This repository has been archived on 2024-12-16. You can view files and clone it, but cannot push or open issues or pull requests.
CodeBlocksPortable/MinGW/lib/gcc/mingw32/6.3.0/adalib/a-ngcefu.ali

257 lines
14 KiB
Plaintext
Raw Normal View History

V "GNAT Lib v6"
A -gnatwa
A -nostdinc
A -O2
A -Wextra
A -Wall
A -g
A -gnatp
A -gnatg
A -mtune=generic
A -march=i586
P ZX
RN
RV NO_EXCEPTION_HANDLERS
RV NO_EXCEPTIONS
RV NO_FLOATING_POINT
RV SPARK_05
U ada.numerics.generic_complex_elementary_functions%b a-ngcefu.adb 23710f25 NE OL PK GE
W ada%s ada.ads ada.ali
W ada.numerics%s a-numeri.ads a-numeri.ali
Z ada.numerics.aux%s a-numaux.adb a-numaux.ali
W ada.numerics.generic_elementary_functions%s
U ada.numerics.generic_complex_elementary_functions%s a-ngcefu.ads 7e5b36e8 BN NE OL PU PK GE
W ada%s ada.ads ada.ali
W ada.numerics%s a-numeri.ads a-numeri.ali
W ada.numerics.generic_complex_types%s
D ada.ads 20070406091342 3ffc8e18 ada%s
D a-numeri.ads 20080324174807 bb51c45a ada.numerics%s
D a-numaux.ads 20140801094828 243fe0b7 ada.numerics.aux%s
D a-ngcefu.ads 20070406091342 228ead62 ada.numerics.generic_complex_elementary_functions%s
D a-ngcefu.adb 20140219111205 b9026901 ada.numerics.generic_complex_elementary_functions%b
D a-ngcoty.ads 20090409150019 e7845fd0 ada.numerics.generic_complex_types%s
D a-ngelfu.ads 20151016131424 b8fdcb46 ada.numerics.generic_elementary_functions%s
D a-ngelfu.adb 20151020124036 5e96a931 ada.numerics.generic_elementary_functions%b
D a-unccon.ads 20070406091342 f9eb8f06 ada.unchecked_conversion%s
D system.ads 20151123113124 2da59038 system%s
D s-exctab.ads 20140225151139 54135002 system.exception_table%s
D s-stalib.ads 20151112104907 09bd3940 system.standard_library%s
X 1 ada.ads
16K9*Ada 19e8 4|16r6 18r38 21r9 55r5 5|32r6 34r14 37r7 710r5
X 2 a-numeri.ads
16K13*Numerics 1|16k9 2|32e17 4|16r10 18r42 21r13 55r9 5|32r10 34r18 37r11
. 710r9
19X4*Argument_Error 5|70r16 98r16 123r16
X 4 a-ngcefu.ads
18K17 Complex_Types[6|39] 19r8
21k22*Generic_Complex_Elementary_Functions 2|16k13 4|18z17 55l18 55e54 5|34b27
. 710l18 710t54
24V13*Sqrt{6|42R9[18]} 24>19 5|164s41 165s41 168s51 201s31 202s31 328s51
. 369s26 578b13 664l8 664t12
24r19 X{6|42R9[18]} 5|578b19 579r39 580r39 581r43 582r43 597r20 645r14 655r52
. 655r66 656r49 657r49 659r17
26V13*Log{6|42R9[18]} 26>19 5|91s30 141s30 164s36 168s30 198s30 201s26 238s25
