This repository has been archived on 2024-12-16. You can view files and clone it, but cannot push or open issues or pull requests.
CodeBlocksPortable/Borland/BCC55/Include/memory.stl

881 lines
24 KiB
Plaintext
Raw Normal View History

// -*- C++ -*-
#ifndef __STD_MEMORY
#define __STD_MEMORY
#pragma option push -b -a8 -pc -Vx- -Ve- -w-inl -w-aus -w-sig
/***************************************************************************
*
* memory - declarations for the Standard Library memory implementation
*
***************************************************************************
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
***************************************************************************
*
* Copyright (c) 1994-1999 Rogue Wave Software, Inc. All Rights Reserved.
*
* This computer software is owned by Rogue Wave Software, Inc. and is
* protected by U.S. copyright laws and other laws and by international
* treaties. This computer software is furnished by Rogue Wave Software,
* Inc. pursuant to a written license agreement and may be used, copied,
* transmitted, and stored only in accordance with the terms of such
* license and with the inclusion of the above copyright notice. This
* computer software or any other copies thereof may not be provided or
* otherwise made available to any other person.
*
* U.S. Government Restricted Rights. This computer software is provided
* with Restricted Rights. Use, duplication, or disclosure by the
* Government is subject to restrictions as set forth in subparagraph (c)
* (1) (ii) of The Rights in Technical Data and Computer Software clause
* at DFARS 252.227-7013 or subparagraphs (c) (1) and (2) of the
* Commercial Computer Software <20> Restricted Rights at 48 CFR 52.227-19,
* as applicable. Manufacturer is Rogue Wave Software, Inc., 5500
* Flatiron Parkway, Boulder, Colorado 80301 USA.
*
**************************************************************************/
#include <stdcomp.h>
#ifndef _RWSTD_NO_NEW_HEADER
#include <cstddef>
#include <cstdlib>
#include <climits>
#else
#include <stddef.h>
#include <stdlib.h>
#include <limits.h>
#endif //_RWSTD_NO_NEW_HEADER
#include <new>
#include <rw/iterator>
#include <utility>
#include <rw/rwstderr.h>
#include <rw/stdmutex.h>
//
// Turn off the warnings under the MSVC compiler that
// say 'bool reserved for future use' and turn off warnings
// that say 'debug information truncated to 256 characters'
//
#ifdef _RWSTD_MSVC_BOOL_WARNING
#pragma warning ( disable : 4237 )
#endif
#if defined(_MSC_VER) && !defined(__BORLANDC__)
#pragma warning ( disable : 4786 )
#endif
#ifdef _RWSTD_NO_NEW_DECL
extern void _RWSTDExportFunc(*) operator new(size_t size, void* ptr);
#endif
#ifdef _RWSTD_NO_NEW_HEADER
#include <exception>
#endif
#ifndef _RWSTD_NO_NAMESPACE
namespace __rwstd {
#endif
//
// Template used for empty base optimization
//
template <class T , class Base>
class __rw_basis : public Base
{
T __data_;
public:
__rw_basis(const __rw_basis& b) : __data_(b.__data_) {;}
__rw_basis(const T& t, const Base& b) : Base(b), __data_(t) {;}
__rw_basis(int t, const Base& b) : Base(b), __data_((T)t) {;} // TEMP
__rw_basis operator=(const T& t) { __data_ = t; return *this; }
__rw_basis operator=(int t) { __data_ = (T)t; return *this; } // TEMP
__rw_basis operator=(const __rw_basis& r)
{ __data_ = r.__data_; return *this; }
__rw_basis operator=(const Base& b)
{ *this = __rw_basis<T,Base>(__data_,b); return *this; }
operator T() { return __data_; }
T data() const { return __data_; }
};
// Default buffer size for containers.
#ifndef _RWSTD_CONTAINER_BUFFER_SIZE
#define _RWSTD_CONTAINER_BUFFER_SIZE 1024
#endif
#ifndef _RWSTD_VECTOR_CONST_ENLARGE
// Double buffer size every time new space is needed
// This is the standard compliant method, resulting
// in a linear increase in execution time for
// individual additions to a container.
// if __n is zero then get initial buffer size from
// _RWSTD_CONTAINER_BUFFER_SIZE. Only vector calls
// this function with a non-zero value for cursize.
// Return new buffer size in bytes.
