/***************************************************************************** * DXTmpl.h * *-----------* * This is the header file contains the DX collection class templates. It * has been derived from the MFC collection templates for compatibility. *----------------------------------------------------------------------------- * Created by: Ed Connell Date: 05/17/95 * *****************************************************************************/ #ifndef DXTmpl_h #pragma option push -b -a8 -pc -A- /*P_O_Push*/ #define DXTmpl_h #ifndef _INC_LIMITS #include #endif #ifndef _INC_STRING #include #endif #ifndef _INC_STDLIB #include #endif #ifndef _INC_SEARCH #include #endif #define DXASSERT_VALID( pObj ) ///////////////////////////////////////////////////////////////////////////// typedef void* DXLISTPOS; typedef DWORD DXLISTHANDLE; #define DX_BEFORE_START_POSITION ((void*)-1L) inline BOOL DXIsValidAddress(const void* lp, UINT nBytes, BOOL bReadWrite) { // simple version using Win-32 APIs for pointer validation. return (lp != NULL && !IsBadReadPtr(lp, nBytes) && (!bReadWrite || !IsBadWritePtr((LPVOID)lp, nBytes))); } ///////////////////////////////////////////////////////////////////////////// // global helpers (can be overridden) template inline void DXConstructElements(TYPE* pElements, int nCount) { _ASSERT( nCount == 0 || DXIsValidAddress( pElements, nCount * sizeof(TYPE), TRUE ) ); // default is bit-wise zero initialization memset((void*)pElements, 0, nCount * sizeof(TYPE)); } template inline void DXDestructElements(TYPE* pElements, int nCount) { _ASSERT( ( nCount == 0 || DXIsValidAddress( pElements, nCount * sizeof(TYPE), TRUE ) ) ); pElements; // not used nCount; // not used // default does nothing } template inline void DXCopyElements(TYPE* pDest, const TYPE* pSrc, int nCount) { _ASSERT( ( nCount == 0 || DXIsValidAddress( pDest, nCount * sizeof(TYPE), TRUE )) ); _ASSERT( ( nCount == 0 || DXIsValidAddress( pSrc, nCount * sizeof(TYPE), FALSE )) ); // default is bit-wise copy memcpy(pDest, pSrc, nCount * sizeof(TYPE)); } template BOOL DXCompareElements(const TYPE* pElement1, const ARG_TYPE* pElement2) { _ASSERT( DXIsValidAddress( pElement1, sizeof(TYPE), FALSE ) ); _ASSERT( DXIsValidAddress( pElement2, sizeof(ARG_TYPE), FALSE ) ); return *pElement1 == *pElement2; } template inline UINT DXHashKey(ARG_KEY key) { // default identity hash - works for most primitive values return ((UINT)(void*)(DWORD)key) >> 4; } ///////////////////////////////////////////////////////////////////////////// // CDXPlex struct CDXPlex // warning variable length structure { CDXPlex* pNext; UINT nMax; UINT nCur; /* BYTE data[maxNum*elementSize]; */ void* data() { return this+1; } static CDXPlex* PASCAL Create( CDXPlex*& pHead, UINT nMax, UINT cbElement ) { CDXPlex* p = (CDXPlex*) new BYTE[sizeof(CDXPlex) + nMax * cbElement]; p->nMax = nMax; p->nCur = 0; p->pNext = pHead; pHead = p; // change head (adds in reverse order for simplicity) return p; } void FreeDataChain() { CDXPlex* p = this; while (p != NULL) { BYTE* bytes = (BYTE*) p; CDXPlex* pNext = p->pNext; delete bytes; p = pNext; } } }; ///////////////////////////////////////////////////////////////////////////// // CDXArray template class CDXArray { public: // Construction CDXArray(); // Attributes int GetSize() const; int GetUpperBound() const; void SetSize(int nNewSize, int nGrowBy = -1); // Operations // Clean up void FreeExtra(); void RemoveAll(); // Accessing elements TYPE GetAt(int nIndex) const; void SetAt(int nIndex, ARG_TYPE newElement); TYPE& ElementAt(int nIndex); // Direct Access to the element data (may return NULL) const TYPE* GetData() const; TYPE* GetData(); // Potentially growing the array void SetAtGrow(int nIndex, ARG_TYPE