This repository has been archived on 2024-12-16. You can view files and clone it, but cannot push or open issues or pull requests.
CodeBlocksPortable/Borland/BCC55/Include/function.h

554 lines
18 KiB
C
Raw Normal View History

#ifndef __FUNCTION_H
#define __FUNCTION_H
#pragma option push -b -a8 -pc -Vx- -Ve- -w-inl -w-aus -w-sig
// -*- C++ -*-
#ifndef __STD_FUNCTIONAL__
#define __STD_FUNCTIONAL__
/***************************************************************************
*
* functional - global template functions
*
***************************************************************************
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
***************************************************************************
*
* Copyright (c) 1994-1999 Rogue Wave Software, Inc. All Rights Reserved.
*
* This computer software is owned by Rogue Wave Software, Inc. and is
* protected by U.S. copyright laws and other laws and by international
* treaties. This computer software is furnished by Rogue Wave Software,
* Inc. pursuant to a written license agreement and may be used, copied,
* transmitted, and stored only in accordance with the terms of such
* license and with the inclusion of the above copyright notice. This
* computer software or any other copies thereof may not be provided or
* otherwise made available to any other person.
*
* U.S. Government Restricted Rights. This computer software is provided
* with Restricted Rights. Use, duplication, or disclosure by the
* Government is subject to restrictions as set forth in subparagraph (c)
* (1) (ii) of The Rights in Technical Data and Computer Software clause
* at DFARS 252.227-7013 or subparagraphs (c) (1) and (2) of the
* Commercial Computer Software <EFBFBD> Restricted Rights at 48 CFR 52.227-19,
* as applicable. Manufacturer is Rogue Wave Software, Inc., 5500
* Flatiron Parkway, Boulder, Colorado 80301 USA.
*
**************************************************************************/
#include <stdcomp.h>
#ifndef _RWSTD_NO_NAMESPACE
namespace std {
#endif
//
// The bases of many of the function objects here.
//
template <class Arg, class Result>
struct unary_function
{
typedef Arg argument_type;
typedef Result result_type;
};
template <class Arg1, class Arg2, class Result>
struct binary_function
{
typedef Arg1 first_argument_type;
typedef Arg2 second_argument_type;
typedef Result result_type;
};
//
// Arithmetic operators.
//
template <class T>
struct plus : public binary_function<T, T, T>
{
typedef _TYPENAME binary_function<T, T, T>::second_argument_type second_argument_type;
typedef _TYPENAME binary_function<T, T, T>::first_argument_type first_argument_type;
typedef _TYPENAME binary_function<T, T, T>::result_type result_type;
T operator() (const T& x, const T& y) const { return x + y; }
};
template <class T>
struct minus : public binary_function<T, T, T>
{
typedef _TYPENAME binary_function<T, T, T>::second_argument_type second_argument_type;
typedef _TYPENAME binary_function<T, T, T>::first_argument_type first_argument_type;
typedef _TYPENAME binary_function<T, T, T>::result_type result_type;
T operator() (const T& x, const T& y) const { return x - y; }
};
template <class T>
struct multiplies : public binary_function<T, T, T>
{
typedef _TYPENAME binary_function<T, T, T>::second_argument_type second_argument_type;
typedef _TYPENAME binary_function<T, T, T>::first_argument_type first_argument_type;
typedef _TYPENAME binary_function<T, T, T>::result_type result_type;
T operator() (const T& x, const T& y) const { return x * y; }
};
template <class T>
struct divides : public binary_function<T, T, T>
{
typedef _TYPENAME binary_function<T, T, T>::second_argument_type second_argument_type;
typedef _TYPENAME binary_function<T, T, T>::first_argument_type first_argument_type;
typedef _TYPENAME binary_function<T, T, T>::result_type result_type;
T operator() (const T& x, const T& y) const { return x / y; }
};
template <class T>
struct modulus : public binary_function<T, T, T>
{
typedef _TYPENAME binary_function<T, T, T>::second_argument_type second_argument_type;
typedef _TYPENAME binary_function<T, T, T>::first_argument_type first_argument_type;
typedef _TYPENAME binary_function<T, T, T>::result_type result_type;
T operator() (const T& x, const T& y) const { return x % y; }
};
template <class T>
struct negate : public unary_function<T, T>
{
typedef _TYPENAME unary_function<T,T>::argument_type argument_type;
typedef _TYPENAME unary_function<T,T>::result_type result_type;
T operator() (const T& x) const { return -x; }
};
//
// Comparisons.