// Third parameter not used.
template <class T, class size>
inline size __rw_allocation_size(T*,size cursize, size)
{
if (cursize)
return cursize*2;
else
return
#ifdef __BORLANDC__ // RW-BUG fix
(_RWSTD_CONTAINER_BUFFER_SIZE > sizeof(T)) ? (_RWSTD_CONTAINER_BUFFER_SIZE/sizeof(T)) : 1;
#else
_RWSTD_CONTAINER_BUFFER_SIZE/sizeof(T);
#endif
}
#else
// Increment the buffer size by a set amount
// indicated by __delta (if __delta is 0 then
// get delta size from _RWSTD_CONTAINER_BUFFER_SIZE
// if __n is zero then get initial buffer size from
// _RWSTD_CONTAINER_BUFFER_SIZE. Only vector calls
// this function with a non-zero value for cursize.
// Return new buffer size in bytes.
template <class T, class size>
inline size __rw_allocation_size(T*,size __n, size __delta)
{
if (__n)
return __n + (__delta ?
__delta : _RWSTD_CONTAINER_BUFFER_SIZE/sizeof(T));
else
#ifdef __BORLANDC__ // RW-BUG fix
(_RWSTD_CONTAINER_BUFFER_SIZE > sizeof(T)) ? (_RWSTD_CONTAINER_BUFFER_SIZE/sizeof(T)) : 1;
#else
_RWSTD_CONTAINER_BUFFER_SIZE/sizeof(T);
#endif
}
#endif // _RWSTD_CONTAINER_CONST_ENLARGE
#if defined(_RWSTD_NO_DESTROY_NONBUILTIN)
template <class T> struct __FS : public T
{
__FS() { ; }
//
// Calls destructor, but does not free the space.
//
void operator delete (void*) {;}
};
#endif // _RWSTD_NO_DESTROY_NONBUILTIN
#ifdef __TURBOC__
#pragma option -w-inl
#pragma option -w-par
#endif
template <class T>
inline void __destroy (T* pointer)
{
#if defined(_RWSTD_NO_DESTROY_NONBUILTIN)
delete (__FS<T>*) (pointer);
#else
#if defined(_RWSTD_EXPLICIT_SCOPE_DESTROY)
pointer->T::~T();
#else
pointer->~T();
#endif // _RWSTD_EXPLICIT_SCOPE_DESTROY
#endif // _RWSTD_NO_DESTROY_NONBUILTIN
}
template <class T1, class T2>
inline void __construct (T1* p, const T2& value)
{
new (p) T1(value);
}
template <class ForwardIterator>
_RWSTD_TRICKY_INLINE void __destroy (ForwardIterator first, ForwardIterator last)
{
while (first != last)
++first;
}
#if defined(_RWSTD_NO_DESTROY_BUILTIN) || defined(_RWSTD_NO_DESTROY_NONBUILTIN)
//
// Some specializations of STL destroy for builtin types.f
//
inline void __destroy (void*) {;}
inline void __destroy (char*) {;}
inline void __destroy (unsigned char*) {;}
inline void __destroy (short*) {;}
inline void __destroy (unsigned short*) {;}
inline void __destroy (int*) {;}
inline void __destroy (unsigned int*) {;}
inline void __destroy (long*) {;}
inline void __destroy (unsigned long*) {;}
inline void __destroy (float*) {;}
inline void __destroy (double*) {;}
inline void __destroy (void**) {;}
inline void __destroy (char**) {;}
inline void __destroy (unsigned char**) {;}
inline void __destroy (short**) {;}
inline void __destroy (unsigned short**) {;}
inline void __destroy (int**) {;}
inline void __destroy (unsigned int**) {;}
inline void __destroy (long**) {;}
inline void __destroy (unsigned long**) {;}
inline void __destroy (float**) {;}
inline void __destroy (double**) {;}
inline void __destroy (void***) {;}
inline void __destroy (char***) {;}
inline void __destroy (unsigned char***) {;}
inline void __destroy (short***) {;}
inline void __destroy (unsigned short***) {;}
inline void __destroy (int***) {;}
inline void __destroy (unsigned int***) {;}
inline void __destroy (long***) {;}
inline void __destroy (unsigned long***) {;}
inline void __destroy (float***) {;}
inline void __destroy (double***) {;}
#ifndef _RWSTD_NO_BOOL
inline void __destroy (bool*) {;}
inline void __destroy (bool**) {;}
inline void __destroy (bool***) {;}
#endif
#ifndef _RWSTD_NO_LONGDOUBLE
inline void __destroy (long double*) {;}
inline void __destroy (long double**) {;}
inline void __destroy (long double***) {;}
#endif
#ifndef _RWSTD_NO_OVERLOAD_WCHAR
inline void __destroy (wchar_t*) {;}
inline void __destroy (wchar_t**) {;}
inline void __destroy (wchar_t***) {;}
#endif
#endif /*_RWSTD_NO_DESTROY_BUILTIN || _RWSTD_NO_DESTROY_NONBUILTIN*/
#ifdef _RWSTD_LOCALIZED_ERRORS
extern const unsigned int _RWSTDExport rwse_OutOfRange;
#else
extern const char _RWSTDExportFunc(*) rwse_OutOfRange;
#endif // _RWSTD_LOCALIZED_ERRORS
#ifndef _RWSTD_NO_NAMESPACE
} // __rwstd namespace
namespace std {
#endif
//
// The default allocator.