newElement); int Add(ARG_TYPE newElement); int Append(const CDXArray& src); void Copy(const CDXArray& src); // overloaded operator helpers TYPE operator[](int nIndex) const; TYPE& operator[](int nIndex); // Operations that move elements around void InsertAt(int nIndex, ARG_TYPE newElement, int nCount = 1); void RemoveAt(int nIndex, int nCount = 1); void InsertAt(int nStartIndex, CDXArray* pNewArray); void Sort(int (__cdecl *compare )(const void *elem1, const void *elem2 )); // Implementation protected: TYPE* m_pData; // the actual array of data int m_nSize; // # of elements (upperBound - 1) int m_nMaxSize; // max allocated int m_nGrowBy; // grow amount public: ~CDXArray(); #ifdef _DEBUG // void Dump(CDumpContext&) const; void AssertValid() const; #endif }; ///////////////////////////////////////////////////////////////////////////// // CDXArray inline functions template inline int CDXArray::GetSize() const { return m_nSize; } template inline int CDXArray::GetUpperBound() const { return m_nSize-1; } template inline void CDXArray::RemoveAll() { SetSize(0, -1); } template inline TYPE CDXArray::GetAt(int nIndex) const { _ASSERT( (nIndex >= 0 && nIndex < m_nSize) ); return m_pData[nIndex]; } template inline void CDXArray::SetAt(int nIndex, ARG_TYPE newElement) { _ASSERT( (nIndex >= 0 && nIndex < m_nSize) ); m_pData[nIndex] = newElement; } template inline TYPE& CDXArray::ElementAt(int nIndex) { _ASSERT( (nIndex >= 0 && nIndex < m_nSize) ); return m_pData[nIndex]; } template inline const TYPE* CDXArray::GetData() const { return (const TYPE*)m_pData; } template inline TYPE* CDXArray::GetData() { return (TYPE*)m_pData; } template inline int CDXArray::Add(ARG_TYPE newElement) { int nIndex = m_nSize; SetAtGrow(nIndex, newElement); return nIndex; } template inline TYPE CDXArray::operator[](int nIndex) const { return GetAt(nIndex); } template inline TYPE& CDXArray::operator[](int nIndex) { return ElementAt(nIndex); } ///////////////////////////////////////////////////////////////////////////// // CDXArray out-of-line functions template CDXArray::CDXArray() { m_pData = NULL; m_nSize = m_nMaxSize = m_nGrowBy = 0; } template CDXArray::~CDXArray() { DXASSERT_VALID( this ); if (m_pData != NULL) { DXDestructElements(m_pData, m_nSize); delete[] (BYTE*)m_pData; } } template void CDXArray::SetSize(int nNewSize, int nGrowBy) { DXASSERT_VALID( this ); _ASSERT( nNewSize >= 0 ); if (nGrowBy != -1) m_nGrowBy = nGrowBy; // set new size if (nNewSize == 0) { // shrink to nothing if (m_pData != NULL) { DXDestructElements(m_pData, m_nSize); delete[] (BYTE*)m_pData; m_pData = NULL; } m_nSize = m_nMaxSize = 0; } else if (m_pData == NULL) { // create one with exact size #ifdef SIZE_T_MAX _ASSERT( nNewSize <= SIZE_T_MAX/sizeof(TYPE) ); // no overflow #endif m_pData = (TYPE*) new BYTE[nNewSize * sizeof(TYPE)]; DXConstructElements(m_pData, nNewSize); m_nSize = m_nMaxSize = nNewSize; } else if (nNewSize <= m_nMaxSize) { // it fits if (nNewSize > m_nSize) { // initialize the new elements DXConstructElements(&m_pData[m_nSize], nNewSize-m_nSize); } else if (m_nSize > nNewSize) { // destroy the old elements DXDestructElements(&m_pData[nNewSize], m_nSize-nNewSize); } m_nSize = nNewSize; } else { // otherwise, grow array int nGrowBy = m_nGrowBy; if (nGrowBy == 0) { // heuristically determe growth when nGrowBy == 0 // (this avoids heap fragmentation in many situations) nGrowBy = min(1024, max(4, m_nSize / 8)); } int nNewMax; if (nNewSize < m_nMaxSize + nGrowBy) nNewMax = m_nMaxSize + nGrowBy; // granularity else nNewMax = nNewSize; // no slush _ASSERT( nNewMax >= m_nMaxSize ); // no wrap around #ifdef SIZE_T_MAX _ASSERT( nNewMax <= SIZE_T_MAX/sizeof(TYPE) ); // no overflow #endif TYPE* pNewData = (TYPE*) new