This repository has been archived on 2024-12-16. You can view files and clone it, but cannot push or open issues or pull requests.
CodeBlocksPortable/MinGW/lib/gcc/mingw32/6.3.0/adainclude/s-auxdec.ads

655 lines
25 KiB
Ada
Raw Normal View History

------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S Y S T E M . A U X _ D E C --
-- --
-- S p e c --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- This package contains definitions that are designed to be compatible
-- with the extra definitions in package System for DEC Ada implementations.
-- These definitions can be used directly by withing this package, or merged
-- with System using pragma Extend_System (Aux_DEC)
with Ada.Unchecked_Conversion;
package System.Aux_DEC is
pragma Preelaborate;
subtype Short_Address is Address;
-- For compatibility with systems having short and long addresses
type Integer_8 is range -2 ** (8 - 1) .. +2 ** (8 - 1) - 1;
for Integer_8'Size use 8;
type Integer_16 is range -2 ** (16 - 1) .. +2 ** (16 - 1) - 1;
for Integer_16'Size use 16;
type Integer_32 is range -2 ** (32 - 1) .. +2 ** (32 - 1) - 1;
for Integer_32'Size use 32;
type Integer_64 is range -2 ** (64 - 1) .. +2 ** (64 - 1) - 1;
for Integer_64'Size use 64;
type Integer_8_Array is array (Integer range <>) of Integer_8;
type Integer_16_Array is array (Integer range <>) of Integer_16;
type Integer_32_Array is array (Integer range <>) of Integer_32;
type Integer_64_Array is array (Integer range <>) of Integer_64;
-- These array types are not in all versions of DEC System, and in fact it
-- is not quite clear why they are in some and not others, but since they
-- definitely appear in some versions, we include them unconditionally.
type Largest_Integer is range Min_Int .. Max_Int;
type AST_Handler is private;
No_AST_Handler : constant AST_Handler;
type Type_Class is
(Type_Class_Enumeration,
Type_Class_Integer,
Type_Class_Fixed_Point,
Type_Class_Floating_Point,
Type_Class_Array,
Type_Class_Record,
Type_Class_Access,
Type_Class_Task, -- also in Ada 95 protected
Type_Class_Address);
function "not" (Left : Largest_Integer) return Largest_Integer;
function "and" (Left, Right : Largest_Integer) return Largest_Integer;
function "or" (Left, Right : Largest_Integer) return Largest_Integer;
function "xor" (Left, Right : Largest_Integer) return Largest_Integer;
Address_Zero : constant Address;
No_Addr : constant Address;
Address_Size : constant := Standard'Address_Size;
Short_Address_Size : constant := Standard'Address_Size;
function "+" (Left : Address; Right : Integer) return Address;
function "+" (Left : Integer; Right : Address) return Address;
function "-" (Left : Address; Right : Address) return Integer;
function "-" (Left : Address; Right : Integer) return Address;
generic
type Target is private;
function Fetch_From_Address (A : Address) return Target;
generic
type Target is private;
procedure Assign_To_Address (A : Address; T : Target);
-- Floating point type declarations for VAX floating point data types
type F_Float is digits 6;
type D_Float is digits 9;
type G_Float is digits 15;
-- We provide the type names, but these will be IEEE format, not VAX format
-- Floating point type declarations for IEEE floating point data types
type IEEE_Single_Float is digits 6;
type IEEE_Double_Float is digits 15;
Non_Ada_Error : exception;
-- Hardware-oriented types and functions
type Bit_Array is array (Integer range <>) of Boolean;
pragma Pack (Bit_Array);
subtype Bit_Array_8 is Bit_Array (0 .. 7);
subtype Bit_Array_16 is Bit_Array (0 .. 15);
