554 lines
17 KiB
Ada
554 lines
17 KiB
Ada
|
------------------------------------------------------------------------------
|
||
|
-- --
|
||
|
-- GNAT LIBRARY COMPONENTS --
|
||
|
-- --
|
||
|
-- ADA.CONTAINERS.HASH_TABLES.GENERIC_BOUNDED_OPERATIONS --
|
||
|
-- --
|
||
|
-- B o d y --
|
||
|
-- --
|
||
|
-- Copyright (C) 2004-2015, Free Software Foundation, Inc. --
|
||
|
-- --
|
||
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
||
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
||
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
||
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
||
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
||
|
-- or FITNESS FOR A PARTICULAR PURPOSE. --
|
||
|
-- --
|
||
|
-- As a special exception under Section 7 of GPL version 3, you are granted --
|
||
|
-- additional permissions described in the GCC Runtime Library Exception, --
|
||
|
-- version 3.1, as published by the Free Software Foundation. --
|
||
|
-- --
|
||
|
-- You should have received a copy of the GNU General Public License and --
|
||
|
-- a copy of the GCC Runtime Library Exception along with this program; --
|
||
|
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
|
||
|
-- <http://www.gnu.org/licenses/>. --
|
||
|
-- --
|
||
|
-- This unit was originally developed by Matthew J Heaney. --
|
||
|
------------------------------------------------------------------------------
|
||
|
|
||
|
with System; use type System.Address;
|
||
|
|
||
|
package body Ada.Containers.Hash_Tables.Generic_Bounded_Operations is
|
||
|
|
||
|
pragma Warnings (Off, "variable ""Busy*"" is not referenced");
|
||
|
pragma Warnings (Off, "variable ""Lock*"" is not referenced");
|
||
|
-- See comment in Ada.Containers.Helpers
|
||
|
|
||
|
-------------------
|
||
|
-- Checked_Index --
|
||
|
-------------------
|
||
|
|
||
|
function Checked_Index
|
||
|
(Hash_Table : aliased in out Hash_Table_Type'Class;
|
||
|
Node : Count_Type) return Hash_Type
|
||
|
is
|
||
|
Lock : With_Lock (Hash_Table.TC'Unrestricted_Access);
|
||
|
begin
|
||
|
return Index (Hash_Table, Hash_Table.Nodes (Node));
|
||
|
end Checked_Index;
|
||
|
|
||
|
-----------
|
||
|
-- Clear --
|
||
|
-----------
|
||
|
|
||
|
procedure Clear (HT : in out Hash_Table_Type'Class) is
|
||
|
begin
|
||
|
TC_Check (HT.TC);
|
||
|
|
||
|
HT.Length := 0;
|
||
|
-- HT.Busy := 0;
|
||
|
-- HT.Lock := 0;
|
||
|
HT.Free := -1;
|
||
|
HT.Buckets := (others => 0); -- optimize this somehow ???
|
||
|
end Clear;
|
||
|
|
||
|
--------------------------
|
||
|
-- Delete_Node_At_Index --
|
||
|
--------------------------
|
||
|
|
||
|
procedure Delete_Node_At_Index
|
||
|
(HT : in out Hash_Table_Type'Class;
|
||
|
Indx : Hash_Type;
|
||
|
X : Count_Type)
|
||
|
is
|
||
|
Prev : Count_Type;
|
||
|
Curr : Count_Type;
|
||
|
|
||
|
begin
|
||
|
Prev := HT.Buckets (Indx);
|
||
|
|
||
|
if Checks and then Prev = 0 then
|
||
|
raise Program_Error with
|
||
|
"attempt to delete node from empty hash bucket";
|
||
|
end if;
|
||
|
|
||
|
if Prev = X then
|
||
|
HT.Buckets (Indx) := Next (HT.Nodes (Prev));
|
||
|
HT.Length := HT.Length - 1;
|
||
|
return;
|
||
|
end if;
|
||
|
|
||
|
if Checks and then HT.Length = 1 then
|
||
|
raise Program_Error with
|
||
|
"attempt to delete node not in its proper hash bucket";
|
||
