283 lines
9.4 KiB
Ada
283 lines
9.4 KiB
Ada
|
------------------------------------------------------------------------------
|
||
|
-- --
|
||
|
-- GNAT RUN-TIME COMPONENTS --
|
||
|
-- --
|
||
|
-- G N A T . M B B S _ D I S C R E T E _ R A N D O M --
|
||
|
-- --
|
||
|
-- B o d y --
|
||
|
-- --
|
||
|
-- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
|
||
|
-- --
|
||
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
||
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
||
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
||
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
||
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
||
|
-- or FITNESS FOR A PARTICULAR PURPOSE. --
|
||
|
-- --
|
||
|
-- As a special exception under Section 7 of GPL version 3, you are granted --
|
||
|
-- additional permissions described in the GCC Runtime Library Exception, --
|
||
|
-- version 3.1, as published by the Free Software Foundation. --
|
||
|
-- --
|
||
|
-- You should have received a copy of the GNU General Public License and --
|
||
|
-- a copy of the GCC Runtime Library Exception along with this program; --
|
||
|
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
|
||
|
-- <http://www.gnu.org/licenses/>. --
|
||
|
-- --
|
||
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
||
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
||
|
-- --
|
||
|
------------------------------------------------------------------------------
|
||
|
|
||
|
with Ada.Calendar;
|
||
|
|
||
|
with Interfaces; use Interfaces;
|
||
|
|
||
|
package body GNAT.MBBS_Discrete_Random is
|
||
|
|
||
|
package Calendar renames Ada.Calendar;
|
||
|
|
||
|
Fits_In_32_Bits : constant Boolean :=
|
||
|
Rst'Size < 31
|
||
|
or else (Rst'Size = 31
|
||
|
and then Rst'Pos (Rst'First) < 0);
|
||
|
-- This is set True if we do not need more than 32 bits in the result. If
|
||
|
-- we need 64-bits, we will only use the meaningful 48 bits of any 64-bit
|
||
|
-- number generated, since if more than 48 bits are required, we split the
|
||
|
-- computation into two separate parts, since the algorithm does not behave
|
||
|
-- above 48 bits.
|
||
|
|
||
|
-- The way this expression works is that obviously if the size is 31 bits,
|
||
|
-- it fits in 32 bits. In the 32-bit case, it fits in 32-bit signed if the
|
||
|
-- range has negative values. It is too conservative in the case that the
|
||
|
-- programmer has set a size greater than the default, e.g. a size of 33
|
||
|
-- for an integer type with a range of 1..10, but an over-conservative
|
||
|
-- result is OK. The important thing is that the value is only True if
|
||
|
-- we know the result will fit in 32-bits signed. If the value is False
|
||
|
-- when it could be True, the behavior will be correct, just a bit less
|
||
|
-- efficient than it could have been in some unusual cases.
|
||
|
--
|
||
|
-- One might assume that we could get a more accurate result by testing
|
||
|
-- the lower and upper bounds of the type Rst against the bounds of 32-bit
|
||
|
-- Integer. However, there is no easy way to do that. Why? Because in the
|
||
|
-- relatively rare case where this expression has to be evaluated at run
|
||
|
-- time rather than compile time (when the bounds are dynamic), we need a
|
||
|
-- type to use for the computation. But the possible range of upper bound
|
||
|
-- values for Rst (remembering the possibility of 64-bit modular types) is
|
||
|
-- from -2**63 to 2**64-1, and no run-time type has a big enough range.