subtype Bit_Array_32 is Bit_Array (0 .. 31);
subtype Bit_Array_64 is Bit_Array (0 .. 63);
type Unsigned_Byte is range 0 .. 255;
for Unsigned_Byte'Size use 8;
function "not" (Left : Unsigned_Byte) return Unsigned_Byte;
function "and" (Left, Right : Unsigned_Byte) return Unsigned_Byte;
function "or" (Left, Right : Unsigned_Byte) return Unsigned_Byte;
function "xor" (Left, Right : Unsigned_Byte) return Unsigned_Byte;
function To_Unsigned_Byte (X : Bit_Array_8) return Unsigned_Byte;
function To_Bit_Array_8 (X : Unsigned_Byte) return Bit_Array_8;
type Unsigned_Byte_Array is array (Integer range <>) of Unsigned_Byte;
type Unsigned_Word is range 0 .. 65535;
for Unsigned_Word'Size use 16;
function "not" (Left : Unsigned_Word) return Unsigned_Word;
function "and" (Left, Right : Unsigned_Word) return Unsigned_Word;
function "or" (Left, Right : Unsigned_Word) return Unsigned_Word;
function "xor" (Left, Right : Unsigned_Word) return Unsigned_Word;
function To_Unsigned_Word (X : Bit_Array_16) return Unsigned_Word;
function To_Bit_Array_16 (X : Unsigned_Word) return Bit_Array_16;
type Unsigned_Word_Array is array (Integer range <>) of Unsigned_Word;
type Unsigned_Longword is range -2_147_483_648 .. 2_147_483_647;
for Unsigned_Longword'Size use 32;
function "not" (Left : Unsigned_Longword) return Unsigned_Longword;
function "and" (Left, Right : Unsigned_Longword) return Unsigned_Longword;
function "or" (Left, Right : Unsigned_Longword) return Unsigned_Longword;
function "xor" (Left, Right : Unsigned_Longword) return Unsigned_Longword;
function To_Unsigned_Longword (X : Bit_Array_32) return Unsigned_Longword;
function To_Bit_Array_32 (X : Unsigned_Longword) return Bit_Array_32;
type Unsigned_Longword_Array is
array (Integer range <>) of Unsigned_Longword;
type Unsigned_32 is range 0 .. 4_294_967_295;
for Unsigned_32'Size use 32;
function "not" (Left : Unsigned_32) return Unsigned_32;
function "and" (Left, Right : Unsigned_32) return Unsigned_32;
function "or" (Left, Right : Unsigned_32) return Unsigned_32;
function "xor" (Left, Right : Unsigned_32) return Unsigned_32;
function To_Unsigned_32 (X : Bit_Array_32) return Unsigned_32;
function To_Bit_Array_32 (X : Unsigned_32) return Bit_Array_32;
type Unsigned_Quadword is record
L0 : Unsigned_Longword;
L1 : Unsigned_Longword;
end record;
for Unsigned_Quadword'Size use 64;
for Unsigned_Quadword'Alignment use
Integer'Min (8, Standard'Maximum_Alignment);
function "not" (Left : Unsigned_Quadword) return Unsigned_Quadword;
function "and" (Left, Right : Unsigned_Quadword) return Unsigned_Quadword;
function "or" (Left, Right : Unsigned_Quadword) return Unsigned_Quadword;
function "xor" (Left, Right : Unsigned_Quadword) return Unsigned_Quadword;
function To_Unsigned_Quadword (X : Bit_Array_64) return Unsigned_Quadword;
function To_Bit_Array_64 (X : Unsigned_Quadword) return Bit_Array_64;
type Unsigned_Quadword_Array is
array (Integer range <>) of Unsigned_Quadword;
function To_Address (X : Integer) return Address;
pragma Pure_Function (To_Address);
function To_Address_Long (X : Unsigned_Longword) return Address;
pragma Pure_Function (To_Address_Long);
function To_Integer (X : Address) return Integer;
function To_Unsigned_Longword (X : Address) return Unsigned_Longword;
function To_Unsigned_Longword (X : AST_Handler) return Unsigned_Longword;
-- Conventional names for static subtypes of type UNSIGNED_LONGWORD
subtype Unsigned_1 is Unsigned_Longword range 0 .. 2** 1 - 1;
subtype Unsigned_2 is Unsigned_Longword range 0 .. 2** 2 - 1;