|
end if;
|
||
|
|
||
|
loop
|
||
|
Curr := Next (HT.Nodes (Prev));
|
||
|
|
||
|
if Checks and then Curr = 0 then
|
||
|
raise Program_Error with
|
||
|
"attempt to delete node not in its proper hash bucket";
|
||
|
end if;
|
||
|
|
||
|
Prev := Curr;
|
||
|
end loop;
|
||
|
end Delete_Node_At_Index;
|
||
|
|
||
|
---------------------------
|
||
|
-- Delete_Node_Sans_Free --
|
||
|
---------------------------
|
||
|
|
||
|
procedure Delete_Node_Sans_Free
|
||
|
(HT : in out Hash_Table_Type'Class;
|
||
|
X : Count_Type)
|
||
|
is
|
||
|
pragma Assert (X /= 0);
|
||
|
|
||
|
Indx : Hash_Type;
|
||
|
Prev : Count_Type;
|
||
|
Curr : Count_Type;
|
||
|
|
||
|
begin
|
||
|
if Checks and then HT.Length = 0 then
|
||
|
raise Program_Error with
|
||
|
"attempt to delete node from empty hashed container";
|
||
|
end if;
|
||
|
|
||
|
Indx := Checked_Index (HT, X);
|
||
|
Prev := HT.Buckets (Indx);
|
||
|
|
||
|
if Checks and then Prev = 0 then
|
||
|
raise Program_Error with
|
||
|
"attempt to delete node from empty hash bucket";
|
||
|
end if;
|
||
|
|
||
|
if Prev = X then
|
||
|
HT.Buckets (Indx) := Next (HT.Nodes (Prev));
|
||
|
HT.Length := HT.Length - 1;
|
||
|
return;
|
||
|
end if;
|
||
|
|
||
|
if Checks and then HT.Length = 1 then
|
||
|
raise Program_Error with
|
||
|
"attempt to delete node not in its proper hash bucket";
|
||
|
end if;
|
||
|
|
||
|
loop
|
||
|
Curr := Next (HT.Nodes (Prev));
|
||
|
|
||
|
if Checks and then Curr = 0 then
|
||
|
raise Program_Error with
|
||
|
"attempt to delete node not in its proper hash bucket";
|
||
|
end if;
|
||
|
|
||
|
if Curr = X then
|
||
|
Set_Next (HT.Nodes (Prev), Next => Next (HT.Nodes (Curr)));
|
||
|
HT.Length := HT.Length - 1;
|
||
|
return;
|
||
|
end if;
|
||
|
|
||
|
Prev := Curr;
|
||
|
end loop;
|
||
|
end Delete_Node_Sans_Free;
|
||
|
|
||
|
-----------
|
||
|
-- First --
|
||
|
-----------
|
||
|
|
||
|
function First (HT : Hash_Table_Type'Class) return Count_Type is
|
||
|
Indx : Hash_Type;
|
||
|
|
||
|
begin
|
||
|
if HT.Length = 0 then
|
||
|
return 0;
|
||
|
end if;
|
||
|
|
||
|
Indx := HT.Buckets'First;
|
||
|
loop
|
||
|
if HT.Buckets (Indx) /= 0 then
|
||
|
return HT.Buckets (Indx);
|
||
|
end if;
|
||
|
|
||
|
Indx := Indx + 1;
|
||
|
end loop;
|
||
|
end First;
|
||
|
|
||
|
----------
|
||
|
-- Free --
|
||
|
----------
|
||
|
|
||
|
procedure Free
|
||
|
(HT : in out Hash_Table_Type'Class;
|
||
|
X : Count_Type)
|
||
|
is
|
||
|
N : Nodes_Type renames HT.Nodes;
|
||
|
|
||
|
begin
|
||
|
-- This subprogram "deallocates" a node by relinking the node off of the
|
||
|
-- active list and onto the free list. Previously it would flag index
|
||
|
-- value 0 as an error. The precondition was weakened, so that index
|
||
|
-- value 0 is now allowed, and this value is interpreted to mean "do
|
||
|
-- nothing". This makes its behavior analogous to the behavior of
|
||
|
-- Ada.Unchecked_Deallocation, and allows callers to avoid having to add
|
||
|
-- special-case checks at the point of call.
|
||
|
|
||
|
if X = 0 then
|
||
|
return;
|
||
|
end if;
|
||
|
|
||
|
pragma Assert (X <= HT.Capacity);
|
||
|
|
||
|
-- pragma Assert (N (X).Prev >= 0); -- node is active
|
||
|
-- Find a way to mark a node as active vs. inactive; we could
|
||
|
-- use a special value in Color_Type for this. ???