//
#ifdef _RWSTD_ALLOCATOR
template <class T> class allocator;
//
// void specialization of allocator
//
_RWSTD_TEMPLATE
class allocator<void> {
public:
typedef void* pointer;
typedef const void* const_pointer;
typedef void value_type;
template <class U>
struct rebind { typedef allocator<U> other; };
};
template <class T>
class allocator
{
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
typedef T value_type;
template <class U> struct rebind
{ typedef allocator<U> other; };
allocator() _RWSTD_THROW_SPEC_NULL
{ ; }
allocator(const allocator&) _RWSTD_THROW_SPEC_NULL
{ ; }
template <class U>
allocator(const allocator<U>&) _RWSTD_THROW_SPEC_NULL
{ ; }
template <class U>
allocator<T>& operator=(const allocator<U>& a) _RWSTD_THROW_SPEC_NULL
{ return *this; }
pointer address(reference x) const
{
return _RWSTD_STATIC_CAST(pointer,&x);
}
const_pointer address(const_reference x) const
{
return _RWSTD_STATIC_CAST(const_pointer,&x);
}
pointer allocate(size_type n, allocator<void>::const_pointer = 0)
{
pointer tmp =
_RWSTD_STATIC_CAST(pointer,(::operator
new(_RWSTD_STATIC_CAST(size_t,(n * sizeof(value_type))))));
_RWSTD_THROW_NO_MSG(tmp == 0, bad_alloc);
return tmp;
}
void deallocate(pointer p, size_type)
{
::operator delete(p);
}
size_type max_size() const _RWSTD_THROW_SPEC_NULL
{
return 1 > UINT_MAX/sizeof(T) ? size_type(1) : size_type(UINT_MAX/sizeof(T));
}
inline void construct(pointer p, const T& val);
inline void destroy(T* p);
};
template <class T>
void allocator<T>::construct(pointer p, const T& val)
{
__RWSTD::__construct(p,val);
}
template <class T>
void allocator<T>::destroy(T* p)
{
__RWSTD::__destroy(p);
}
#else
//
// Alternate allocator uses an interface class (allocator_interface)
// to get type safety.
//
template <class T>
class allocator
{
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
typedef T value_type;
allocator() _RWSTD_THROW_SPEC_NULL { ; }
allocator(const allocator<T>&) _RWSTD_THROW_SPEC_NULL
{ ; }
allocator<T>& operator=(const allocator<T>&) _RWSTD_THROW_SPEC_NULL
{ return *this; }
void * allocate (size_type n, void * = 0)
{
void * tmp = _RWSTD_STATIC_CAST(void*,(::operator new(_RWSTD_STATIC_CAST(size_t,(n)))));
_RWSTD_THROW_NO_MSG(tmp == 0, bad_alloc);
return tmp;
}
void deallocate (void* p, size_type)
{
::operator delete(p);
}
size_type max_size (size_type size) const
{
return 1 > UINT_MAX/size ? size_type(1) : size_type(UINT_MAX/size);
}
};
_RWSTD_TEMPLATE
class allocator<void>
{
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef void* pointer;
typedef const void* const_pointer;
typedef void value_type;
allocator() _RWSTD_THROW_SPEC_NULL { ; }
allocator(const allocator<void>&) _RWSTD_THROW_SPEC_NULL
{ ; }
allocator<void>& operator=(const allocator<void>&) _RWSTD_THROW_SPEC_NULL
{ return *this; }
void * allocate (size_type n, void * = 0)
{
void * tmp = _RWSTD_STATIC_CAST(void*,(::operator new(_RWSTD_STATIC_CAST(size_t,(n)))));
_RWSTD_THROW_NO_MSG(tmp == 0, bad_alloc);
return tmp;
}
void deallocate (void* p, size_type)
{
::operator delete(p);
}
size_type max_size (size_type size) const
{
return 1 > UINT_MAX/size ? size_type(1) : size_type(UINT_MAX/size);
}
};
//
// allocator_interface provides all types and typed functions. Memory
// allocated as raw bytes using the class provided by the Allocator
// template parameter. allocator_interface casts appropriately.