. 280s15 284s19 284s35 316s34 316s56 328s30 358s30 369s17 392s31 393s31 408s18
. 408s34 502b13 536l8 536t11
26r19 X{6|42R9[18]} 5|502b18 508r14 508r36 511r28 512r26 514r15 522r31 526r34
. 529r26 529r34
28V13*Exp{6|42R9[18]} 28>19 5|91s17 113s17 141s17 483b13 489l8 489t11
28r19 X{6|42R9[18]} 5|483b18 484r49 487r58 488r58
29V13*Exp{6|42R9[18]} 29>19 5|491b13 496l8 496t11
29f19 X{6|48F9[18]} 5|491b18 492r39
31V14*"**"{6|42R9[18]} 31>19 31>37 5|63b14 93l9 93t12
31r19 Left{6|42R9[18]} 5|63b19 67r22 68r22 72r17 73r22 78r17 78r42 79r17
. 88r17 91r35
31r37 Right{6|42R9[18]} 5|63b35 65r14 66r22 74r22 81r13 84r17 84r43 85r23
. 87r17 87r43 91r22
32V14*"**"{6|42R9[18]} 32>19 32>37 5|117b14 143l9 143t12
32r19 Left{6|42R9[18]} 5|117b19 120r22 121r22 125r17 126r22 131r17 131r42
. 132r17 138r17 141r35
32*37 Right 5|117b35 119r10 127r18 134r13 137r13 141r22
33V14*"**"{6|42R9[18]} 33>19 33>37 5|95b14 115l9 115t12
33*19 Left 5|95b19 97r62 100r13 103r13 104r41 110r41 113r27
33r37 Right{6|42R9[18]} 5|95b37 97r14 97r40 100r37 106r17 106r43 109r17 109r43
. 113r35
35V13*Sin{6|42R9[18]} 35>18 5|454s24 542b13 555l8 555t11 684s17
35r18 X{6|42R9[18]} 5|542b18 544r18 546r18 548r17 553r21 553r37 554r21 554r37
36V13*Cos{6|42R9[18]} 36>18 5|416b13 422l8 422t11 454s14 684s27
36r18 X{6|42R9[18]} 5|416b18 420r21 420r38 421r23 421r39
37V13*Tan{6|42R9[18]} 37>18 5|670b13 686l8 686t11
37r18 X{6|42R9[18]} 5|670b18 672r18 673r18 675r17 677r17 680r17 684r22 684r32
38V13*Cot{6|42R9[18]} 38>18 5|440b13 455l8 455t11
38r18 X{6|42R9[18]} 5|440b18 442r18 443r18 445r33 447r17 450r17 454r19 454r29
40V13*Arcsin{6|42R9[18]} 40>21 5|302b13 340l8 340t14
40r21 X{6|42R9[18]} 5|302b21 308r18 309r18 311r17 313r21 314r21 316r51 319r38
. 322r40 328r47 328r63 328r67 330r14 331r30 333r17 334r26 336r30
41V13*Arccos{6|42R9[18]} 41>21 5|149b13 177l8 177t14
41r21 X{6|42R9[18]} 5|149b21 153r10 156r21 157r18 159r27 161r21 162r21 164r54
. 165r54 168r35 168r63 168r67 170r14 171r26 173r30
42V13*Arctan{6|42R9[18]} 42>21 5|384b13 395l8 395t14
42r21 X{6|42R9[18]} 5|384b21 386r18 387r18 389r17 392r54 393r54
43V13*Arccot{6|42R9[18]} 43>21 5|216b13 245l8 245t14
43r21 X{6|42R9[18]} 5|216b21 220r18 221r18 223r27 225r21 226r21 228r32 230r17
. 238r31 238r49
45V13*Sinh{6|42R9[18]} 45>19 5|475s28 561b13 572l8 572t12 706s17
45r19 X{6|42R9[18]} 5|561b19 563r18 564r18 566r17 569r51 569r66 570r51 570r66
46V13*Cosh{6|42R9[18]} 46>19 5|428b13 434l8 434t12 475s17 706s28