BYTE[nNewMax * sizeof(TYPE)]; // copy new data from old memcpy(pNewData, m_pData, m_nSize * sizeof(TYPE)); // construct remaining elements _ASSERT( nNewSize > m_nSize ); DXConstructElements(&pNewData[m_nSize], nNewSize-m_nSize); // get rid of old stuff (note: no destructors called) delete[] (BYTE*)m_pData; m_pData = pNewData; m_nSize = nNewSize; m_nMaxSize = nNewMax; } } template int CDXArray::Append(const CDXArray& src) { DXASSERT_VALID( this ); _ASSERT( this != &src ); // cannot append to itself int nOldSize = m_nSize; SetSize(m_nSize + src.m_nSize); DXCopyElements(m_pData + nOldSize, src.m_pData, src.m_nSize); return nOldSize; } template void CDXArray::Copy(const CDXArray& src) { DXASSERT_VALID( this ); _ASSERT( this != &src ); // cannot copy to itself SetSize(src.m_nSize); DXCopyElements(m_pData, src.m_pData, src.m_nSize); } template void CDXArray::FreeExtra() { DXASSERT_VALID( this ); if (m_nSize != m_nMaxSize) { // shrink to desired size #ifdef SIZE_T_MAX _ASSERT( m_nSize <= SIZE_T_MAX/sizeof(TYPE)); // no overflow #endif TYPE* pNewData = NULL; if (m_nSize != 0) { pNewData = (TYPE*) new BYTE[m_nSize * sizeof(TYPE)]; // copy new data from old memcpy(pNewData, m_pData, m_nSize * sizeof(TYPE)); } // get rid of old stuff (note: no destructors called) delete[] (BYTE*)m_pData; m_pData = pNewData; m_nMaxSize = m_nSize; } } template void CDXArray::SetAtGrow(int nIndex, ARG_TYPE newElement) { DXASSERT_VALID( this ); _ASSERT( nIndex >= 0 ); if (nIndex >= m_nSize) SetSize(nIndex+1, -1); m_pData[nIndex] = newElement; } template void CDXArray::InsertAt(int nIndex, ARG_TYPE newElement, int nCount /*=1*/) { DXASSERT_VALID( this ); _ASSERT( nIndex >= 0 ); // will expand to meet need _ASSERT( nCount > 0 ); // zero or negative size not allowed if (nIndex >= m_nSize) { // adding after the end of the array SetSize(nIndex + nCount, -1); // grow so nIndex is valid } else { // inserting in the middle of the array int nOldSize = m_nSize; SetSize(m_nSize + nCount, -1); // grow it to new size // shift old data up to fill gap memmove(&m_pData[nIndex+nCount], &m_pData[nIndex], (nOldSize-nIndex) * sizeof(TYPE)); // re-init slots we copied from DXConstructElements(&m_pData[nIndex], nCount); } // insert new value in the gap _ASSERT( nIndex + nCount <= m_nSize ); while (nCount--) m_pData[nIndex++] = newElement; } template void CDXArray::RemoveAt(int nIndex, int nCount) { DXASSERT_VALID( this ); _ASSERT( nIndex >= 0 ); _ASSERT( nCount >= 0 ); _ASSERT( nIndex + nCount <= m_nSize ); // just remove a range int nMoveCount = m_nSize - (nIndex + nCount); DXDestructElements(&m_pData[nIndex], nCount); if (nMoveCount) memcpy(&m_pData[nIndex], &m_pData[nIndex + nCount], nMoveCount * sizeof(TYPE)); m_nSize -= nCount; } template void CDXArray::InsertAt(int nStartIndex, CDXArray* pNewArray) { DXASSERT_VALID( this ); DXASSERT_VALID( pNewArray ); _ASSERT( nStartIndex >= 0 ); if (pNewArray->GetSize() > 0) { InsertAt(nStartIndex, pNewArray->GetAt(0), pNewArray->GetSize()); for (int i = 0; i < pNewArray->GetSize(); i++) SetAt(nStartIndex + i, pNewArray->GetAt(i)); } } template void CDXArray::Sort(int (__cdecl *compare )(const void *elem1, const void *elem2 )) { DXASSERT_VALID( this ); _ASSERT( m_pData != NULL ); qsort( m_pData, m_nSize, sizeof(TYPE), compare ); } #ifdef _DEBUG template void CDXArray::AssertValid() const { if (m_pData == NULL) { _ASSERT( m_nSize == 0 ); _ASSERT( m_nMaxSize == 0 ); } else { _ASSERT( m_nSize >= 0 ); _ASSERT( m_nMaxSize >= 0 ); _ASSERT( m_nSize <= m_nMaxSize ); _ASSERT( DXIsValidAddress(m_pData, m_nMaxSize * sizeof(TYPE), TRUE ) ); } } #endif //_DEBUG ///////////////////////////////////////////////////////////////////////////// // CDXList template class CDXList { protected: struct CNode { CNode* pNext; CNode* pPrev; TYPE data; }; public: // Construction CDXList(int nBlockSize = 10); // Attributes (head and tail) // count of elements int GetCount() const; BOOL IsEmpty() const; // peek at head or tail TYPE& GetHead(); TYPE GetHead() const; TYPE& GetTail(); TYPE GetTail() const; // Operations // get head or tail (and remove it) - don't call on empty list ! TYPE RemoveHead(); TYPE RemoveTail(); // add before head or after tail DXLISTPOS AddHead(ARG_TYPE newElement); DXLISTPOS AddTail(ARG_TYPE newElement); // add another list of elements before head or after tail void AddHead(CDXList* pNewList); void AddTail(CDXList* pNewList); // remove all elements void RemoveAll(); // iteration DXLISTPOS GetHeadPosition() const; DXLISTPOS GetTailPosition() const; TYPE& GetNext(DXLISTPOS& rPosition); // return *Position++ TYPE GetNext(DXLISTPOS& rPosition) const; // return *Position++ TYPE& GetPrev(DXLISTPOS& rPosition); // return *Position-- TYPE GetPrev(DXLISTPOS& rPosition) const; // return *Position-- // getting/modifying an element at a given position TYPE& GetAt(DXLISTPOS position); TYPE GetAt(DXLISTPOS position) const; void SetAt(DXLISTPOS pos, ARG_TYPE newElement); void RemoveAt(DXLISTPOS position); // inserting before or after a given position DXLISTPOS InsertBefore(DXLISTPOS position, ARG_TYPE newElement); DXLISTPOS InsertAfter(DXLISTPOS position, ARG_TYPE newElement); // helper functions (note: O(n) speed) DXLISTPOS Find(ARG_TYPE searchValue, DXLISTPOS startAfter = NULL) const; // defaults to starting at the HEAD, return NULL if not found DXLISTPOS FindIndex(int nIndex) const; // get the 'nIndex'th element (may return NULL) // Implementation protected: CNode* m_pNodeHead; CNode* m_pNodeTail; int m_nCount; CNode* m_pNodeFree; struct CDXPlex* m_pBlocks; int m_nBlockSize; CNode* NewNode(CNode*, CNode*); void FreeNode(CNode*); public: ~CDXList(); #ifdef _DEBUG void AssertValid() const; #endif }; ///////////////////////////////////////////////////////////////////////////// // CDXList inline functions template inline int CDXList::GetCount() const { return m_nCount; } template inline BOOL CDXList::IsEmpty() const { return m_nCount == 0; } template inline TYPE& CDXList::GetHead() { _ASSERT( m_pNodeHead != NULL ); return m_pNodeHead->data; } template inline TYPE CDXList::GetHead() const { _ASSERT( m_pNodeHead != NULL ); return m_pNodeHead->data; } template inline TYPE& CDXList::GetTail() { _ASSERT( m_pNodeTail != NULL ); return m_pNodeTail->data; } template inline TYPE CDXList::GetTail() const { _ASSERT( m_pNodeTail != NULL ); return m_pNodeTail->data; } template inline DXLISTPOS CDXList::GetHeadPosition() const { return (DXLISTPOS) m_pNodeHead; } template inline DXLISTPOS CDXList::GetTailPosition() const { return (DXLISTPOS) m_pNodeTail; } template inline TYPE& CDXList::GetNext(DXLISTPOS& rPosition) // return *Position++ { CNode* pNode = (CNode*) rPosition; _ASSERT( DXIsValidAddress(pNode, sizeof(CNode), TRUE ) ); rPosition = (DXLISTPOS) pNode->pNext; return pNode->data; } template inline TYPE CDXList::GetNext(DXLISTPOS& rPosition) const // return *Position++ { CNode* pNode = (CNode*) rPosition; _ASSERT( DXIsValidAddress(pNode, sizeof(CNode), TRUE ) ); rPosition = (DXLISTPOS) pNode->pNext; return pNode->data; } template inline TYPE& CDXList::GetPrev(DXLISTPOS& rPosition) // return *Position-- { CNode* pNode = (CNode*) rPosition; _ASSERT( DXIsValidAddress(pNode, sizeof(CNode), TRUE ) ); rPosition = (DXLISTPOS) pNode->pPrev; return pNode->data; } template inline TYPE CDXList::GetPrev(DXLISTPOS& rPosition) const // return *Position-- { CNode* pNode = (CNode*) rPosition; _ASSERT( DXIsValidAddress(pNode, sizeof(CNode), TRUE ) ); rPosition = (DXLISTPOS) pNode->pPrev; return