//
// Multiple allocator_interface objects can attach to a single
// allocator, thus allowing one allocator to allocate all storage
// for a container, regardless of how many types are involved.
//
// The only real restriction is that pointer and reference are
// hard coded as T* and T&. Partial specialization would
// get around this.
//
template <class Allocator,class T>
class allocator_interface
{
public:
typedef Allocator allocator_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
typedef T value_type;
typedef _TYPENAME _RWSTD_ALLOC_SIZE_TYPE size_type;
typedef _TYPENAME _RWSTD_ALLOC_DIFF_TYPE difference_type;
typedef void* void_pointer;
typedef const void* const_void_pointer;
protected:
allocator_type alloc_;
public:
allocator_interface() _RWSTD_THROW_SPEC_NULL { ; }
allocator_interface(const Allocator& a) _RWSTD_THROW_SPEC_NULL
: alloc_(a) { ; }
pointer address (T& x)
{
return _RWSTD_STATIC_CAST(pointer,&x);
}
size_type max_size () const
{
return alloc_.max_size(sizeof(T));
}
pointer allocate(size_type n, pointer p = 0)
{
return _RWSTD_STATIC_CAST(pointer,alloc_.allocate(n*sizeof(T),p));
}
void deallocate(pointer p, size_type n)
{
alloc_.deallocate(p,n);
}
inline void construct(pointer p, const T& val);
inline void destroy(T* p);
};
template <class Allocator, class T>
inline void
allocator_interface<Allocator,T>::construct(pointer p, const T& val)
{
__RWSTD::__construct(p,val);
}
template <class Allocator, class T>
inline void allocator_interface<Allocator,T>::destroy(T* p)
{
__RWSTD::__destroy(p);
}
_RWSTD_TEMPLATE
class allocator_interface<allocator<void>,void>
{
public:
typedef allocator<void> allocator_type;
typedef void* pointer;
typedef const void* const_pointer;
typedef void value_type;
typedef allocator<void>::size_type size_type;
typedef allocator<void>::difference_type difference_type;
protected:
allocator_type alloc_;
public:
allocator_interface() _RWSTD_THROW_SPEC_NULL { ; }
allocator_interface(const allocator<void>& a) _RWSTD_THROW_SPEC_NULL
: alloc_(a) { ; }
size_type max_size () const
{
return alloc_.max_size(1);
}
pointer allocate(size_type n, pointer = 0)
{
return _RWSTD_STATIC_CAST(pointer,alloc_.allocate(n));
}
void deallocate(pointer p, size_type n)
{
alloc_.deallocate(p,n);
}
};
#endif // _RWSTD_ALLOCATOR
//
// Allocator globals
//
template <class T, class U>
inline bool operator==(const allocator<T>&, const allocator<U>&) _RWSTD_THROW_SPEC_NULL
{
return true;
}
#ifndef _RWSTD_NO_NAMESPACE
template <class T, class U>
inline bool operator!=(const allocator<T>&, const allocator<U>&) _RWSTD_THROW_SPEC_NULL
{
return false;
}
#endif
//
// Raw storage iterator.