46r19 X{6|42R9[18]} 5|428b19 432r22 432r37 433r22 433r37
47V13*Tanh{6|42R9[18]} 47>19 5|692b13 708l8 708t12
47r19 X{6|42R9[18]} 5|692b19 694r18 695r18 697r17 699r17 702r17 706r23 706r34
48V13*Coth{6|42R9[18]} 48>19 5|461b13 477l8 477t12
48r19 X{6|42R9[18]} 5|461b19 463r18 464r18 466r33 468r17 471r17 475r23 475r34
50V13*Arcsinh{6|42R9[18]} 50>22 5|346b13 378l8 378t15
50r22 X{6|42R9[18]} 5|346b22 350r18 351r18 353r17 355r21 356r21 358r35 360r18
. 361r25 369r22 369r38 369r42 371r14 372r30 373r18 374r31
51V13*Arccosh{6|42R9[18]} 51>22 5|183b13 210l8 210t15
51r22 X{6|42R9[18]} 5|183b22 187r10 190r21 191r18 193r49 193r65 195r21 196r21
. 198r35 201r44 202r38
52V13*Arctanh{6|42R9[18]} 52>22 5|401b13 410l8 410t15
52r22 X{6|42R9[18]} 5|401b22 403r18 404r18 406r17 408r29 408r45
53V13*Arccoth{6|42R9[18]} 53>22 5|251b13 296l8 296t15
53r22 X{6|42R9[18]} 5|251b22 255r10 258r21 259r27 261r36 263r21 264r21 266r17
. 272r17 272r39 275r17 275r39 280r27 280r33 284r30 284r40 291r14 292r25
X 5 a-ngcefu.adb
36K12 Elementary_Functions[7|39] 38r8
40N4 PI 41r26 231r25 241r16 269r20 288r21 319r29 322r31 531r16 532r29
41N4 PI_2 57r40 193r54 256r46 261r17 318r27 321r31
42N4 Sqrt_Two 48r44 49r44 50r44
43N4 Log_Two 198r20 358r20 526r46
45F12 T 47r39 47r61 48r39 48r61 49r39 49r57 50r39 51r56 52r39 52r44 52r47
47*4 Epsilon{45F12} 225r32 226r32 263r32 264r32
48*4 Square_Root_Epsilon{45F12} 156r26 157r23 190r26 191r23 220r23 221r23
. 258r26 259r32 308r23 309r23 350r23 351r23 386r23 387r23 403r23 404r23 442r23
. 443r23 463r23 464r23 544r23 546r23 563r23 564r23 672r23 673r23 694r23 695r23
49*4 Inv_Square_Root_Epsilon{45F12} 161r26 162r26 195r26 196r26 313r26 314r26
. 355r26 356r26
50*4 Root_Root_Epsilon{45F12} 511r34 512r31
52*4 Log_Inverse_Epsilon_2{45F12} 447r22 450r23 468r22 471r23 677r22 680r23
. 699r22 702r23
54r4 Complex_Zero{6|42R9[4|18]} 154r17 188r17
55r4 Complex_One{6|42R9[4|18]} 82r17 107r17 135r17 153r14 187r14 228r16 445r17
. 466r17 469r17 472r18 700r17 703r18
56r4 Complex_I{6|42R9[4|18]} 164r24 165r29 168r18 168r39 238r13 238r35 238r53
. 261r24 269r25 316r21 316r39 316r67 328r18 328r35 392r18 392r42 393r42 448r18
. 451r17 678r17 681r18
57r4 Half_Pi{6|42R9[4|18]} 159r17 223r17
150r7 Result{6|42R9[4|18]} 168m7 173m18 173r18 176r14
184r7 Result{6|42R9[4|18]} 193m10 198m10 201m10 205r14 206m10 206r21 209r14
217r7 Xt{6|42R9[4|18]} 228m10 231m21 231r21 231r34 232r20 234r20 238m7 240r14