subtype Unsigned_3 is Unsigned_Longword range 0 .. 2** 3 - 1;
subtype Unsigned_4 is Unsigned_Longword range 0 .. 2** 4 - 1;
subtype Unsigned_5 is Unsigned_Longword range 0 .. 2** 5 - 1;
subtype Unsigned_6 is Unsigned_Longword range 0 .. 2** 6 - 1;
subtype Unsigned_7 is Unsigned_Longword range 0 .. 2** 7 - 1;
subtype Unsigned_8 is Unsigned_Longword range 0 .. 2** 8 - 1;
subtype Unsigned_9 is Unsigned_Longword range 0 .. 2** 9 - 1;
subtype Unsigned_10 is Unsigned_Longword range 0 .. 2**10 - 1;
subtype Unsigned_11 is Unsigned_Longword range 0 .. 2**11 - 1;
subtype Unsigned_12 is Unsigned_Longword range 0 .. 2**12 - 1;
subtype Unsigned_13 is Unsigned_Longword range 0 .. 2**13 - 1;
subtype Unsigned_14 is Unsigned_Longword range 0 .. 2**14 - 1;
subtype Unsigned_15 is Unsigned_Longword range 0 .. 2**15 - 1;
subtype Unsigned_16 is Unsigned_Longword range 0 .. 2**16 - 1;
subtype Unsigned_17 is Unsigned_Longword range 0 .. 2**17 - 1;
subtype Unsigned_18 is Unsigned_Longword range 0 .. 2**18 - 1;
subtype Unsigned_19 is Unsigned_Longword range 0 .. 2**19 - 1;
subtype Unsigned_20 is Unsigned_Longword range 0 .. 2**20 - 1;
subtype Unsigned_21 is Unsigned_Longword range 0 .. 2**21 - 1;
subtype Unsigned_22 is Unsigned_Longword range 0 .. 2**22 - 1;
subtype Unsigned_23 is Unsigned_Longword range 0 .. 2**23 - 1;
subtype Unsigned_24 is Unsigned_Longword range 0 .. 2**24 - 1;
subtype Unsigned_25 is Unsigned_Longword range 0 .. 2**25 - 1;
subtype Unsigned_26 is Unsigned_Longword range 0 .. 2**26 - 1;
subtype Unsigned_27 is Unsigned_Longword range 0 .. 2**27 - 1;
subtype Unsigned_28 is Unsigned_Longword range 0 .. 2**28 - 1;
subtype Unsigned_29 is Unsigned_Longword range 0 .. 2**29 - 1;
subtype Unsigned_30 is Unsigned_Longword range 0 .. 2**30 - 1;
subtype Unsigned_31 is Unsigned_Longword range 0 .. 2**31 - 1;
-- Function for obtaining global symbol values
function Import_Value (Symbol : String) return Unsigned_Longword;
function Import_Address (Symbol : String) return Address;
function Import_Largest_Value (Symbol : String) return Largest_Integer;
pragma Import (Intrinsic, Import_Value);
pragma Import (Intrinsic, Import_Address);
pragma Import (Intrinsic, Import_Largest_Value);
-- For the following declarations, note that the declaration without a
-- Retry_Count parameter means to retry infinitely. A value of zero for
-- the Retry_Count parameter means do not retry.
-- Interlocked-instruction procedures
procedure Clear_Interlocked
(Bit : in out Boolean;
Old_Value : out Boolean);
procedure Set_Interlocked
(Bit : in out Boolean;
Old_Value : out Boolean);
type Aligned_Word is record
Value : Short_Integer;
end record;
for Aligned_Word'Alignment use Integer'Min (2, Standard'Maximum_Alignment);
procedure Clear_Interlocked
(Bit : in out Boolean;
Old_Value : out Boolean;
Retry_Count : Natural;
Success_Flag : out Boolean);
procedure Set_Interlocked
(Bit : in out Boolean;
Old_Value : out Boolean;
Retry_Count : Natural;
Success_Flag : out Boolean);
procedure Add_Interlocked
(Addend : Short_Integer;
Augend : in out Aligned_Word;
Sign : out Integer);
type Aligned_Integer is record
Value : Integer;
end record;
for Aligned_Integer'Alignment use
Integer'Min (4, Standard'Maximum_Alignment);
type Aligned_Long_Integer is record
Value : Long_Integer;
end record;
for Aligned_Long_Integer'Alignment use
Integer'Min (8, Standard'Maximum_Alignment);
-- For the following declarations, note that the declaration without a
-- Retry_Count parameter mean to retry infinitely. A value of zero for
-- the Retry_Count means do not retry.