//
template <class OutputIterator, class T>
class raw_storage_iterator
: public iterator<output_iterator_tag,T,ptrdiff_t,T*,T&>
{
protected:
OutputIterator iter;
public:
typedef OutputIterator iterator_type;
typedef T element_type;
_EXPLICIT raw_storage_iterator (OutputIterator x) : iter(x) {}
raw_storage_iterator<OutputIterator, T>& operator* () { return *this; }
raw_storage_iterator<OutputIterator, T>& operator= (const T& element)
{
::new(&(*iter)) T(element);
return *this;
}
raw_storage_iterator<OutputIterator, T>& operator++ ()
{
++iter; return *this;
}
raw_storage_iterator<OutputIterator, T> operator++ (int)
{
raw_storage_iterator<OutputIterator, T> tmp = *this;
++iter;
return tmp;
}
};
//
// Temporary buffers
//
#ifdef _RWSTD_FAST_TEMP_BUF
#if defined(_RWSTD_SHARED_LIB) && !defined (_RWSTD_MULTI_THREAD)
#error Cannot use fast temporary buffer in this configuration
#endif
#if defined(_RWSTDDLL) && defined (__WIN16__)
#error Cannot use fast temporary buffer in this configuration
#endif
#ifndef __stl_buffer_size
#define __stl_buffer_size 16384 /* 16k */
#endif
#ifndef _RWSTD_NO_NAMESPACE
}
namespace __rwstd {
#endif
extern char _RWSTDExport stl_temp_buffer[__stl_buffer_size];
#ifdef _RWSTD_MULTI_THREAD
extern _RWSTDMutex _RWSTDExport stl_temp_buffer_mutex;
extern bool _RWSTDExport stl_temp_buffer_being_used;
#endif
#ifndef _RWSTD_NO_NAMESPACE
} // End of __rwstd namespace
namespace std {
#endif
template <class T>
#ifndef _RWSTD_NO_TEMPLATE_ON_RETURN_TYPE
inline pair<T*, ptrdiff_t> get_temporary_buffer (ptrdiff_t len)
#else
inline pair<T*, ptrdiff_t> get_temporary_buffer (ptrdiff_t len, T*)
#endif
{
while (len > __stl_buffer_size / sizeof(T))
{
T* tmp = _RWSTD_STATIC_CAST(T*,( ::operator new(_RWSTD_STATIC_CAST(unsigned int,len) * sizeof(T))));
if (tmp)
{
pair<T*, ptrdiff_t> result(tmp, len);
return result;
}
len = len / 2;
}
#ifdef _RWSTD_MULTI_THREAD
_RWSTDGuard guard(__RWSTD::stl_temp_buffer_mutex);
if (__RWSTD::stl_temp_buffer_being_used)
{
T* tmp = _RWSTD_STATIC_CAST(T*,( ::operator new(_RWSTD_STATIC_CAST(unsigned int,len) * sizeof(T))));
pair<T*,ptrdiff_t> result(tmp, len);
return result;
}
else
{
__RWSTD::stl_temp_buffer_being_used = true;
pair<T*, ptrdiff_t> result(_RWSTD_STATIC_CAST(T*,
_RWSTD_STATIC_CAST(void*,__RWSTD::stl_temp_buffer)),
_RWSTD_STATIC_CAST(ptrdiff_t,(__stl_buffer_size / sizeof(T))));
return result;
}
#else
pair<T*, ptrdiff_t> result(_RWSTD_STATIC_CAST(T*,
_RWSTD_STATIC_CAST(void*,__RWSTD::stl_temp_buffer)),
_RWSTD_STATIC_CAST(ptrdiff_t,(__stl_buffer_size / sizeof(T))));
return result;
#endif /*_RWSTD_MULTI_THREAD*/
}
template <class T>
inline void return_temporary_buffer (T* p)
{
#ifdef _RWSTD_MULTI_THREAD
_RWSTDGuard guard(__RWSTD::stl_temp_buffer_mutex);
if (_RWSTD_STATIC_CAST(char*,
_RWSTD_STATIC_CAST(void*,p)) != __RWSTD::stl_temp_buffer)
::operator delete(p);
else
__RWSTD::stl_temp_buffer_being_used = false;
#else
if (_RWSTD_STATIC_CAST(char*,
_RWSTD_STATIC_CAST(void*,p)) != __RWSTD::stl_temp_buffer)
::operator delete(p);
#endif /*_RWSTD_MULTI_THREAD*/
}
#else
template <class T>
#ifndef _RWSTD_NO_TEMPLATE_ON_RETURN_TYPE
inline pair<T*, ptrdiff_t> get_temporary_buffer (ptrdiff_t len)
#else
inline pair<T*, ptrdiff_t> get_temporary_buffer (ptrdiff_t len, T*)
#endif
{
T* tmp = _RWSTD_STATIC_CAST(T*,( ::operator new(len * sizeof(T))));
pair<T*,ptrdiff_t> result(tmp, len);
return result;
}
template <class T>
inline void return_temporary_buffer (T* p)
{
::operator delete(p);
}
#endif /*_RWSTD_FAST_TEMP_BUF*/
//
// Specialized algorithms.