pNode->data; } template inline TYPE& CDXList::GetAt(DXLISTPOS position) { CNode* pNode = (CNode*) position; _ASSERT( DXIsValidAddress(pNode, sizeof(CNode), TRUE ) ); return pNode->data; } template inline TYPE CDXList::GetAt(DXLISTPOS position) const { CNode* pNode = (CNode*) position; _ASSERT( DXIsValidAddress(pNode, sizeof(CNode), TRUE ) ); return pNode->data; } template inline void CDXList::SetAt(DXLISTPOS pos, ARG_TYPE newElement) { CNode* pNode = (CNode*) pos; _ASSERT( DXIsValidAddress(pNode, sizeof(CNode), TRUE ) ); pNode->data = newElement; } ///////////////////////////////////////////////////////////////////////////// // CDXList out-of-line functions template CDXList::CDXList( int nBlockSize ) { _ASSERT( nBlockSize > 0 ); m_nCount = 0; m_pNodeHead = m_pNodeTail = m_pNodeFree = NULL; m_pBlocks = NULL; m_nBlockSize = nBlockSize; } template void CDXList::RemoveAll() { DXASSERT_VALID( this ); // destroy elements CNode* pNode; for (pNode = m_pNodeHead; pNode != NULL; pNode = pNode->pNext) DXDestructElements(&pNode->data, 1); m_nCount = 0; m_pNodeHead = m_pNodeTail = m_pNodeFree = NULL; m_pBlocks->FreeDataChain(); m_pBlocks = NULL; } template CDXList::~CDXList() { RemoveAll(); _ASSERT( m_nCount == 0 ); } ///////////////////////////////////////////////////////////////////////////// // Node helpers // // Implementation note: CNode's are stored in CDXPlex blocks and // chained together. Free blocks are maintained in a singly linked list // using the 'pNext' member of CNode with 'm_pNodeFree' as the head. // Used blocks are maintained in a doubly linked list using both 'pNext' // and 'pPrev' as links and 'm_pNodeHead' and 'm_pNodeTail' // as the head/tail. // // We never free a CDXPlex block unless the List is destroyed or RemoveAll() // is used - so the total number of CDXPlex blocks may grow large depending // on the maximum past size of the list. // template CDXList::CNode* CDXList::NewNode(CDXList::CNode* pPrev, CDXList::CNode* pNext) { if (m_pNodeFree == NULL) { // add another block CDXPlex* pNewBlock = CDXPlex::Create(m_pBlocks, m_nBlockSize, sizeof(CNode)); // chain them into free list CNode* pNode = (CNode*) pNewBlock->data(); // free in reverse order to make it easier to debug pNode += m_nBlockSize - 1; for (int i = m_nBlockSize-1; i >= 0; i--, pNode--) { pNode->pNext = m_pNodeFree; m_pNodeFree = pNode; } } _ASSERT( m_pNodeFree != NULL ); // we must have something CDXList::CNode* pNode = m_pNodeFree; m_pNodeFree = m_pNodeFree->pNext; pNode->pPrev = pPrev; pNode->pNext = pNext; m_nCount++; _ASSERT( m_nCount > 0 ); // make sure we don't overflow DXConstructElements(&pNode->data, 1); return pNode; } template void CDXList::FreeNode(CDXList::CNode* pNode) { DXDestructElements(&pNode->data, 1); pNode->pNext = m_pNodeFree; m_pNodeFree = pNode; m_nCount--; _ASSERT( m_nCount >= 0 ); // make sure we don't underflow } template DXLISTPOS CDXList::AddHead(ARG_TYPE newElement) { DXASSERT_VALID( this ); CNode* pNewNode = NewNode(NULL, m_pNodeHead); pNewNode->data = newElement; if (m_pNodeHead != NULL) m_pNodeHead->pPrev = pNewNode; else m_pNodeTail = pNewNode; m_pNodeHead = pNewNode; return (DXLISTPOS) pNewNode; } template DXLISTPOS CDXList::AddTail(ARG_TYPE newElement) { DXASSERT_VALID( this ); CNode* pNewNode = NewNode(m_pNodeTail, NULL); pNewNode->data = newElement; if (m_pNodeTail != NULL) m_pNodeTail->pNext = pNewNode; else m_pNodeHead = pNewNode; m_pNodeTail = pNewNode; return (DXLISTPOS) pNewNode; } template void CDXList::AddHead(CDXList* pNewList) { DXASSERT_VALID( this ); DXASSERT_VALID( pNewList ); // add a list of same elements to head (maintain order) DXLISTPOS pos = pNewList->GetTailPosition(); while (pos != NULL) AddHead(pNewList->GetPrev(pos)); } template void