Lock (T.Common.LL.L'Access);
|
||
|
end if;
|
||
|
|
||
|
Finalize_Cond (T.Common.LL.CV'Access);
|
||
|
|
||
|
if T.Known_Tasks_Index /= -1 then
|
||
|
Known_Tasks (T.Known_Tasks_Index) := null;
|
||
|
end if;
|
||
|
|
||
|
if T.Common.LL.Thread /= 0 then
|
||
|
|
||
|
-- This task has been activated. Close the thread handle. This
|
||
|
-- is needed to release system resources.
|
||
|
|
||
|
Succeeded := CloseHandle (T.Common.LL.Thread);
|
||
|
pragma Assert (Succeeded = Win32.TRUE);
|
||
|
end if;
|
||
|
|
||
|
ATCB_Allocation.Free_ATCB (T);
|
||
|
end Finalize_TCB;
|
||
|
|
||
|
---------------
|
||
|
-- Exit_Task --
|
||
|
---------------
|
||
|
|
||
|
procedure Exit_Task is
|
||
|
begin
|
||
|
Specific.Set (null);
|
||
|
end Exit_Task;
|
||
|
|
||
|
----------------
|
||
|
-- Abort_Task --
|
||
|
----------------
|
||
|
|
||
|
procedure Abort_Task (T : Task_Id) is
|
||
|
pragma Unreferenced (T);
|
||
|
begin
|
||
|
null;
|
||
|
end Abort_Task;
|
||
|
|
||
|
----------------------
|
||
|
-- Environment_Task --
|
||
|
----------------------
|
||
|
|
||
|
function Environment_Task return Task_Id is
|
||
|
begin
|
||
|
return Environment_Task_Id;
|
||
|
end Environment_Task;
|
||
|
|
||
|
--------------
|
||
|
-- Lock_RTS --
|
||
|
--------------
|
||
|
|
||
|
procedure Lock_RTS is
|
||
|
begin
|
||
|
Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
|
||
|
end Lock_RTS;
|
||
|
|
||
|
----------------
|
||
|
-- Unlock_RTS --
|
||
|
----------------
|
||
|
|
||
|
procedure Unlock_RTS is
|
||
|
begin
|
||
|
Unlock (Single_RTS_Lock'Access, Global_Lock => True);
|
||
|
end Unlock_RTS;
|
||
|
|
||
|
----------------
|
||
|
-- Initialize --
|
||
|
----------------
|
||
|
|
||
|
procedure Initialize (Environment_Task : Task_Id) is
|
||
|
Discard : BOOL;
|
||
|
|
||
|
begin
|
||
|
Environment_Task_Id := Environment_Task;
|
||
|
OS_Primitives.Initialize;
|
||
|
Interrupt_Management.Initialize;
|
||
|
|
||
|
if Time_Slice_Val = 0 or else Dispatching_Policy = 'F' then
|
||
|
-- Here we need Annex D semantics, switch the current process to the
|
||
|
-- Realtime_Priority_Class.
|
||
|
|
||
|
Discard := OS_Interface.SetPriorityClass
|
||
|
(GetCurrentProcess, Realtime_Priority_Class);
|
||
|
end if;
|
||
|
|
||
|
TlsIndex := TlsAlloc;
|
||
|
|
||
|
-- Initialize the lock used to synchronize chain of all ATCBs
|
||
|
|
||
|
Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
|
||
|
|
||
|
Environment_Task.Common.LL.Thread := GetCurrentThread;
|
||
|
|
||
|
-- Make environment task known here because it doesn't go through
|
||
|
-- Activate_Tasks, which does it for all other tasks.