//
template <class T>
struct equal_to : public binary_function<T, T, bool>
{
typedef _TYPENAME binary_function<T, T, bool>::second_argument_type second_argument_type;
typedef _TYPENAME binary_function<T, T, bool>::first_argument_type first_argument_type;
typedef _TYPENAME binary_function<T, T, bool>::result_type result_type;
bool operator() (const T& x, const T& y) const { return x == y; }
};
template <class T>
struct not_equal_to : public binary_function<T, T, bool>
{
typedef _TYPENAME binary_function<T, T, bool>::second_argument_type second_argument_type;
typedef _TYPENAME binary_function<T, T, bool>::first_argument_type first_argument_type;
typedef _TYPENAME binary_function<T, T, bool>::result_type result_type;
bool operator() (const T& x, const T& y) const { return x != y; }
};
template <class T>
struct greater : public binary_function<T, T, bool>
{
typedef _TYPENAME binary_function<T, T, bool>::second_argument_type second_argument_type;
typedef _TYPENAME binary_function<T, T, bool>::first_argument_type first_argument_type;
typedef _TYPENAME binary_function<T, T, bool>::result_type result_type;
bool operator() (const T& x, const T& y) const { return x > y; }
};
template <class T>
struct less : public binary_function<T, T, bool>
{
typedef _TYPENAME binary_function<T, T, bool>::second_argument_type second_argument_type;
typedef _TYPENAME binary_function<T, T, bool>::first_argument_type first_argument_type;
typedef _TYPENAME binary_function<T, T, bool>::result_type result_type;
bool operator() (const T& x, const T& y) const { return x < y; }
};
template <class T>
struct greater_equal : public binary_function<T, T, bool>
{
typedef _TYPENAME binary_function<T, T, bool>::second_argument_type second_argument_type;
typedef _TYPENAME binary_function<T, T, bool>::first_argument_type first_argument_type;
typedef _TYPENAME binary_function<T, T, bool>::result_type result_type;
bool operator() (const T& x, const T& y) const { return x >= y; }
};
template <class T>
struct less_equal : public binary_function<T, T, bool>
{
typedef _TYPENAME binary_function<T, T, bool>::second_argument_type second_argument_type;
typedef _TYPENAME binary_function<T, T, bool>::first_argument_type first_argument_type;
typedef _TYPENAME binary_function<T, T, bool>::result_type result_type;
bool operator() (const T& x, const T& y) const { return x <= y; }
};
//
// Logical operations.
//
template <class T>
struct logical_and : public binary_function<T, T, bool>
{
typedef _TYPENAME binary_function<T, T, bool>::second_argument_type second_argument_type;
typedef _TYPENAME binary_function<T, T, bool>::first_argument_type first_argument_type;
typedef _TYPENAME binary_function<T, T, bool>::result_type result_type;
bool operator() (const T& x, const T& y) const { return x && y; }
};
template <class T>
struct logical_or : public binary_function<T, T, bool>
{
typedef _TYPENAME binary_function<T, T, bool>::second_argument_type second_argument_type;
typedef _TYPENAME binary_function<T, T, bool>::first_argument_type first_argument_type;
typedef _TYPENAME binary_function<T, T, bool>::result_type result_type;
bool operator() (const T& x, const T& y) const { return x || y; }
};
template <class T>
struct logical_not : public unary_function<T, bool>
{
typedef _TYPENAME unary_function<T,bool>::argument_type argument_type;
typedef _TYPENAME unary_function<T,bool>::result_type result_type;
bool operator() (const T& x) const { return !x; }
};
//
// Negators.
//
template <class Predicate>
class unary_negate : public unary_function<_TYPENAME Predicate::argument_type,
bool>
{
protected:
Predicate pred;
public:
typedef _TYPENAME unary_function<_TYPENAME Predicate::argument_type,bool>::argument_type argument_type;
typedef _TYPENAME unary_function<_TYPENAME Predicate::argument_type,bool>::result_type result_type;
_EXPLICIT unary_negate (const Predicate& x) : pred(x) {}
bool operator() (const _TYPENAME unary_function<
_TYPENAME Predicate::argument_type,bool>::argument_type& x) const
{ return !pred(x); }
};
template <class Predicate>
inline unary_negate<Predicate> not1(const Predicate& pred)
{
return unary_negate<Predicate>(pred);
}
template <class Predicate>
class binary_negate
: public binary_function<_TYPENAME Predicate::first_argument_type,
_TYPENAME Predicate::second_argument_type, bool>
{
protected:
Predicate pred;
public:
typedef _TYPENAME binary_function<_TYPENAME Predicate::first_argument_type,
_TYPENAME Predicate::second_argument_type, bool>::second_argument_type second_argument_type;
typedef _TYPENAME binary_function<_TYPENAME Predicate::first_argument_type,
_TYPENAME Predicate::second_argument_type, bool>::first_argument_type first_argument_type;
typedef _TYPENAME binary_function<_TYPENAME Predicate::first_argument_type,
_TYPENAME Predicate::second_argument_type, bool>::result_type result_type;
_EXPLICIT binary_negate (const Predicate& x) : pred(x) {}
bool operator() (const _TYPENAME binary_function<_TYPENAME Predicate::first_argument_type,
_TYPENAME Predicate::second_argument_type, bool>::first_argument_type& x,
const _TYPENAME binary_function<_TYPENAME Predicate::first_argument_type,
_TYPENAME Predicate::second_argument_type, bool>::second_argument_type& y) const
{
return !pred(x, y);
}
};
template <class Predicate>
inline binary_negate<Predicate> not2(const Predicate& pred)
{
return binary_negate<Predicate>(pred);
}
//
// Binders.