CDXList::AddTail(CDXList* pNewList) { DXASSERT_VALID( this ); DXASSERT_VALID( pNewList ); // add a list of same elements DXLISTPOS pos = pNewList->GetHeadPosition(); while (pos != NULL) AddTail(pNewList->GetNext(pos)); } template TYPE CDXList::RemoveHead() { DXASSERT_VALID( this ); _ASSERT( m_pNodeHead != NULL ); // don't call on empty list !!! _ASSERT( DXIsValidAddress(m_pNodeHead, sizeof(CNode), TRUE ) ); CNode* pOldNode = m_pNodeHead; TYPE returnValue = pOldNode->data; m_pNodeHead = pOldNode->pNext; if (m_pNodeHead != NULL) m_pNodeHead->pPrev = NULL; else m_pNodeTail = NULL; FreeNode(pOldNode); return returnValue; } template TYPE CDXList::RemoveTail() { DXASSERT_VALID( this ); _ASSERT( m_pNodeTail != NULL ); // don't call on empty list !!! _ASSERT( DXIsValidAddress(m_pNodeTail, sizeof(CNode), TRUE ) ); CNode* pOldNode = m_pNodeTail; TYPE returnValue = pOldNode->data; m_pNodeTail = pOldNode->pPrev; if (m_pNodeTail != NULL) m_pNodeTail->pNext = NULL; else m_pNodeHead = NULL; FreeNode(pOldNode); return returnValue; } template DXLISTPOS CDXList::InsertBefore(DXLISTPOS position, ARG_TYPE newElement) { DXASSERT_VALID( this ); if (position == NULL) return AddHead(newElement); // insert before nothing -> head of the list // Insert it before position CNode* pOldNode = (CNode*) position; CNode* pNewNode = NewNode(pOldNode->pPrev, pOldNode); pNewNode->data = newElement; if (pOldNode->pPrev != NULL) { _ASSERT( DXIsValidAddress(pOldNode->pPrev, sizeof(CNode), TRUE ) ); pOldNode->pPrev->pNext = pNewNode; } else { _ASSERT( pOldNode == m_pNodeHead ); m_pNodeHead = pNewNode; } pOldNode->pPrev = pNewNode; return (DXLISTPOS) pNewNode; } template DXLISTPOS CDXList::InsertAfter(DXLISTPOS position, ARG_TYPE newElement) { DXASSERT_VALID( this ); if (position == NULL) return AddTail(newElement); // insert after nothing -> tail of the list // Insert it before position CNode* pOldNode = (CNode*) position; _ASSERT( DXIsValidAddress(pOldNode, sizeof(CNode), TRUE )); CNode* pNewNode = NewNode(pOldNode, pOldNode->pNext); pNewNode->data = newElement; if (pOldNode->pNext != NULL) { _ASSERT( DXIsValidAddress(pOldNode->pNext, sizeof(CNode), TRUE )); pOldNode->pNext->pPrev = pNewNode; } else { _ASSERT( pOldNode == m_pNodeTail ); m_pNodeTail = pNewNode; } pOldNode->pNext = pNewNode; return (DXLISTPOS) pNewNode; } template void CDXList::RemoveAt(DXLISTPOS position) { DXASSERT_VALID( this ); CNode* pOldNode = (CNode*) position; _ASSERT( DXIsValidAddress(pOldNode, sizeof(CNode), TRUE ) ); // remove pOldNode from list if (pOldNode == m_pNodeHead) { m_pNodeHead = pOldNode->pNext; } else { _ASSERT( DXIsValidAddress(pOldNode->pPrev, sizeof(CNode), TRUE ) ); pOldNode->pPrev->pNext = pOldNode->pNext; } if (pOldNode == m_pNodeTail) { m_pNodeTail = pOldNode->pPrev; } else { _ASSERT( DXIsValidAddress(pOldNode->pNext, sizeof(CNode), TRUE ) ); pOldNode->pNext->pPrev = pOldNode->pPrev; } FreeNode(pOldNode); } template DXLISTPOS CDXList::FindIndex(int nIndex) const { DXASSERT_VALID( this ); _ASSERT( nIndex >= 0 ); if (nIndex >= m_nCount) return NULL; // went too far CNode* pNode = m_pNodeHead; while (nIndex--) { _ASSERT( DXIsValidAddress(pNode, sizeof(CNode), TRUE )); pNode = pNode->pNext; } return (DXLISTPOS) pNode; } template DXLISTPOS CDXList::Find(ARG_TYPE searchValue, DXLISTPOS startAfter) const { DXASSERT_VALID( this ); CNode* pNode = (CNode*) startAfter; if (pNode == NULL) { pNode = m_pNodeHead; // start at head } else { _ASSERT( DXIsValidAddress(pNode, sizeof(CNode), TRUE ) ); pNode = pNode->pNext; // start after the one specified } for (; pNode != NULL; pNode = pNode->pNext) if (DXCompareElements(&pNode->data, &searchValue)) return (DXLISTPOS)pNode; return NULL; } #ifdef _DEBUG template void CDXList::AssertValid() const { if (m_nCount == 0) { // empty list _ASSERT( m_pNodeHead == NULL ); _ASSERT( m_pNodeTail == NULL ); } else { // non-empty list _ASSERT( DXIsValidAddress(m_pNodeHead, sizeof(CNode), TRUE )); _ASSERT( DXIsValidAddress(m_pNodeTail, sizeof(CNode), TRUE )); } } #endif //_DEBUG ///////////////////////////////////////////////////////////////////////////// // CDXMap template class CDXMap { protected: // Association struct CAssoc { CAssoc* pNext; UINT nHashValue; // needed for efficient iteration KEY key; VALUE value; }; public: // Construction CDXMap( int nBlockSize = 10 ); // Attributes // number of elements int GetCount() const; BOOL IsEmpty() const; // Lookup BOOL Lookup(ARG_KEY key, VALUE& rValue) const; // Operations // Lookup and add if not there VALUE& operator[](ARG_KEY key); // add a new (key, value) pair void SetAt(ARG_KEY key, ARG_VALUE newValue); // removing existing (key, ?) pair BOOL RemoveKey(ARG_KEY key); void RemoveAll(); // iterating all (key, value) pairs DXLISTPOS GetStartPosition() const; void GetNextAssoc(DXLISTPOS& rNextPosition, KEY& rKey, VALUE& rValue) const; // advanced features for derived classes UINT GetHashTableSize() const; void InitHashTable(UINT hashSize, BOOL bAllocNow = TRUE); // Implementation protected: CAssoc** m_pHashTable; UINT m_nHashTableSize; int m_nCount; CAssoc* m_pFreeList; struct CDXPlex* m_pBlocks; int m_nBlockSize; CAssoc* NewAssoc(); void FreeAssoc(CAssoc*); CAssoc* GetAssocAt(ARG_KEY, UINT&) const; public: ~CDXMap(); #ifdef _DEBUG // void Dump(CDumpContext&) const; void AssertValid() const; #endif }; ///////////////////////////////////////////////////////////////////////////// // CDXMap inline functions template inline int CDXMap::GetCount() const { return m_nCount; } template inline BOOL CDXMap::IsEmpty() const { return m_nCount == 0; } template inline void CDXMap::SetAt(ARG_KEY key, ARG_VALUE newValue) { (*this)[key] = newValue; } template inline DXLISTPOS CDXMap::GetStartPosition() const { return (m_nCount == 0) ? NULL : DX_BEFORE_START_POSITION; } template inline UINT CDXMap::GetHashTableSize() const { return m_nHashTableSize; } ///////////////////////////////////////////////////////////////////////////// // CDXMap out-of-line functions template CDXMap::CDXMap( int nBlockSize ) { _ASSERT( nBlockSize > 0 ); m_pHashTable = NULL; m_nHashTableSize = 17; // default size m_nCount = 0; m_pFreeList = NULL; m_pBlocks = NULL; m_nBlockSize = nBlockSize; } template void CDXMap::InitHashTable( UINT nHashSize, BOOL bAllocNow) // // Used to force allocation of a hash table or to override the default // hash table size of (which is fairly small) { DXASSERT_VALID( this ); _ASSERT( m_nCount == 0 ); _ASSERT( nHashSize > 0 ); if (m_pHashTable != NULL) { // free hash table delete[] m_pHashTable; m_pHashTable = NULL; } if (bAllocNow) { m_pHashTable = new CAssoc* [nHashSize]; memset(m_pHashTable, 0, sizeof(CAssoc*) * nHashSize); } m_nHashTableSize = nHashSize; } template void CDXMap::RemoveAll() { DXASSERT_VALID( this ); if (m_pHashTable != NULL) { // destroy elements (values and keys) for (UINT nHash = 0; nHash < m_nHashTableSize; nHash++) { CAssoc* pAssoc; for (pAssoc = m_pHashTable[nHash]; pAssoc != NULL; pAssoc = pAssoc->pNext) { DXDestructElements(&pAssoc->value, 1); DXDestructElements(&pAssoc->key, 1); } } } // free hash table delete[] m_pHashTable; m_pHashTable = NULL; m_nCount = 0; m_pFreeList = NULL; m_pBlocks->FreeDataChain(); m_pBlocks = NULL; } template CDXMap::~CDXMap() { RemoveAll(); _ASSERT( m_nCount == 0 ); } template CDXMap::CAssoc* CDXMap::NewAssoc() { if (m_pFreeList == NULL) { // add another block CDXPlex* newBlock = CDXPlex::Create(m_pBlocks, m_nBlockSize, sizeof(CDXMap::CAssoc)); // chain them into free list