. 241m10 241r21 244r14
252r7 R{6|42R9[4|18]} 280m10 284m13 287r14 288m18 288r18 288r30 292m18 292r18
. 295r14
303r7 Result{6|42R9[4|18]} 316m10 318r17 319m21 319r21 321r20 322m21 322r21
. 325r17 328m7 331m18 331r18 336m18 336r18 339r14
347r7 Result{6|42R9[4|18]} 358m10 360r40 361r47 363m21 363r21 363r34 366r17
. 369m7 372m18 372r18 374m18 374r18 377r14
484*7 EXP_RE_X 487r38 488r38
492*7 ImX 495r43 495r54
503*7 ReX 522m10 526m13 535r38
504*7 ImX 529m7 531r10 532m10 532r17 535r43
505r7 Z{6|42R9[4|18]} 514m10 515m18 515r18 515r25 518r51 518r56 518r61 518r66
579*7 ReX 591r13 594r24 596r16 602r46 605r13 635r13 636r37 640r37
580*7 ImX 590r10 602r52 608r13
581*7 XR 615r22
582*7 YR 606r23 615r32 637r20 641r20
583*7 R 615m10 621r13 636r33 640r33 655m10 656r35 657r35
584*7 R_X 606m10 609r44 609r49 611r44 611r50 637m13 640m13 641r32 648r38
. 656m10 663r41
585*7 R_Y 636m13 637r32 641m13 646m10 646r18 648r43 657m10 660m13 660r21
. 663r46
X 6 a-ngcoty.ads
37F9 Real 4|32r45[18] 33r26[18] 5|37r50[4|18] 45r17[4|18] 95r26[4|18] 117r43[4|18]
. 484r27[4|18] 492r22[4|18] 503r13[4|18] 504r13[4|18] 579r22[4|18] 580r22[4|18]
. 581r22[4|18] 582r22[4|18] 583r13[4|18] 584r13[4|18] 585r13[4|18] 602r23[4|18]
. 621r17[4|18]
39k22*Generic_Complex_Types 4|16w19 18r51 6|157e39
42R9 Complex 4|24r23[18] 24r41[18] 26r23[18] 26r41[18] 28r23[18] 28r41[18]
. 29r41[18] 31r26[18] 31r45[18] 31r63[18] 32r26[18] 32r63[18] 33r45[18] 33r63[18]
. 35r22[18] 35r38[18] 36r22[18] 36r38[18] 37r22[18] 37r38[18] 38r22[18] 38r38[18]
. 40r25[18] 40r41[18] 41r25[18] 41r41[18] 42r25[18] 42r41[18] 43r25[18] 43r41[18]
. 45r23[18] 45r39[18] 46r23[18] 46r39[18] 47r23[18] 47r39[18] 48r23[18] 48r39[18]
. 50r26[18] 50r42[18] 51r26[18] 51r42[18] 52r26[18] 52r42[18] 53r26[18] 53r42[18]
. 5|54r28[4|18] 55r28[4|18] 56r28[4|18] 57r28[4|18] 63r26[4|18] 63r43[4|18]
. 63r59[4|18] 95r45[4|18] 95r61[4|18] 117r26[4|18] 117r61[4|18] 149r25[4|18]
. 149r41[4|18] 150r16[4|18] 183r26[4|18] 183r42[4|18] 184r16[4|18] 216r25[4|18]
. 216r41[4|18] 217r12[4|18] 251r26[4|18] 251r42[4|18] 252r11[4|18] 302r25[4|18]
. 302r41[4|18] 303r16[4|18] 346r26[4|18] 346r42[4|18] 347r16[4|18] 384r25[4|18]
. 384r41[4|18] 401r26[4|18] 401r42[4|18] 416r22[4|18] 416r38[4|18] 428r23[4|18]
. 428r39[4|18] 440r22[4|18] 440r38[4|18] 461r23[4|18] 461r39[4|18] 483r22[4|18]
. 483r38[4|18] 491r40[4|18] 502r22[4|18] 502r38[4|18] 505r13[4|18] 542r22[4|18]
