------------------------------------------------------------------------------ -- -- -- GNAT RUN-TIME COMPONENTS -- -- -- -- A D A . N U M E R I C S . A U X -- -- -- -- B o d y -- -- (Machine Version for x86) -- -- -- -- Copyright (C) 1998-2014, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. -- -- -- -- As a special exception under Section 7 of GPL version 3, you are granted -- -- additional permissions described in the GCC Runtime Library Exception, -- -- version 3.1, as published by the Free Software Foundation. -- -- -- -- You should have received a copy of the GNU General Public License and -- -- a copy of the GCC Runtime Library Exception along with this program; -- -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- -- . -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ with System.Machine_Code; use System.Machine_Code; package body Ada.Numerics.Aux is NL : constant String := ASCII.LF & ASCII.HT; ----------------------- -- Local subprograms -- ----------------------- function Is_Nan (X : Double) return Boolean; -- Return True iff X is a IEEE NaN value function Logarithmic_Pow (X, Y : Double) return Double; -- Implementation of X**Y using Exp and Log functions (binary base) -- to calculate the exponentiation. This is used by Pow for values -- for values of Y in the open interval (-0.25, 0.25) procedure Reduce (X : in out Double; Q : out Natural); -- Implements reduction of X by Pi/2. Q is the quadrant of the final -- result in the range 0 .. 3. The absolute value of X is at most Pi. pragma Inline (Is_Nan); pragma Inline (Reduce); -------------------------------- -- Basic Elementary Functions -- -------------------------------- -- This section implements a few elementary functions that are used to -- build the more complex ones. This ordering enables better inlining. ---------- -- Atan -- ---------- function Atan (X : Double) return Double is Result : Double; begin Asm (Template => "fld1" & NL & "fpatan", Outputs => Double'Asm_Output ("=t", Result), Inputs => Double'Asm_Input ("0", X)); -- The result value is NaN iff input was invalid if not (Result = Result) then raise Argument_Error; end if; return Result; end Atan; --------- -- Exp -- --------- function Exp (X : Double) return Double is Result : Double; begin Asm (Template => "fldl2e " & NL & "fmulp %%st, %%st(1)" & NL -- X * log2 (E) & "fld %%st(0) " & NL & "frndint " & NL -- Integer (X * Log2 (E)) & "fsubr %%st, %%st(1)" & NL -- Fraction (X * Log2 (E)) & "fxch " & NL & "f2xm1 " & NL -- 2**(...) - 1 & "fld1 " & NL & "faddp %%st, %%st(1)" & NL -- 2**(Fraction (X * Log2 (E))) & "fscale " & NL -- E ** X & "fstp %%st(1) ", Outputs => Double'Asm_Output ("=t", Result), Inputs => Double'Asm_Input ("0", X)); return Result; end Exp; ------------ -- Is_Nan -- ------------ function Is_Nan (X : Double) return Boolean is begin -- The IEEE NaN values are the only ones that do not equal themselves return not (X = X); end Is_Nan; --------- -- Log -- --------- function Log (X : Double) return Double is Result : Double; begin Asm (Template => "fldln2 " & NL & "fxch " & NL & "fyl2x " & NL, Outputs => Double'Asm_Output ("=t", Result), Inputs => Double'Asm_Input ("0", X)); return Result; end Log; ------------ -- Reduce -- ------------ procedure Reduce (X : in out Double; Q : out Natural) is Half_Pi : constant := Pi / 2.0; Two_Over_Pi : constant := 2.0 / Pi; HM : constant := Integer'Min (Double'Machine_Mantissa / 2, Natural'Size); M : constant Double := 0.5 + 2.0**(1 - HM); -- Splitting constant P1 : constant Double := Double'Leading_Part (Half_Pi, HM); P2 : constant Double := Double'Leading_Part (Half_Pi - P1, HM); P3 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2, HM); P4 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2 - P3, HM); P5 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2 - P3 - P4, HM); P6 : constant Double := Double'Model (Half_Pi - P1 - P2 - P3 - P4 - P5); K : Double := X * Two_Over_Pi; begin -- For X < 2.0**32, all products below are computed exactly. -- Due to cancellation effects all subtractions are exact as well. -- As no double extended floating-point