procedure Add_Atomic
(To : in out Aligned_Integer;
Amount : Integer);
procedure Add_Atomic
(To : in out Aligned_Integer;
Amount : Integer;
Retry_Count : Natural;
Old_Value : out Integer;
Success_Flag : out Boolean);
procedure Add_Atomic
(To : in out Aligned_Long_Integer;
Amount : Long_Integer);
procedure Add_Atomic
(To : in out Aligned_Long_Integer;
Amount : Long_Integer;
Retry_Count : Natural;
Old_Value : out Long_Integer;
Success_Flag : out Boolean);
procedure And_Atomic
(To : in out Aligned_Integer;
From : Integer);
procedure And_Atomic
(To : in out Aligned_Integer;
From : Integer;
Retry_Count : Natural;
Old_Value : out Integer;
Success_Flag : out Boolean);
procedure And_Atomic
(To : in out Aligned_Long_Integer;
From : Long_Integer);
procedure And_Atomic
(To : in out Aligned_Long_Integer;
From : Long_Integer;
Retry_Count : Natural;
Old_Value : out Long_Integer;
Success_Flag : out Boolean);
procedure Or_Atomic
(To : in out Aligned_Integer;
From : Integer);
procedure Or_Atomic
(To : in out Aligned_Integer;
From : Integer;
Retry_Count : Natural;
Old_Value : out Integer;
Success_Flag : out Boolean);
procedure Or_Atomic
(To : in out Aligned_Long_Integer;
From : Long_Integer);
procedure Or_Atomic
(To : in out Aligned_Long_Integer;
From : Long_Integer;
Retry_Count : Natural;
Old_Value : out Long_Integer;
Success_Flag : out Boolean);
type Insq_Status is (Fail_No_Lock, OK_Not_First, OK_First);
for Insq_Status use
(Fail_No_Lock => -1,
OK_Not_First => 0,
OK_First => +1);
type Remq_Status is (
Fail_No_Lock,
Fail_Was_Empty,
OK_Not_Empty,
OK_Empty);
for Remq_Status use
(Fail_No_Lock => -1,
Fail_Was_Empty => 0,
OK_Not_Empty => +1,
OK_Empty => +2);
procedure Insqhi
(Item : Address;
Header : Address;
Status : out Insq_Status);
procedure Remqhi
(Header : Address;
Item : out Address;
Status : out Remq_Status);
procedure Insqti
(Item : Address;
Header : Address;
Status : out Insq_Status);
procedure Remqti
(Header : Address;
Item : out Address;
Status : out Remq_Status);
private
Address_Zero : constant Address := Null_Address;
No_Addr : constant Address := Null_Address;
-- An AST_Handler value is from a typing point of view simply a pointer
-- to a procedure taking a single 64 bit parameter. However, this
-- is a bit misleading, because the data that this pointer references is
-- highly stylized. See body of System.AST_Handling for full details.
type AST_Handler is access procedure (Param : Long_Integer);
No_AST_Handler : constant AST_Handler := null;
-- Other operators have incorrect profiles. It would be nice to make
-- them intrinsic, since the backend can handle them, but the front
-- end is not prepared to deal with them, so at least inline them.
pragma Inline_Always ("+");
pragma Inline_Always ("-");
pragma Inline_Always ("not");
pragma Inline_Always ("and");
pragma Inline_Always ("or");
pragma Inline_Always ("xor");
-- Other inlined subprograms
pragma Inline_Always (Fetch_From_Address);
pragma Inline_Always (Assign_To_Address);
-- Synchronization related subprograms. Mechanism is explicitly set
-- so that the critical parameters are passed by reference.