|
||
|
|
||
|
-----------------------
|
||
|
-- Local Subprograms --
|
||
|
-----------------------
|
||
|
|
||
|
function Square_Mod_N (X, N : Int) return Int;
|
||
|
pragma Inline (Square_Mod_N);
|
||
|
-- Computes X**2 mod N avoiding intermediate overflow
|
||
|
|
||
|
-----------
|
||
|
-- Image --
|
||
|
-----------
|
||
|
|
||
|
function Image (Of_State : State) return String is
|
||
|
begin
|
||
|
return Int'Image (Of_State.X1) &
|
||
|
',' &
|
||
|
Int'Image (Of_State.X2) &
|
||
|
',' &
|
||
|
Int'Image (Of_State.Q);
|
||
|
end Image;
|
||
|
|
||
|
------------
|
||
|
-- Random --
|
||
|
------------
|
||
|
|
||
|
function Random (Gen : Generator) return Rst is
|
||
|
S : State renames Gen.Writable.Self.Gen_State;
|
||
|
Temp : Int;
|
||
|
TF : Flt;
|
||
|
|
||
|
begin
|
||
|
-- Check for flat range here, since we are typically run with checks
|
||
|
-- off, note that in practice, this condition will usually be static
|
||
|
-- so we will not actually generate any code for the normal case.
|
||
|
|
||
|
if Rst'Last < Rst'First then
|
||
|
raise Constraint_Error;
|
||
|
end if;
|
||
|
|
||
|
-- Continue with computation if non-flat range
|
||
|
|
||
|
S.X1 := Square_Mod_N (S.X1, S.P);
|
||
|
S.X2 := Square_Mod_N (S.X2, S.Q);
|
||
|
Temp := S.X2 - S.X1;
|
||
|
|
||
|
-- Following duplication is not an error, it is a loop unwinding
|
||
|
|
||
|
if Temp < 0 then
|
||
|
Temp := Temp + S.Q;
|
||
|
end if;
|
||
|
|
||
|
if Temp < 0 then
|
||
|
Temp := Temp + S.Q;
|
||
|
end if;
|
||
|
|
||
|
TF := Offs + (Flt (Temp) * Flt (S.P) + Flt (S.X1)) * S.Scl;
|
||
|
|
||
|
-- Pathological, but there do exist cases where the rounding implicit
|
||
|
-- in calculating the scale factor will cause rounding to 'Last + 1.
|
||
|
-- In those cases, returning 'First results in the least bias.
|
||
|
|
||
|
if TF >= Flt (Rst'Pos (Rst'Last)) + 0.5 then
|
||
|
return Rst'First;
|
||
|
|
||
|
elsif not Fits_In_32_Bits then
|
||
|
return Rst'Val (Interfaces.Integer_64 (TF));
|
||
|
|
||
|
else
|
||
|
return Rst'Val (Int (TF));
|
||
|
end if;
|
||
|
end Random;
|
||
|
|
||
|
-----------
|
||
|
-- Reset --
|
||
|
-----------
|
||
|
|
||
|
procedure Reset (Gen : Generator; Initiator : Integer) is
|
||
|
S : State renames Gen.Writable.Self.Gen_State;
|
||
|
X1, X2 : Int;
|
||
|
|
||
|
begin
|
||
|
X1 := 2 + Int (Initiator) mod (K1 - 3);
|
||
|
X2 := 2 + Int (Initiator) mod (K2 - 3);
|
||
|
|
||
|
for J in 1 .. 5 loop
|
||
|
X1 := Square_Mod_N (X1, K1);
|
||
|
X2 := Square_Mod_N (X2, K2);
|
||
|
end loop;
|
||
|
|
||
|
-- Eliminate effects of small Initiators
|
||
|
|
||
|
S :=
|
||
|
(X1 => X1,
|
||
|
X2 => X2,
|
||
|
P => K1,
|
||
|
Q => K2,
|
||
|
FP => K1F,
|
||
|
Scl => Scal);
|
||
|
end Reset;
|
||
|
|
||
|
-----------
|
||
|
-- Reset --
|
||
|
-----------
|
||
|
|
||
|
procedure Reset (Gen : Generator) is