|
||
|
|
||
|
-- The hash table actually contains two data structures: a list for
|
||
|
-- the "active" nodes that contain elements that have been inserted
|
||
|
-- onto the container, and another for the "inactive" nodes of the free
|
||
|
-- store.
|
||
|
--
|
||
|
-- We desire that merely declaring an object should have only minimal
|
||
|
-- cost; specially, we want to avoid having to initialize the free
|
||
|
-- store (to fill in the links), especially if the capacity is large.
|
||
|
--
|
||
|
-- The head of the free list is indicated by Container.Free. If its
|
||
|
-- value is non-negative, then the free store has been initialized
|
||
|
-- in the "normal" way: Container.Free points to the head of the list
|
||
|
-- of free (inactive) nodes, and the value 0 means the free list is
|
||
|
-- empty. Each node on the free list has been initialized to point
|
||
|
-- to the next free node (via its Parent component), and the value 0
|
||
|
-- means that this is the last free node.
|
||
|
--
|
||
|
-- If Container.Free is negative, then the links on the free store
|
||
|
-- have not been initialized. In this case the link values are
|
||
|
-- implied: the free store comprises the components of the node array
|
||
|
-- started with the absolute value of Container.Free, and continuing
|
||
|
-- until the end of the array (Nodes'Last).
|
||
|
--
|
||
|
-- ???
|
||
|
-- It might be possible to perform an optimization here. Suppose that
|
||
|
-- the free store can be represented as having two parts: one
|
||
|
-- comprising the non-contiguous inactive nodes linked together
|
||
|
-- in the normal way, and the other comprising the contiguous
|
||
|
-- inactive nodes (that are not linked together, at the end of the
|
||
|
-- nodes array). This would allow us to never have to initialize
|
||
|
-- the free store, except in a lazy way as nodes become inactive.
|
||
|
|
||
|
-- When an element is deleted from the list container, its node
|
||
|
-- becomes inactive, and so we set its Next component to value of
|
||
|
-- the node's index (in the nodes array), to indicate that it is
|
||
|
-- now inactive. This provides a useful way to detect a dangling
|
||
|
-- cursor reference. ???
|
||
|
|
||
|
Set_Next (N (X), Next => X); -- Node is deallocated (not on active list)
|
||
|
|
||
|
if HT.Free >= 0 then
|
||
|
-- The free store has previously been initialized. All we need to
|
||
|
-- do here is link the newly-free'd node onto the free list.
|
||
|
|
||
|
Set_Next (N (X), HT.Free);
|
||
|
HT.Free := X;
|
||
|
|
||
|
elsif X + 1 = abs HT.Free then
|
||
|
-- The free store has not been initialized, and the node becoming
|
||
|
-- inactive immediately precedes the start of the free store. All
|
||
|
-- we need to do is move the start of the free store back by one.
|
||
|
|
||
|
HT.Free := HT.Free + 1;
|
||
|
|
||
|
else
|
||
|
-- The free store has not been initialized, and the node becoming
|
||
|
-- inactive does not immediately precede the free store. Here we
|
||
|
-- first initialize the free store (meaning the links are given
|
||
|
-- values in the traditional way), and then link the newly-free'd
|
||
|
-- node onto the head of the free store.
|
||
|
|
||
|
-- ???
|
||
|
-- See the comments above for an optimization opportunity. If
|
||
|
-- the next link for a node on the free store is negative, then
|
||
|
-- this means the remaining nodes on the free store are
|
||
|
-- physically contiguous, starting as the absolute value of
|
||
|
-- that index value.
|
||
|
|
||
|
HT.Free := abs HT.Free;
|
||
|
|
||
|
if HT.Free > HT.Capacity then
|
||
|
HT.Free := 0;
|
||
|
|
||
|
else
|
||
|
for I in HT.Free .. HT.Capacity - 1 loop
|
||
|
Set_Next (Node => N (I), Next => I + 1);
|
||
|
end loop;
|
||
|
|
||
|
Set_Next (Node => N (HT.Capacity), Next => 0);
|
||
|
end if;
|
||
|
|
||
|
Set_Next (Node => N (X), Next => HT.Free);
|
||
|
HT.Free := X;
|
||
|
end if;
|
||
|
end Free;
|
||
|
|
||
|
----------------------
|
||
|
-- Generic_Allocate --
|
||
|
----------------------
|
||
|
|
||
|
procedure Generic_Allocate
|
||
|
(HT : in out Hash_Table_Type'Class;
|
||
|
Node : out Count_Type)
|
||
|
is
|
||
|
N : Nodes_Type renames HT.Nodes;
|
||
|
|
||
|
begin
|
||
|
if HT.Free >= 0 then
|
||
|
Node := HT.Free;
|
||
|
|
||
|
-- We always perform the assignment first, before we
|
||
|
-- change container state, in order to defend against
|
||
|
-- exceptions duration assignment.