-- Without this, the parameters are passed by copy, creating load/store
-- race conditions. We also inline them, since this seems more in the
-- spirit of the original (hardware intrinsic) routines.
pragma Export_Procedure
(Clear_Interlocked,
External => "system__aux_dec__clear_interlocked__1",
Parameter_Types => (Boolean, Boolean),
Mechanism => (Reference, Reference));
pragma Export_Procedure
(Clear_Interlocked,
External => "system__aux_dec__clear_interlocked__2",
Parameter_Types => (Boolean, Boolean, Natural, Boolean),
Mechanism => (Reference, Reference, Value, Reference));
pragma Inline_Always (Clear_Interlocked);
pragma Export_Procedure
(Set_Interlocked,
External => "system__aux_dec__set_interlocked__1",
Parameter_Types => (Boolean, Boolean),
Mechanism => (Reference, Reference));
pragma Export_Procedure
(Set_Interlocked,
External => "system__aux_dec__set_interlocked__2",
Parameter_Types => (Boolean, Boolean, Natural, Boolean),
Mechanism => (Reference, Reference, Value, Reference));
pragma Inline_Always (Set_Interlocked);
pragma Export_Procedure
(Add_Interlocked,
External => "system__aux_dec__add_interlocked__1",
Mechanism => (Value, Reference, Reference));
pragma Inline_Always (Add_Interlocked);
pragma Export_Procedure
(Add_Atomic,
External => "system__aux_dec__add_atomic__1",
Parameter_Types => (Aligned_Integer, Integer),
Mechanism => (Reference, Value));
pragma Export_Procedure
(Add_Atomic,
External => "system__aux_dec__add_atomic__2",
Parameter_Types => (Aligned_Integer, Integer, Natural, Integer, Boolean),
Mechanism => (Reference, Value, Value, Reference, Reference));
pragma Export_Procedure
(Add_Atomic,
External => "system__aux_dec__add_atomic__3",
Parameter_Types => (Aligned_Long_Integer, Long_Integer),
Mechanism => (Reference, Value));
pragma Export_Procedure
(Add_Atomic,
External => "system__aux_dec__add_atomic__4",
Parameter_Types => (Aligned_Long_Integer, Long_Integer, Natural,
Long_Integer, Boolean),
Mechanism => (Reference, Value, Value, Reference, Reference));
pragma Inline_Always (Add_Atomic);
pragma Export_Procedure
(And_Atomic,
External => "system__aux_dec__and_atomic__1",
Parameter_Types => (Aligned_Integer, Integer),
Mechanism => (Reference, Value));
pragma Export_Procedure
(And_Atomic,
External => "system__aux_dec__and_atomic__2",
Parameter_Types => (Aligned_Integer, Integer, Natural, Integer, Boolean),
Mechanism => (Reference, Value, Value, Reference, Reference));
pragma Export_Procedure
(And_Atomic,
External => "system__aux_dec__and_atomic__3",
Parameter_Types => (Aligned_Long_Integer, Long_Integer),
Mechanism => (Reference, Value));
pragma Export_Procedure
(And_Atomic,
External => "system__aux_dec__and_atomic__4",
Parameter_Types => (Aligned_Long_Integer, Long_Integer, Natural,
Long_Integer, Boolean),
Mechanism => (Reference, Value, Value, Reference, Reference));
pragma Inline_Always (And_Atomic);
pragma Export_Procedure
(Or_Atomic,
External => "system__aux_dec__or_atomic__1",
Parameter_Types => (Aligned_Integer, Integer),
Mechanism => (Reference, Value));
pragma Export_Procedure
(Or_Atomic,
External => "system__aux_dec__or_atomic__2",
Parameter_Types => (Aligned_Integer, Integer, Natural, Integer, Boolean),
Mechanism => (Reference, Value, Value, Reference, Reference));
pragma Export_Procedure
(Or_Atomic,
External => "system__aux_dec__or_atomic__3",
Parameter_Types => (Aligned_Long_Integer, Long_Integer),
Mechanism => (Reference, Value));
pragma Export_Procedure
(Or_Atomic,
External => "system__aux_dec__or_atomic__4",