|
||
|
|
||
|
Known_Tasks (Known_Tasks'First) := Environment_Task;
|
||
|
Environment_Task.Known_Tasks_Index := Known_Tasks'First;
|
||
|
|
||
|
Enter_Task (Environment_Task);
|
||
|
|
||
|
-- pragma CPU and dispatching domains for the environment task
|
||
|
|
||
|
Set_Task_Affinity (Environment_Task);
|
||
|
end Initialize;
|
||
|
|
||
|
---------------------
|
||
|
-- Monotonic_Clock --
|
||
|
---------------------
|
||
|
|
||
|
function Monotonic_Clock return Duration is
|
||
|
function Internal_Clock return Duration;
|
||
|
pragma Import (Ada, Internal_Clock, "__gnat_monotonic_clock");
|
||
|
begin
|
||
|
return Internal_Clock;
|
||
|
end Monotonic_Clock;
|
||
|
|
||
|
-------------------
|
||
|
-- RT_Resolution --
|
||
|
-------------------
|
||
|
|
||
|
function RT_Resolution return Duration is
|
||
|
Ticks_Per_Second : aliased LARGE_INTEGER;
|
||
|
begin
|
||
|
QueryPerformanceFrequency (Ticks_Per_Second'Access);
|
||
|
return Duration (1.0 / Ticks_Per_Second);
|
||
|
end RT_Resolution;
|
||
|
|
||
|
----------------
|
||
|
-- Initialize --
|
||
|
----------------
|
||
|
|
||
|
procedure Initialize (S : in out Suspension_Object) is
|
||
|
begin
|
||
|
-- Initialize internal state. It is always initialized to False (ARM
|
||
|
-- D.10 par. 6).
|
||
|
|
||
|
S.State := False;
|
||
|
S.Waiting := False;
|
||
|
|
||
|
-- Initialize internal mutex
|
||
|
|
||
|
InitializeCriticalSection (S.L'Access);
|
||
|
|
||
|
-- Initialize internal condition variable
|
||
|
|
||
|
S.CV := CreateEvent (null, Win32.TRUE, Win32.FALSE, Null_Ptr);
|
||
|
pragma Assert (S.CV /= 0);
|
||
|
end Initialize;
|
||
|
|
||
|
--------------
|
||
|
-- Finalize --
|
||
|
--------------
|
||
|
|
||
|
procedure Finalize (S : in out Suspension_Object) is
|
||
|
Result : BOOL;
|
||
|
|
||
|
begin
|
||
|
-- Destroy internal mutex
|
||
|
|
||
|
DeleteCriticalSection (S.L'Access);
|
||
|
|
||
|
-- Destroy internal condition variable
|
||
|
|
||
|
Result := CloseHandle (S.CV);
|
||
|
pragma Assert (Result = Win32.TRUE);
|
||
|
end Finalize;
|
||
|
|
||
|
-------------------
|
||
|
-- Current_State --
|
||
|
-------------------
|
||
|
|
||
|
function Current_State (S : Suspension_Object) return Boolean is
|
||
|
begin
|
||
|
-- We do not want to use lock on this read operation. State is marked
|
||
|
-- as Atomic so that we ensure that the value retrieved is correct.
|
||
|
|
||
|
return S.State;
|
||
|
end Current_State;
|
||
|
|
||
|
---------------
|
||
|
-- Set_False --
|
||
|
---------------
|
||
|
|
||
|
procedure Set_False (S : in out Suspension_Object) is
|
||
|
begin
|
||
|
SSL.Abort_Defer.all;
|
||
|
|
||
|
EnterCriticalSection (S.L'Access);
|
||
|
|
||
|
S.State := False;
|
||
|
|
||
|
LeaveCriticalSection (S.L'Access);
|
||
|
|
||
|
SSL.Abort_Undefer.all;
|
||
|
end Set_False;
|
||
|
|
||
|
--------------
|
||
|
-- Set_True --
|
||
|
--------------
|
||
|
|
||
|
procedure Set_True (S : in out Suspension_Object) is
|
||
|
Result : BOOL;
|
||
|
|
||
|
begin
|
||
|
SSL.Abort_Defer.all;
|
||
|
|
||
|
EnterCriticalSection (S.L'Access);
|
||
|
|
||
|
-- If there is already a task waiting on this suspension object then
|
||
|
-- we resume it, leaving the state of the suspension object to False,
|
||
|
-- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
|
||
|
-- the state to True.