//
template <class Operation>
class binder1st :public unary_function<_TYPENAME Operation::second_argument_type,
_TYPENAME Operation::result_type>
{
protected:
Operation op;
_TYPENAME Operation::first_argument_type value;
public:
typedef _TYPENAME unary_function<_TYPENAME Operation::second_argument_type,
_TYPENAME Operation::result_type>::argument_type argument_type;
typedef _TYPENAME unary_function<_TYPENAME Operation::second_argument_type,
_TYPENAME Operation::result_type>::result_type result_type;
binder1st (const Operation& x,
const _TYPENAME Operation::first_argument_type& y)
: op(x), value(y) {}
_TYPENAME unary_function<_TYPENAME Operation::second_argument_type,
_TYPENAME Operation::result_type>::result_type
operator() (const _TYPENAME unary_function<_TYPENAME Operation::second_argument_type,
_TYPENAME Operation::result_type>::argument_type& x) const
{
return op(value, x);
}
};
template <class Operation, class T>
inline binder1st<Operation> bind1st (const Operation& op, const T& x)
{
typedef _TYPENAME Operation::first_argument_type the_argument_type;
return binder1st<Operation>(op, the_argument_type(x));
}
template <class Operation>
class binder2nd : public unary_function<_TYPENAME Operation::first_argument_type,
_TYPENAME Operation::result_type>
{
protected:
Operation op;
_TYPENAME Operation::second_argument_type value;
public:
typedef _TYPENAME unary_function<_TYPENAME Operation::first_argument_type,
_TYPENAME Operation::result_type>::argument_type argument_type;
typedef _TYPENAME unary_function<_TYPENAME Operation::first_argument_type,
_TYPENAME Operation::result_type>::result_type result_type;
binder2nd (const Operation& x,
const _TYPENAME Operation::second_argument_type& y)
: op(x), value(y) {}
_TYPENAME unary_function<_TYPENAME Operation::first_argument_type,
_TYPENAME Operation::result_type>::result_type
operator() (const _TYPENAME unary_function<_TYPENAME Operation::first_argument_type,
_TYPENAME Operation::result_type>::argument_type& x) const
{
return op(x, value);
}
};
template <class Operation, class T>
inline binder2nd<Operation> bind2nd (const Operation& op, const T& x)
{
typedef _TYPENAME Operation::second_argument_type the_argument_type;
return binder2nd<Operation>(op, the_argument_type(x));
}
//
// Adaptors.