. 542r38[4|18] 561r23[4|18] 561r39[4|18] 578r23[4|18] 578r39[4|18] 670r22[4|18]
. 670r38[4|18] 692r23[4|18] 692r39[4|18]
48F9 Imaginary<37F9[4|18]> 4|29r23[18] 5|491r22[4|18]
54V13 Re 5|65s10[4|18] 67s18[4|18] 72s13[4|18] 74s18[4|18] 78s13[4|18] 84s13[4|18]
. 87s13[4|18] 97s10[4|18] 100s33[4|18] 106s13[4|18] 109s13[4|18] 120s18[4|18]
. 125s13[4|18] 131s13[4|18] 156s17[4|18] 161s17[4|18] 171s22[4|18] 190s17[4|18]
. 193s61[4|18] 195s17[4|18] 205s10[4|18] 220s14[4|18] 225s17[4|18] 230s13[4|18]
. 231s30[4|18] 240s10[4|18] 258s17[4|18] 263s17[4|18] 272s35[4|18] 275s35[4|18]
. 291s10[4|18] 292s21[4|18] 308s14[4|18] 313s17[4|18] 330s10[4|18] 331s26[4|18]
. 334s22[4|18] 350s14[4|18] 355s17[4|18] 360s14[4|18] 360s36[4|18] 361s21[4|18]
. 361s43[4|18] 363s30[4|18] 371s10[4|18] 372s26[4|18] 386s14[4|18] 403s14[4|18]
. 420s17[4|18] 421s19[4|18] 432s18[4|18] 433s18[4|18] 442s14[4|18] 463s14[4|18]
. 468s13[4|18] 471s13[4|18] 484s45[4|18] 508s10[4|18] 511s24[4|18] 515s21[4|18]
. 529s30[4|18] 544s14[4|18] 553s17[4|18] 554s17[4|18] 563s14[4|18] 569s47[4|18]
. 570s47[4|18] 579s35[4|18] 581s39[4|18] 655s48[4|18] 656s45[4|18] 657s45[4|18]
. 672s14[4|18] 694s14[4|18] 699s13[4|18] 702s13[4|18]
55V13 Im 5|66s18[4|18] 68s18[4|18] 73s18[4|18] 78s38[4|18] 84s39[4|18] 87s39[4|18]
. 97s36[4|18] 106s39[4|18] 109s39[4|18] 121s18[4|18] 126s18[4|18] 131s38[4|18]
. 157s14[4|18] 162s17[4|18] 170s10[4|18] 173s26[4|18] 191s14[4|18] 193s45[4|18]
. 196s17[4|18] 221s14[4|18] 226s17[4|18] 259s23[4|18] 264s17[4|18] 266s13[4|18]
. 272s13[4|18] 275s13[4|18] 287s10[4|18] 288s26[4|18] 309s14[4|18] 314s17[4|18]
. 318s13[4|18] 319s34[4|18] 321s16[4|18] 322s36[4|18] 333s13[4|18] 336s26[4|18]
. 351s14[4|18] 356s17[4|18] 373s13[4|18] 374s26[4|18] 387s14[4|18] 404s14[4|18]
. 420s34[4|18] 421s35[4|18] 432s33[4|18] 433s33[4|18] 443s14[4|18] 447s13[4|18]
. 450s13[4|18] 464s14[4|18] 487s54[4|18] 488s54[4|18] 508s32[4|18] 512s22[4|18]
. 529s22[4|18] 546s14[4|18] 553s33[4|18] 554s33[4|18] 564s14[4|18] 569s62[4|18]
. 570s62[4|18] 580s35[4|18] 582s39[4|18] 645s10[4|18] 655s62[4|18] 659s13[4|18]
. 673s14[4|18] 677s13[4|18] 680s13[4|18] 695s14[4|18]
56V13 Im 5|492s35[4|18]
58U14 Set_Re 5|231s13[4|18] 292s10[4|18] 331s10[4|18] 363s13[4|18] 372s10[4|18]
. 515s10[4|18]
59U14 Set_Im 5|173s10[4|18] 288s10[4|18] 319s13[4|18] 322s13[4|18] 336s10[4|18]
. 374s10[4|18]