|
||
|
|
||
|
Set_Element (N (Node));
|
||
|
HT.Free := Next (N (Node));
|
||
|
|
||
|
else
|
||
|
-- A negative free store value means that the links of the nodes
|
||
|
-- in the free store have not been initialized. In this case, the
|
||
|
-- nodes are physically contiguous in the array, starting at the
|
||
|
-- index that is the absolute value of the Container.Free, and
|
||
|
-- continuing until the end of the array (Nodes'Last).
|
||
|
|
||
|
Node := abs HT.Free;
|
||
|
|
||
|
-- As above, we perform this assignment first, before modifying
|
||
|
-- any container state.
|
||
|
|
||
|
Set_Element (N (Node));
|
||
|
HT.Free := HT.Free - 1;
|
||
|
end if;
|
||
|
end Generic_Allocate;
|
||
|
|
||
|
-------------------
|
||
|
-- Generic_Equal --
|
||
|
-------------------
|
||
|
|
||
|
function Generic_Equal
|
||
|
(L, R : Hash_Table_Type'Class) return Boolean
|
||
|
is
|
||
|
-- Per AI05-0022, the container implementation is required to detect
|
||
|
-- element tampering by a generic actual subprogram.
|
||
|
|
||
|
Lock_L : With_Lock (L.TC'Unrestricted_Access);
|
||
|
Lock_R : With_Lock (R.TC'Unrestricted_Access);
|
||
|
|
||
|
L_Index : Hash_Type;
|
||
|
L_Node : Count_Type;
|
||
|
|
||
|
N : Count_Type;
|
||
|
|
||
|
begin
|
||
|
if L'Address = R'Address then
|
||
|
return True;
|
||
|
end if;
|
||
|
|
||
|
if L.Length /= R.Length then
|
||
|
return False;
|
||
|
end if;
|
||
|
|
||
|
if L.Length = 0 then
|
||
|
return True;
|
||
|
end if;
|
||
|
|
||
|
-- Find the first node of hash table L
|
||
|
|
||
|
L_Index := L.Buckets'First;
|
||
|
loop
|
||
|
L_Node := L.Buckets (L_Index);
|
||
|
exit when L_Node /= 0;
|
||
|
L_Index := L_Index + 1;
|
||
|
end loop;
|
||
|
|
||
|
-- For each node of hash table L, search for an equivalent node in hash
|
||
|
-- table R.
|
||
|
|
||
|
N := L.Length;
|
||
|
loop
|
||
|
if not Find (HT => R, Key => L.Nodes (L_Node)) then
|
||
|
return False;
|
||
|
end if;
|
||
|
|
||
|
N := N - 1;
|
||
|
|
||
|
L_Node := Next (L.Nodes (L_Node));
|
||
|
|
||
|
if L_Node = 0 then
|
||
|
|
||
|
-- We have exhausted the nodes in this bucket
|
||
|
|
||
|
if N = 0 then
|
||
|
return True;
|
||
|
end if;
|
||
|
|
||
|
-- Find the next bucket
|
||
|
|
||
|
loop
|
||
|
L_Index := L_Index + 1;
|
||
|
L_Node := L.Buckets (L_Index);
|
||
|
exit when L_Node /= 0;
|
||
|
end loop;
|
||
|
end if;
|
||
|
end loop;
|
||
|
end Generic_Equal;
|
||
|
|
||
|
-----------------------
|
||
|
-- Generic_Iteration --
|
||
|
-----------------------
|
||
|
|
||
|
procedure Generic_Iteration (HT : Hash_Table_Type'Class) is
|
||
|
Node : Count_Type;
|
||
|
|
||
|
begin
|
||
|
if HT.Length = 0 then
|
||
|
return;
|
||
|
end if;
|
||
|
|
||
|
for Indx in HT.Buckets'Range loop
|
||
|
Node := HT.Buckets (Indx);
|
||
|
while Node /= 0 loop
|
||
|
Process (Node);
|
||
|
Node := Next (HT.Nodes (Node));
|
||
|
end loop;
|
||
|
end loop;
|
||
|
end Generic_Iteration;
|
||
|
|
||
|
------------------
|
||
|
-- Generic_Read --
|
||
|
------------------
|