number has more than 75 -- zeros after the binary point, the result will be the correctly -- rounded result of X - K * (Pi / 2.0). while abs K >= 2.0**HM loop K := K * M - (K * M - K); X := (((((X - K * P1) - K * P2) - K * P3) - K * P4) - K * P5) - K * P6; K := X * Two_Over_Pi; end loop; if K /= K then -- K is not a number, because X was not finite raise Constraint_Error; end if; K := Double'Rounding (K); Q := Integer (K) mod 4; X := (((((X - K * P1) - K * P2) - K * P3) - K * P4) - K * P5) - K * P6; end Reduce; ---------- -- Sqrt -- ---------- function Sqrt (X : Double) return Double is Result : Double; begin if X < 0.0 then raise Argument_Error; end if; Asm (Template => "fsqrt", Outputs => Double'Asm_Output ("=t", Result), Inputs => Double'Asm_Input ("0", X)); return Result; end Sqrt; -------------------------------- -- Other Elementary Functions -- -------------------------------- -- These are built using the previously implemented basic functions ---------- -- Acos -- ---------- function Acos (X : Double) return Double is Result : Double; begin Result := 2.0 * Atan (Sqrt ((1.0 - X) / (1.0 + X))); -- The result value is NaN iff input was invalid if Is_Nan (Result) then raise Argument_Error; end if; return Result; end Acos; ---------- -- Asin -- ---------- function Asin (X : Double) return Double is Result : Double; begin Result := Atan (X / Sqrt ((1.0 - X) * (1.0 + X))); -- The result value is NaN iff input was invalid if Is_Nan (Result) then raise Argument_Error; end if; return Result; end Asin; --------- -- Cos -- --------- function Cos (X : Double) return Double is Reduced_X : Double := abs X; Result : Double; Quadrant : Natural range 0 .. 3; begin if Reduced_X > Pi / 4.0 then Reduce (Reduced_X, Quadrant); case Quadrant is when 0 => Asm (Template => "fcos", Outputs => Double'Asm_Output ("=t", Result), Inputs => Double'Asm_Input ("0", Reduced_X)); when 1 => Asm (Template => "fsin", Outputs => Double'Asm_Output ("=t", Result), Inputs => Double'Asm_Input ("0", -Reduced_X)); when 2 => Asm (Template => "fcos ; fchs", Outputs => Double'Asm_Output ("=t", Result), Inputs => Double'Asm_Input ("0", Reduced_X)); when 3 => Asm (Template => "fsin", Outputs => Double'Asm_Output ("=t", Result), Inputs => Double'Asm_Input ("0", Reduced_X)); end case; else Asm (Template => "fcos", Outputs => Double'Asm_Output ("=t", Result), Inputs => Double'Asm_Input ("0", Reduced_X)); end if; return Result; end Cos; --------------------- -- Logarithmic_Pow -- --------------------- function Logarithmic_Pow (X, Y : Double) return Double is Result : Double; begin Asm (Template => "" -- X : Y & "fyl2x " & NL -- Y * Log2 (X) & "fld %%st(0) " & NL -- Y * Log2 (X) : Y * Log2 (X) & "frndint " & NL -- Int (...) : Y * Log2 (X) & "fsubr %%st, %%st(1)" & NL -- Int (...) : Fract (...) & "fxch " & NL -- Fract (...) : Int (...) & "f2xm1 " & NL -- 2**Fract (...) - 1 : Int (...) & "fld1 " & NL -- 1 : 2**Fract (...) - 1 : Int (...) & "faddp %%st, %%st(1)" & NL -- 2**Fract (...) : Int (...) & "fscale ", -- 2**(Fract (...) + Int (...)) Outputs => Double'Asm_Output ("=t", Result), Inputs => (Double'Asm_Input ("0", X), Double'Asm_Input ("u", Y))); return Result; end Logarithmic_Pow; --------- -- Pow -- --------- function Pow (X, Y : Double) return Double is type Mantissa_Type is mod 2**Double'Machine_Mantissa; -- Modular type that can hold all bits of the mantissa of Double -- For negative exponents, do divide at the end of the processing Negative_Y : constant Boolean := Y < 0.0; Abs_Y : constant Double := abs Y; -- During this function the following invariant is kept: -- X ** (abs Y) = Base**(Exp_High + Exp_Mid + Exp_Low) * Factor Base : Double := X; Exp_High : Double := Double'Floor (Abs_Y); Exp_Mid : Double; Exp_Low : Double; Exp_Int : Mantissa_Type; Factor : Double := 1.0; begin -- Select algorithm for calculating Pow (integer cases fall through) if Exp_High >= 2.0**Double'Machine_Mantissa then -- In case of Y that is IEEE infinity, just raise constraint error if Exp_High > Double'Safe_Last then raise Constraint_Error; end if; -- Large values of Y are even integers and will stay integer -- after division by two. loop -- Exp_Mid and Exp_Low are zero, so -- X**(abs Y) = Base ** Exp_High = (Base**2) ** (Exp_High / 2) Exp_High := Exp_High / 2.0; Base := Base * Base; exit when Exp_High < 2.0**Double'Machine_Mantissa; end loop; elsif Exp_High /= Abs_Y then Exp_Low := Abs_Y - Exp_High; Factor := 1.0; if Exp_Low /= 0.0 then -- Exp_Low now is in interval (0.0, 1.0) -- Exp_Mid := Double'Floor (Exp_Low * 4.0) / 4.0; Exp_Mid := 0.0; Exp_Low := Exp_Low - Exp_Mid; if Exp_Low >= 0.5 then Factor := Sqrt (X); Exp_Low := Exp_Low - 0.5; -- exact if Exp_Low >= 0.25 then Factor := Factor * Sqrt (Factor); Exp_Low := Exp_Low - 0.25; -- exact end if; elsif Exp_Low >= 0.25 then Factor := Sqrt (Sqrt (X)); Exp_Low := Exp_Low - 0.25; -- exact end if; -- Exp_Low now is in interval (0.0, 0.25) -- This means it is safe to call Logarithmic_Pow -- for the remaining part. Factor := Factor * Logarithmic_Pow (X, Exp_Low); end if; elsif X = 0.0 then return 0.0; end if; -- Exp_High is non-zero integer smaller than 2**Double'Machine_Mantissa Exp_Int := Mantissa_Type (Exp_High); -- Standard way for processing integer powers > 0 while Exp_Int > 1 loop if (Exp_Int and 1) = 1 then -- Base**Y = Base**(Exp_Int - 1) * Exp_Int for Exp_Int > 0 Factor := Factor * Base; end if; -- Exp_Int is even and Exp_Int > 0, so -- Base**Y = (Base**2)**(Exp_Int / 2) Base := Base * Base; Exp_Int := Exp_Int / 2; end loop; -- Exp_Int = 1 or Exp_Int = 0 if Exp_Int = 1 then Factor := Base * Factor; end if; if Negative_Y then Factor := 1.0 / Factor; end if; return Factor; end Pow; --------- -- Sin -- --------- function Sin (X : Double) return Double is Reduced_X : Double := X; Result : Double; Quadrant : Natural range 0 .. 3; begin if abs X > Pi / 4.0 then Reduce (Reduced_X, Quadrant); case Quadrant is when 0 => Asm (Template => "fsin", Outputs => Double'Asm_Output ("=t", Result), Inputs => Double'Asm_Input ("0", Reduced_X)); when 1 => Asm (Template => "fcos", Outputs => Double'Asm_Output ("=t", Result), Inputs => Double'Asm_Input ("0", Reduced_X)); when 2 => Asm (Template => "fsin", Outputs => Double'Asm_Output ("=t", Result), Inputs => Double'Asm_Input ("0", -Reduced_X)); when 3 => Asm (Template => "fcos ; fchs", Outputs => Double'Asm_Output ("=t", Result), Inputs => Double'Asm_Input ("0", Reduced_X)); end case; else Asm (Template => "fsin", Outputs => Double'Asm_Output ("=t", Result), Inputs => Double'Asm_Input ("0", Reduced_X)); end if; return Result; end Sin; --------- -- Tan -- --------- function Tan (X : Double) return Double is Reduced_X : Double := X; Result : Double; Quadrant : Natural range 0 .. 3; begin if abs X > Pi / 4.0 then Reduce (Reduced_X, Quadrant); if Quadrant mod 2 = 0 then Asm (Template => "fptan" & NL & "ffree %%st(0)" & NL & "fincstp", Outputs => Double'Asm_Output ("=t", Result), Inputs => Double'Asm_Input ("0", Reduced_X)); else Asm (Template => "fsincos" & NL & "fdivp %%st, %%st(1)" & NL & "fchs", Outputs => Double'Asm_Output ("=t", Result), Inputs => Double'Asm_Input ("0", Reduced_X)); end if; else Asm (Template => "fptan " & NL & "ffree %%st(0) " & NL & "fincstp ", Outputs => Double'Asm_Output ("=t", Result), Inputs => Double'Asm_Input ("0", Reduced_X)); end if; return Result; end Tan; ---------- -- Sinh -- ---------- function Sinh (X : Double) return Double is begin -- Mathematically Sinh (x) is defined to be (Exp (X) - Exp (-X)) / 2.0 if abs X < 25.0 then return (Exp (X) - Exp (-X)) / 2.0; else return Exp (X) / 2.0; end if; end Sinh; ---------- -- Cosh -- ---------- function Cosh (X : Double) return Double is begin -- Mathematically Cosh (X) is defined to be (Exp (X) + Exp (-X)) / 2.0 if abs X < 22.0 then return (Exp (X) + Exp (-X)) / 2.0; else return Exp (X) / 2.0; end if; end Cosh; ---------- -- Tanh -- ---------- function Tanh (X : Double) return Double is begin -- Return the Hyperbolic Tangent of x -- x -x -- e - e Sinh (X) -- Tanh (X) is defined to be ----------- = -------- -- x -x Cosh (X) -- e + e if abs X > 23.0 then return Double'Copy_Sign (1.0, X); end if; return 1.0 / (1.0 + Exp (-(2.0 * X))) - 1.0 / (1.0 + Exp (2.0 * X)); end Tanh; end Ada.Numerics.Aux;