62V13 Compose_From_Cartesian{42R9[4|18]} 5|104s17[4|18] 110s17[4|18] 193s20[4|18]
. 256s17[4|18] 419s9[4|18] 431s9[4|18] 487s14[4|18] 495s14[4|18] 535s14[4|18]
. 552s9[4|18] 569s17[4|18] 593s15[4|18] 601s15[4|18] 609s20[4|18] 611s20[4|18]
. 648s14[4|18] 655s24[4|18] 663s17[4|18]
66V13 Modulus 5|522s22[4|18] 526s25[4|18] 655s15[4|18]
81V14 "-"{42R9[4|18]} 5|164s17[4|18] 168s17[4|18] 206s20[4|18] 316s20[4|18]
. 328s17[4|18] 392s17[4|18] 448s17[4|18] 472s17[4|18] 681s17[4|18] 703s17[4|18]
84V14 "+"{42R9[4|18]} 5|164s64[4|18] 168s37[4|18] 201s54[4|18] 238s51[4|18]
. 261s34[4|18] 316s54[4|18] 328s49[4|18] 369s24[4|18]
85V14 "-"{42R9[4|18]} 5|159s25[4|18] 223s25[4|18] 238s33[4|18] 284s33[4|18]
. 393s29[4|18] 408s32[4|18]
86V14 "*"{42R9[4|18]} 5|91s28[4|18] 164s34[4|18] 165s39[4|18] 168s28[4|18]
. 168s49[4|18] 168s65[4|18] 238s23[4|18] 316s31[4|18] 316s49[4|18] 328s28[4|18]
. 328s45[4|18] 328s65[4|18] 369s40[4|18] 392s28[4|18] 392s52[4|18] 393s52[4|18]
. 518s54[4|18] 518s59[4|18] 518s64[4|18]
87V14 "/"{42R9[4|18]} 5|228s29[4|18] 238s46[4|18] 280s30[4|18] 445s30[4|18]
. 454s22[4|18] 466s30[4|18] 475s26[4|18] 684s25[4|18] 706s26[4|18]
109V14 "+"{42R9[4|18]} 5|85s21[4|18] 164s52[4|18] 198s28[4|18] 201s42[4|18]
. 241s19[4|18] 280s25[4|18] 284s28[4|18] 358s28[4|18] 369s36[4|18] 392s40[4|18]
. 408s27[4|18]
110V14 "-"{42R9[4|18]} 5|202s40[4|18] 280s35[4|18] 284s42[4|18]
111V14 "-"{42R9[4|18]} 5|165s52[4|18] 168s61[4|18] 328s61[4|18] 393s40[4|18]
. 408s43[4|18] 517s22[4|18] 517s35[4|18] 518s35[4|18]
113V14 "*"{42R9[4|18]} 5|113s33[4|18] 141s28[4|18] 164s22[4|18] 201s24[4|18]
. 261s22[4|18] 269s23[4|18] 316s65[4|18] 518s49[4|18]
114V14 "/"{42R9[4|18]} 5|164s57[4|18] 165s57[4|18] 201s47[4|18] 202s47[4|18]
. 238s65[4|18] 280s43[4|18] 284s50[4|18] 393s58[4|18] 408s49[4|18] 526s36[4|18]
. 655s54[4|18] 655s68[4|18] 656s51[4|18] 657s51[4|18]
X 7 a-ngelfu.ads
39k22*Generic_Elementary_Functions 5|32w19 37r20 7|170e46
42V13 Sqrt 5|594s18[36] 602s39[36] 606s17[36] 615s16[36] 636s20[36] 640s20[36]
. 656s23[36] 657s23[36]
64V13 Log 5|113s22[36] 522s17[36] 526s20[36]
70V13 Exp 5|484s40[36]
80V13 Sin 5|421s14[36] 433s28[36] 488s49[36] 495s49[36] 553s12[36] 570s57[36]
88V13 Cos 5|420s12[36] 432s28[36] 487s49[36] 495s38[36] 554s12[36] 569s57[36]
118V13 Arctan 5|529s14[36]
144V13 Sinh 5|421s29[36] 433s12[36] 554s27[36] 569s41[36]
147V13 Cosh 5|420s28[36] 432s12[36] 553s27[36] 570s41[36]