//
template <class InputIterator, class ForwardIterator>
_RWSTD_TRICKY_INLINE ForwardIterator uninitialized_copy (InputIterator first, InputIterator last,
ForwardIterator result)
{
ForwardIterator start = result;
#ifndef _RWSTD_NO_EXCEPTIONS
try {
while (first != last)
__RWSTD::__construct(result++, *first++);
} catch(...) {
__RWSTD::__destroy(start,result);
throw;
}
#else
while (first != last)
__RWSTD::__construct(result++, *first++);
#endif // _RWSTD_NO_EXCEPTIONS
return result;
}
template <class ForwardIterator, class T>
_RWSTD_TRICKY_INLINE void uninitialized_fill (ForwardIterator first, ForwardIterator last,
const T& x)
{
ForwardIterator start = first;
#ifndef _RWSTD_NO_EXCEPTIONS
try {
while (first != last)
__RWSTD::__construct(first++, x);
} catch(...) {
__RWSTD::__destroy(start,first);
throw;
}
#else
while (first != last)
__RWSTD::__construct(first++, x);
#endif // _RWSTD_NO_EXCEPTIONS
}
template <class ForwardIterator, class Size, class T>
_RWSTD_TRICKY_INLINE void uninitialized_fill_n (ForwardIterator first, Size n, const T& x)
{
ForwardIterator start = first;
#ifndef _RWSTD_NO_EXCEPTIONS
try {
while (n--)
__RWSTD::__construct(first++, x);
} catch(...) {
__RWSTD::__destroy(start,first);
throw;
}
#else
while (n--)
__RWSTD::__construct(first++, x);
#endif // _RWSTD_NO_EXCEPTIONS
}
//
// Template auto_ptr holds onto a pointer obtained via new and deletes that
// object when it itself is destroyed (such as when leaving block scope).
//
// It can be used to make calls to new() exception safe.
//
template<class X> class auto_ptr
{
#ifndef _RWSTD_NO_MEM_CLASS_TEMPLATES
template <class Y> class auto_ptr_ref
{
public:
auto_ptr<Y>& p;
auto_ptr_ref(auto_ptr<Y>& a) : p(a) {}
};
#endif
public:
typedef X element_type;
//
// construct/copy/destroy
//
_EXPLICIT auto_ptr (X* p = 0) _RWSTD_THROW_SPEC_NULL
: the_p(p)
{ ; }
auto_ptr (auto_ptr<X>& a) _RWSTD_THROW_SPEC_NULL
: the_p((_RWSTD_CONST_CAST(auto_ptr<X>&,a)).release())
{ ; }
auto_ptr<X>& operator= (auto_ptr<X>& rhs) _RWSTD_THROW_SPEC_NULL
{
reset(rhs.release());
return *this;
}
#ifndef _RWSTD_NO_MEMBER_TEMPLATES
template <class Y>
auto_ptr (auto_ptr<Y>& a) _RWSTD_THROW_SPEC_NULL
: the_p((_RWSTD_CONST_CAST(auto_ptr<Y>&,a)).release())
{ ; }
template <class Y>
auto_ptr<X>& operator= (auto_ptr<Y>& rhs) _RWSTD_THROW_SPEC_NULL
{
reset(rhs.release());
return *this;
}
#endif
~auto_ptr () _RWSTD_THROW_SPEC_NULL { delete the_p; }
//
// members
//
X& operator* () const _RWSTD_THROW_SPEC_NULL { return *the_p; }
X* operator-> () const _RWSTD_THROW_SPEC_NULL { return the_p; }
X* get () const _RWSTD_THROW_SPEC_NULL { return the_p; }
X* release () _RWSTD_THROW_SPEC_NULL
{
X* tmp = the_p;
the_p = 0;
return tmp;
}
void reset (X* p = 0) _RWSTD_THROW_SPEC_NULL
{
if (the_p != p)
{
delete the_p;
the_p = p;
}
}
#ifndef _RWSTD_NO_MEM_CLASS_TEMPLATES
auto_ptr(auto_ptr_ref<X> r) _RWSTD_THROW_SPEC_NULL
{
reset(r.p.release());
}
#ifndef _RWSTD_NO_MEMBER_TEMPLATES
template <class Y> operator auto_ptr_ref<Y>() _RWSTD_THROW_SPEC_NULL
{
return auto_ptr_ref<Y>(*this);
}
template <class Y> operator auto_ptr<Y>() _RWSTD_THROW_SPEC_NULL
{
auto_ptr<Y> tmp;
tmp.reset(release());
return tmp;
}
#endif // _RWSTD_NO_MEMBER_TEMPLATES
#endif // _RWSTD_NO_MEM_CLASS_TEMPLATES
private:
X* the_p;
};
#ifndef _RWSTD_NO_NAMESPACE
}
#endif
#pragma option pop
#endif /*__STD_MEMORY*/