CDXMap::CAssoc* pAssoc = (CDXMap::CAssoc*) newBlock->data(); // free in reverse order to make it easier to debug pAssoc += m_nBlockSize - 1; for (int i = m_nBlockSize-1; i >= 0; i--, pAssoc--) { pAssoc->pNext = m_pFreeList; m_pFreeList = pAssoc; } } _ASSERT( m_pFreeList != NULL ); // we must have something CDXMap::CAssoc* pAssoc = m_pFreeList; m_pFreeList = m_pFreeList->pNext; m_nCount++; _ASSERT( m_nCount > 0 ); // make sure we don't overflow DXConstructElements(&pAssoc->key, 1); DXConstructElements(&pAssoc->value, 1); // special construct values return pAssoc; } template void CDXMap::FreeAssoc(CDXMap::CAssoc* pAssoc) { DXDestructElements(&pAssoc->value, 1); DXDestructElements(&pAssoc->key, 1); pAssoc->pNext = m_pFreeList; m_pFreeList = pAssoc; m_nCount--; _ASSERT( m_nCount >= 0 ); // make sure we don't underflow } template CDXMap::CAssoc* CDXMap::GetAssocAt(ARG_KEY key, UINT& nHash) const // find association (or return NULL) { nHash = DXHashKey(key) % m_nHashTableSize; if (m_pHashTable == NULL) return NULL; // see if it exists CAssoc* pAssoc; for (pAssoc = m_pHashTable[nHash]; pAssoc != NULL; pAssoc = pAssoc->pNext) { if (DXCompareElements(&pAssoc->key, &key)) return pAssoc; } return NULL; } template BOOL CDXMap::Lookup(ARG_KEY key, VALUE& rValue) const { DXASSERT_VALID( this ); UINT nHash; CAssoc* pAssoc = GetAssocAt(key, nHash); if (pAssoc == NULL) return FALSE; // not in map rValue = pAssoc->value; return TRUE; } template VALUE& CDXMap::operator[](ARG_KEY key) { DXASSERT_VALID( this ); UINT nHash; CAssoc* pAssoc; if ((pAssoc = GetAssocAt(key, nHash)) == NULL) { if (m_pHashTable == NULL) InitHashTable(m_nHashTableSize); // it doesn't exist, add a new Association pAssoc = NewAssoc(); pAssoc->nHashValue = nHash; pAssoc->key = key; // 'pAssoc->value' is a constructed object, nothing more // put into hash table pAssoc->pNext = m_pHashTable[nHash]; m_pHashTable[nHash] = pAssoc; } return pAssoc->value; // return new reference } template BOOL CDXMap::RemoveKey(ARG_KEY key) // remove key - return TRUE if removed { DXASSERT_VALID( this ); if (m_pHashTable == NULL) return FALSE; // nothing in the table CAssoc** ppAssocPrev; ppAssocPrev = &m_pHashTable[DXHashKey(key) % m_nHashTableSize]; CAssoc* pAssoc; for (pAssoc = *ppAssocPrev; pAssoc != NULL; pAssoc = pAssoc->pNext) { if (DXCompareElements(&pAssoc->key, &key)) { // remove it *ppAssocPrev = pAssoc->pNext; // remove from list FreeAssoc(pAssoc); return TRUE; } ppAssocPrev = &pAssoc->pNext; } return FALSE; // not found } template void CDXMap::GetNextAssoc(DXLISTPOS& rNextPosition, KEY& rKey, VALUE& rValue) const { DXASSERT_VALID( this ); _ASSERT( m_pHashTable != NULL ); // never call on empty map CAssoc* pAssocRet = (CAssoc*)rNextPosition; _ASSERT( pAssocRet != NULL ); if (pAssocRet == (CAssoc*) DX_BEFORE_START_POSITION) { // find the first association for (UINT nBucket = 0; nBucket < m_nHashTableSize; nBucket++) if ((pAssocRet = m_pHashTable[nBucket]) != NULL) break; _ASSERT( pAssocRet != NULL ); // must find something } // find next association _ASSERT( DXIsValidAddress(pAssocRet, sizeof(CAssoc), TRUE )); CAssoc* pAssocNext; if ((pAssocNext = pAssocRet->pNext) == NULL) { // go to next bucket for (UINT nBucket = pAssocRet->nHashValue + 1; nBucket < m_nHashTableSize; nBucket++) if ((pAssocNext = m_pHashTable[nBucket]) != NULL) break; } rNextPosition = (DXLISTPOS) pAssocNext; // fill in return data rKey = pAssocRet->key; rValue = pAssocRet->value; } #ifdef _DEBUG template void CDXMap::AssertValid() const { _ASSERT( m_nHashTableSize > 0 ); _ASSERT( (m_nCount == 0 || m_pHashTable != NULL) ); // non-empty map should have hash table } #endif //_DEBUG #pragma option pop /*P_O_Pop*/ #endif //--- This must be the last line in the file