||
|
|
||
|
procedure Generic_Read
|
||
|
(Stream : not null access Root_Stream_Type'Class;
|
||
|
HT : out Hash_Table_Type'Class)
|
||
|
is
|
||
|
N : Count_Type'Base;
|
||
|
|
||
|
begin
|
||
|
Clear (HT);
|
||
|
|
||
|
Count_Type'Base'Read (Stream, N);
|
||
|
|
||
|
if Checks and then N < 0 then
|
||
|
raise Program_Error with "stream appears to be corrupt";
|
||
|
end if;
|
||
|
|
||
|
if N = 0 then
|
||
|
return;
|
||
|
end if;
|
||
|
|
||
|
if Checks and then N > HT.Capacity then
|
||
|
raise Capacity_Error with "too many elements in stream";
|
||
|
end if;
|
||
|
|
||
|
for J in 1 .. N loop
|
||
|
declare
|
||
|
Node : constant Count_Type := New_Node (Stream);
|
||
|
Indx : constant Hash_Type := Checked_Index (HT, Node);
|
||
|
B : Count_Type renames HT.Buckets (Indx);
|
||
|
begin
|
||
|
Set_Next (HT.Nodes (Node), Next => B);
|
||
|
B := Node;
|
||
|
end;
|
||
|
|
||
|
HT.Length := HT.Length + 1;
|
||
|
end loop;
|
||
|
end Generic_Read;
|
||
|
|
||
|
-------------------
|
||
|
-- Generic_Write --
|
||
|
-------------------
|
||
|
|
||
|
procedure Generic_Write
|
||
|
(Stream : not null access Root_Stream_Type'Class;
|
||
|
HT : Hash_Table_Type'Class)
|
||
|
is
|
||
|
procedure Write (Node : Count_Type);
|
||
|
pragma Inline (Write);
|
||
|
|
||
|
procedure Write is new Generic_Iteration (Write);
|
||
|
|
||
|
-----------
|
||
|
-- Write --
|
||
|
-----------
|
||
|
|
||
|
procedure Write (Node : Count_Type) is
|
||
|
begin
|
||
|
Write (Stream, HT.Nodes (Node));
|
||
|
end Write;
|
||
|
|
||
|
begin
|
||
|
Count_Type'Base'Write (Stream, HT.Length);
|
||
|
Write (HT);
|
||
|
end Generic_Write;
|
||
|
|
||
|
-----------
|
||
|
-- Index --
|
||
|
-----------
|
||
|
|
||
|
function Index
|
||
|
(Buckets : Buckets_Type;
|
||
|
Node : Node_Type) return Hash_Type is
|
||
|
begin
|
||
|
return Buckets'First + Hash_Node (Node) mod Buckets'Length;
|
||
|
end Index;
|
||
|
|
||
|
function Index
|
||
|
(HT : Hash_Table_Type'Class;
|
||
|
Node : Node_Type) return Hash_Type is
|
||
|
begin
|
||
|
return Index (HT.Buckets, Node);
|
||
|
end Index;
|
||
|
|
||
|
----------
|
||
|
-- Next --
|
||
|
----------
|
||
|
|
||
|
function Next
|
||
|
(HT : Hash_Table_Type'Class;
|
||
|
Node : Count_Type) return Count_Type
|
||
|
is
|
||
|
Result : Count_Type;
|
||
|
First : Hash_Type;
|
||
|
|
||
|
begin
|
||
|
Result := Next (HT.Nodes (Node));
|
||
|
|
||
|
if Result /= 0 then -- another node in same bucket
|
||
|
return Result;
|
||
|
end if;
|
||
|
|
||
|
-- This was the last node in the bucket, so move to the next
|
||
|
-- bucket, and start searching for next node from there.
|
||
|
|
||
|
First := Checked_Index (HT'Unrestricted_Access.all, Node) + 1;
|
||
|
for Indx in First .. HT.Buckets'Last loop
|
||
|
Result := HT.Buckets (Indx);
|
||
|
|
||
|
if Result /= 0 then -- bucket is not empty
|
||
|
return Result;
|
||
|
end if;
|
||
|
end loop;
|
||
|
|
||
|
return 0;
|
||
|
end Next;
|
||
|
|
||
|
end Ada.Containers.Hash_Tables.Generic_Bounded_Operations;
|