//
template <class Arg, class Result>
class pointer_to_unary_function : public unary_function<Arg, Result>
{
protected:
Result (*ptr)(Arg);
public:
typedef _TYPENAME unary_function<Arg,Result>::argument_type argument_type;
typedef _TYPENAME unary_function<Arg,Result>::result_type result_type;
_EXPLICIT pointer_to_unary_function (Result (*x)(Arg)) : ptr(x) {}
Result operator() (Arg x) const { return ptr(x); }
};
template <class Arg, class Result>
inline pointer_to_unary_function<Arg, Result> ptr_fun(Result (*x)(Arg))
{
return pointer_to_unary_function<Arg, Result>(x);
}
template <class Arg1, class Arg2, class Result>
class pointer_to_binary_function : public binary_function<Arg1, Arg2, Result>
{
protected:
Result (*ptr)(Arg1, Arg2);
public:
typedef _TYPENAME binary_function<Arg1, Arg2, Result>::second_argument_type second_argument_type;
typedef _TYPENAME binary_function<Arg1, Arg2, Result>::first_argument_type first_argument_type;
typedef _TYPENAME binary_function<Arg1, Arg2, Result>::result_type result_type;
_EXPLICIT pointer_to_binary_function (Result (*x)(Arg1, Arg2)) : ptr(x) {}
Result operator() (Arg1 x, Arg2 y) const
{
return ptr(x, y);
}
};
template <class Arg1, class Arg2, class Result>
inline pointer_to_binary_function<Arg1, Arg2, Result>
ptr_fun(Result (*x)(Arg1, Arg2))
{
return pointer_to_binary_function<Arg1, Arg2, Result>(x);
}
//
// Pointer to member function adaptors
//
// mem_fun_t, mem_fun1_t
//
template <class S, class T>
class mem_fun_t : public unary_function<T*,S>
{
S (T::*pmf)();
public:
_EXPLICIT mem_fun_t(S (T::*p)()) : pmf(p)
{ ; }
S operator()(T* p) const
{ return (p->*pmf)(); }
};
template <class S, class T, class A>
class mem_fun1_t : public binary_function<T*,A,S>
{
S (T::*pmf)(A);
public:
_EXPLICIT mem_fun1_t(S (T::*p)(A)) : pmf(p)
{ ; }
S operator()(T* p, A a) const
{ return (p->*pmf)(a); }
};
template <class S, class T>
inline mem_fun_t<S,T> mem_fun(S (T::*f)())
{
return mem_fun_t<S,T>(f);
}
template <class S, class T, class A>
inline mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A))
{
return mem_fun1_t<S,T,A>(f);
}
//
// mem_fun_ref_t, mem_fun1_ref_t
//
template <class S, class T>
class mem_fun_ref_t : public unary_function<T,S>
{
S (T::*pmf)();
public:
_EXPLICIT mem_fun_ref_t(S (T::*p)()) : pmf(p)
{ ; }
S operator()(T& p) const
{ return (p.*pmf)(); }
};
template <class S, class T, class A>
class mem_fun1_ref_t : public binary_function<T,A,S>
{
S (T::*pmf)(A);
public:
_EXPLICIT mem_fun1_ref_t(S (T::*p)(A)) : pmf(p)
{ ; }
S operator()(T& p, A a) const
{ return (p.*pmf)(a); }
};
template <class S, class T>
inline mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)())
{
return mem_fun_ref_t<S,T>(f);
}
template <class S, class T, class A>
inline mem_fun1_ref_t<S,T,A> mem_fun_ref(S (T::*f)(A))
{
return mem_fun1_ref_t<S,T,A>(f);
}
//
// const_mem_fun_t and const_mem_fun1_t
//
template <class S, class T>
class const_mem_fun_t : public unary_function<T*,S>
{
S (T::*pmf)() const;
public:
_EXPLICIT const_mem_fun_t(S (T::*p)() const) : pmf(p)
{ ; }
S operator()(const T* p) const
{ return (p->*pmf)(); }
};
template <class S, class T, class A>
class const_mem_fun1_t : public binary_function<T*,A,S>
{
S (T::*pmf)(A) const;
public:
_EXPLICIT const_mem_fun1_t(S (T::*p)(A) const) : pmf(p)
{ ; }
S operator()(const T* p, A a) const
{ return (p->*pmf)(a); }
};
template <class S, class T>
inline const_mem_fun_t<S,T> mem_fun(S (T::*f)() const)
{
return const_mem_fun_t<S,T>(f);
}
template <class S, class T, class A>
inline const_mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A) const)
{
return const_mem_fun1_t<S,T,A>(f);
}
//
// const_mem_fun_ref_t, const_mem_fun1_ref_t
//
template <class S, class T>
class const_mem_fun_ref_t : public unary_function<T,S>
{
S (T::*pmf)() const;
public:
_EXPLICIT const_mem_fun_ref_t(S (T::*p)() const) : pmf(p)
{ ; }
S operator()(const T& p) const
{ return (p.*pmf)(); }
};
template <class S, class T, class A>
class const_mem_fun1_ref_t : public binary_function<T,A,S>
{
S (T::*pmf)(A) const;
public:
_EXPLICIT const_mem_fun1_ref_t(S (T::*p)(A) const) : pmf(p)
{ ; }
S operator()(const T& p, A a) const
{ return (p.*pmf)(a); }
};
template <class S, class T>
inline const_mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)() const)
{
return const_mem_fun_ref_t<S,T>(f);
}
template <class S, class T, class A>
inline const_mem_fun1_ref_t<S,T,A> mem_fun_ref(S (T::*f)(A) const)
{
return const_mem_fun1_ref_t<S,T,A>(f);
}
#ifndef _RWSTD_NO_NAMESPACE
}
#endif
#endif /*__STD_FUNCTIONAL__*/
#ifndef __USING_STD_NAMES__
using namespace std;
#endif
#pragma option pop
#endif /* __FUNCTION_H */