|
||
|
S : State renames Gen.Writable.Self.Gen_State;
|
||
|
Now : constant Calendar.Time := Calendar.Clock;
|
||
|
X1 : Int;
|
||
|
X2 : Int;
|
||
|
|
||
|
begin
|
||
|
X1 := Int (Calendar.Year (Now)) * 12 * 31 +
|
||
|
Int (Calendar.Month (Now) * 31) +
|
||
|
Int (Calendar.Day (Now));
|
||
|
|
||
|
X2 := Int (Calendar.Seconds (Now) * Duration (1000.0));
|
||
|
|
||
|
X1 := 2 + X1 mod (K1 - 3);
|
||
|
X2 := 2 + X2 mod (K2 - 3);
|
||
|
|
||
|
-- Eliminate visible effects of same day starts
|
||
|
|
||
|
for J in 1 .. 5 loop
|
||
|
X1 := Square_Mod_N (X1, K1);
|
||
|
X2 := Square_Mod_N (X2, K2);
|
||
|
end loop;
|
||
|
|
||
|
S :=
|
||
|
(X1 => X1,
|
||
|
X2 => X2,
|
||
|
P => K1,
|
||
|
Q => K2,
|
||
|
FP => K1F,
|
||
|
Scl => Scal);
|
||
|
|
||
|
end Reset;
|
||
|
|
||
|
-----------
|
||
|
-- Reset --
|
||
|
-----------
|
||
|
|
||
|
procedure Reset (Gen : Generator; From_State : State) is
|
||
|
begin
|
||
|
Gen.Writable.Self.Gen_State := From_State;
|
||
|
end Reset;
|
||
|
|
||
|
----------
|
||
|
-- Save --
|
||
|
----------
|
||
|
|
||
|
procedure Save (Gen : Generator; To_State : out State) is
|
||
|
begin
|
||
|
To_State := Gen.Gen_State;
|
||
|
end Save;
|
||
|
|
||
|
------------------
|
||
|
-- Square_Mod_N --
|
||
|
------------------
|
||
|
|
||
|
function Square_Mod_N (X, N : Int) return Int is
|
||
|
begin
|
||
|
return Int ((Integer_64 (X) ** 2) mod (Integer_64 (N)));
|
||
|
end Square_Mod_N;
|
||
|
|
||
|
-----------
|
||
|
-- Value --
|
||
|
-----------
|
||
|
|
||
|
function Value (Coded_State : String) return State is
|
||
|
Last : constant Natural := Coded_State'Last;
|
||
|
Start : Positive := Coded_State'First;
|
||
|
Stop : Positive := Coded_State'First;
|
||
|
Outs : State;
|
||
|
|
||
|
begin
|
||
|
while Stop <= Last and then Coded_State (Stop) /= ',' loop
|
||
|
Stop := Stop + 1;
|
||
|
end loop;
|
||
|
|
||
|
if Stop > Last then
|
||
|
raise Constraint_Error;
|
||
|
end if;
|
||
|
|
||
|
Outs.X1 := Int'Value (Coded_State (Start .. Stop - 1));
|
||
|
Start := Stop + 1;
|
||
|
|
||
|
loop
|
||
|
Stop := Stop + 1;
|
||
|
exit when Stop > Last or else Coded_State (Stop) = ',';
|
||
|
end loop;
|
||
|
|
||
|
if Stop > Last then
|
||
|
raise Constraint_Error;
|
||
|
end if;
|
||
|
|
||
|
Outs.X2 := Int'Value (Coded_State (Start .. Stop - 1));
|
||
|
Outs.Q := Int'Value (Coded_State (Stop + 1 .. Last));
|
||
|
Outs.P := Outs.Q * 2 + 1;
|
||
|
Outs.FP := Flt (Outs.P);
|
||
|
Outs.Scl := (RstL - RstF + 1.0) / (Flt (Outs.P) * Flt (Outs.Q));
|
||
|
|
||
|
-- Now do *some* sanity checks
|
||
|
|
||
|
if Outs.Q < 31
|
||
|
or else Outs.X1 not in 2 .. Outs.P - 1
|
||
|
or else Outs.X2 not in 2 .. Outs.Q - 1
|
||
|
then
|
||
|
raise Constraint_Error;
|
||
|
end if;
|
||
|
|
||
|
return Outs;
|
||
|
end Value;
|
||
|
|
||
|
end GNAT.MBBS_Discrete_Random;
|