|
||
|
|
||
|
if S.Waiting then
|
||
|
S.Waiting := False;
|
||
|
S.State := False;
|
||
|
|
||
|
Result := SetEvent (S.CV);
|
||
|
pragma Assert (Result = Win32.TRUE);
|
||
|
|
||
|
else
|
||
|
S.State := True;
|
||
|
end if;
|
||
|
|
||
|
LeaveCriticalSection (S.L'Access);
|
||
|
|
||
|
SSL.Abort_Undefer.all;
|
||
|
end Set_True;
|
||
|
|
||
|
------------------------
|
||
|
-- Suspend_Until_True --
|
||
|
------------------------
|
||
|
|
||
|
procedure Suspend_Until_True (S : in out Suspension_Object) is
|
||
|
Result : DWORD;
|
||
|
Result_Bool : BOOL;
|
||
|
|
||
|
begin
|
||
|
SSL.Abort_Defer.all;
|
||
|
|
||
|
EnterCriticalSection (S.L'Access);
|
||
|
|
||
|
if S.Waiting then
|
||
|
|
||
|
-- Program_Error must be raised upon calling Suspend_Until_True
|
||
|
-- if another task is already waiting on that suspension object
|
||
|
-- (ARM D.10 par. 10).
|
||
|
|
||
|
LeaveCriticalSection (S.L'Access);
|
||
|
|
||
|
SSL.Abort_Undefer.all;
|
||
|
|
||
|
raise Program_Error;
|
||
|
|
||
|
else
|
||
|
-- Suspend the task if the state is False. Otherwise, the task
|
||
|
-- continues its execution, and the state of the suspension object
|
||
|
-- is set to False (ARM D.10 par. 9).
|
||
|
|
||
|
if S.State then
|
||
|
S.State := False;
|
||
|
|
||
|
LeaveCriticalSection (S.L'Access);
|
||
|
|
||
|
SSL.Abort_Undefer.all;
|
||
|
|
||
|
else
|
||
|
S.Waiting := True;
|
||
|
|
||
|
-- Must reset CV BEFORE L is unlocked
|
||
|
|
||
|
Result_Bool := ResetEvent (S.CV);
|
||
|
pragma Assert (Result_Bool = Win32.TRUE);
|
||
|
|
||
|
LeaveCriticalSection (S.L'Access);
|
||
|
|
||
|
SSL.Abort_Undefer.all;
|
||
|
|
||
|
Result := WaitForSingleObject (S.CV, Wait_Infinite);
|
||
|
pragma Assert (Result = 0);
|
||
|
end if;
|
||
|
end if;
|
||
|
end Suspend_Until_True;
|
||
|
|
||
|
----------------
|
||
|
-- Check_Exit --
|
||
|
----------------
|
||
|
|
||
|
-- Dummy versions, currently this only works for solaris (native)
|
||
|
|
||
|
function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
|
||
|
pragma Unreferenced (Self_ID);
|
||
|
begin
|
||
|
return True;
|
||
|
end Check_Exit;
|
||
|
|
||
|
--------------------
|
||
|
-- Check_No_Locks --
|
||
|
--------------------
|
||
|
|
||
|
function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
|
||
|
pragma Unreferenced (Self_ID);
|
||
|
begin
|
||
|
return True;
|
||
|
end Check_No_Locks;
|
||
|
|
||
|
------------------
|
||
|
-- Suspend_Task --
|
||
|
------------------
|
||
|
|
||
|
function Suspend_Task
|
||
|
(T : ST.Task_Id;
|
||
|
Thread_Self : Thread_Id) return Boolean
|
||
|
is
|
||
|
begin
|
||
|
if T.Common.LL.Thread /= Thread_Self then
|
||
|
return SuspendThread (T.Common.LL.Thread) = NO_ERROR;
|
||
|
else
|
||
|
return True;
|
||
|
end if;
|
||
|
end Suspend_Task;
|
||
|
|
||
|
-----------------
|
||
|
-- Resume_Task --
|
||
|
-----------------
|
||
|
|
||
|
function Resume_Task
|
||
|
(T : ST.Task_Id;
|
||
|
Thread_Self : Thread_Id) return Boolean