Parameter_Types => (Aligned_Long_Integer, Long_Integer, Natural,
Long_Integer, Boolean),
Mechanism => (Reference, Value, Value, Reference, Reference));
pragma Inline_Always (Or_Atomic);
-- Provide proper unchecked conversion definitions for transfer
-- functions. Note that we need this level of indirection because
-- the formal parameter name is X and not Source (and this is indeed
-- detectable by a program)
function To_Unsigned_Byte_A is new
Ada.Unchecked_Conversion (Bit_Array_8, Unsigned_Byte);
function To_Unsigned_Byte (X : Bit_Array_8) return Unsigned_Byte
renames To_Unsigned_Byte_A;
function To_Bit_Array_8_A is new
Ada.Unchecked_Conversion (Unsigned_Byte, Bit_Array_8);
function To_Bit_Array_8 (X : Unsigned_Byte) return Bit_Array_8
renames To_Bit_Array_8_A;
function To_Unsigned_Word_A is new
Ada.Unchecked_Conversion (Bit_Array_16, Unsigned_Word);
function To_Unsigned_Word (X : Bit_Array_16) return Unsigned_Word
renames To_Unsigned_Word_A;
function To_Bit_Array_16_A is new
Ada.Unchecked_Conversion (Unsigned_Word, Bit_Array_16);
function To_Bit_Array_16 (X : Unsigned_Word) return Bit_Array_16
renames To_Bit_Array_16_A;
function To_Unsigned_Longword_A is new
Ada.Unchecked_Conversion (Bit_Array_32, Unsigned_Longword);
function To_Unsigned_Longword (X : Bit_Array_32) return Unsigned_Longword
renames To_Unsigned_Longword_A;
function To_Bit_Array_32_A is new
Ada.Unchecked_Conversion (Unsigned_Longword, Bit_Array_32);
function To_Bit_Array_32 (X : Unsigned_Longword) return Bit_Array_32
renames To_Bit_Array_32_A;
function To_Unsigned_32_A is new
Ada.Unchecked_Conversion (Bit_Array_32, Unsigned_32);
function To_Unsigned_32 (X : Bit_Array_32) return Unsigned_32
renames To_Unsigned_32_A;
function To_Bit_Array_32_A is new
Ada.Unchecked_Conversion (Unsigned_32, Bit_Array_32);
function To_Bit_Array_32 (X : Unsigned_32) return Bit_Array_32
renames To_Bit_Array_32_A;
function To_Unsigned_Quadword_A is new
Ada.Unchecked_Conversion (Bit_Array_64, Unsigned_Quadword);
function To_Unsigned_Quadword (X : Bit_Array_64) return Unsigned_Quadword
renames To_Unsigned_Quadword_A;
function To_Bit_Array_64_A is new
Ada.Unchecked_Conversion (Unsigned_Quadword, Bit_Array_64);
function To_Bit_Array_64 (X : Unsigned_Quadword) return Bit_Array_64
renames To_Bit_Array_64_A;
pragma Warnings (Off);
-- Turn warnings off. This is needed for systems with 64-bit integers,
-- where some of these operations are of dubious meaning, but we do not
-- want warnings when we compile on such systems.
function To_Address_A is new
Ada.Unchecked_Conversion (Integer, Address);
pragma Pure_Function (To_Address_A);
function To_Address (X : Integer) return Address
renames To_Address_A;
pragma Pure_Function (To_Address);
function To_Address_Long_A is new
Ada.Unchecked_Conversion (Unsigned_Longword, Address);
pragma Pure_Function (To_Address_Long_A);
function To_Address_Long (X : Unsigned_Longword) return Address
renames To_Address_Long_A;
pragma Pure_Function (To_Address_Long);
function To_Integer_A is new
Ada.Unchecked_Conversion (Address, Integer);
function To_Integer (X : Address) return Integer
renames To_Integer_A;
function To_Unsigned_Longword_A is new
Ada.Unchecked_Conversion (Address, Unsigned_Longword);
function To_Unsigned_Longword (X : Address) return Unsigned_Longword
renames To_Unsigned_Longword_A;
function To_Unsigned_Longword_A is new
Ada.Unchecked_Conversion (AST_Handler, Unsigned_Longword);
function To_Unsigned_Longword (X : AST_Handler) return Unsigned_Longword
renames To_Unsigned_Longword_A;
pragma Warnings (On);
end System.Aux_DEC;