|
||
|
is
|
||
|
begin
|
||
|
if T.Common.LL.Thread /= Thread_Self then
|
||
|
return ResumeThread (T.Common.LL.Thread) = NO_ERROR;
|
||
|
else
|
||
|
return True;
|
||
|
end if;
|
||
|
end Resume_Task;
|
||
|
|
||
|
--------------------
|
||
|
-- Stop_All_Tasks --
|
||
|
--------------------
|
||
|
|
||
|
procedure Stop_All_Tasks is
|
||
|
begin
|
||
|
null;
|
||
|
end Stop_All_Tasks;
|
||
|
|
||
|
---------------
|
||
|
-- Stop_Task --
|
||
|
---------------
|
||
|
|
||
|
function Stop_Task (T : ST.Task_Id) return Boolean is
|
||
|
pragma Unreferenced (T);
|
||
|
begin
|
||
|
return False;
|
||
|
end Stop_Task;
|
||
|
|
||
|
-------------------
|
||
|
-- Continue_Task --
|
||
|
-------------------
|
||
|
|
||
|
function Continue_Task (T : ST.Task_Id) return Boolean is
|
||
|
pragma Unreferenced (T);
|
||
|
begin
|
||
|
return False;
|
||
|
end Continue_Task;
|
||
|
|
||
|
-----------------------
|
||
|
-- Set_Task_Affinity --
|
||
|
-----------------------
|
||
|
|
||
|
procedure Set_Task_Affinity (T : ST.Task_Id) is
|
||
|
Result : DWORD;
|
||
|
|
||
|
use type System.Multiprocessors.CPU_Range;
|
||
|
|
||
|
begin
|
||
|
-- Do nothing if the underlying thread has not yet been created. If the
|
||
|
-- thread has not yet been created then the proper affinity will be set
|
||
|
-- during its creation.
|
||
|
|
||
|
if T.Common.LL.Thread = Null_Thread_Id then
|
||
|
null;
|
||
|
|
||
|
-- pragma CPU
|
||
|
|
||
|
elsif T.Common.Base_CPU /= Multiprocessors.Not_A_Specific_CPU then
|
||
|
|
||
|
-- The CPU numbering in pragma CPU starts at 1 while the subprogram
|
||
|
-- to set the affinity starts at 0, therefore we must substract 1.
|
||
|
|
||
|
Result :=
|
||
|
SetThreadIdealProcessor
|
||
|
(T.Common.LL.Thread, ProcessorId (T.Common.Base_CPU) - 1);
|
||
|
pragma Assert (Result = 1);
|
||
|
|
||
|
-- Task_Info
|
||
|
|
||
|
elsif T.Common.Task_Info /= null then
|
||
|
if T.Common.Task_Info.CPU /= Task_Info.Any_CPU then
|
||
|
Result :=
|
||
|
SetThreadIdealProcessor
|
||
|
(T.Common.LL.Thread, T.Common.Task_Info.CPU);
|
||
|
pragma Assert (Result = 1);
|
||
|
end if;
|
||
|
|
||
|
-- Dispatching domains
|
||
|
|
||
|
elsif T.Common.Domain /= null
|
||
|
and then (T.Common.Domain /= ST.System_Domain
|
||
|
or else
|
||
|
T.Common.Domain.all /=
|
||
|
(Multiprocessors.CPU'First ..
|
||
|
Multiprocessors.Number_Of_CPUs => True))
|
||
|
then
|
||
|
declare
|
||
|
CPU_Set : DWORD := 0;
|
||
|
|
||
|
begin
|
||
|
for Proc in T.Common.Domain'Range loop
|
||
|
if T.Common.Domain (Proc) then
|
||
|
|
||
|
-- The thread affinity mask is a bit vector in which each
|
||
|
-- bit represents a logical processor.
|
||
|
|
||
|
CPU_Set := CPU_Set + 2 ** (Integer (Proc) - 1);
|
||
|
end if;
|
||
|
end loop;
|
||
|
|
||
|
Result := SetThreadAffinityMask (T.Common.LL.Thread, CPU_Set);
|
||
|
pragma Assert (Result = 1);
|
||
|
end;
|
||
|
end if;
|
||
|
end Set_Task_Affinity;
|
||
|
|
||
|
end System.Task_Primitives.Operations;
|