V "GNAT Lib v6" A -gnatwa A -nostdinc A -O2 A -Wextra A -Wall A -g A -gnatp A -gnatg A -mtune=generic A -march=i586 P ZX RN RV NO_EXCEPTIONS RV NO_FLOATING_POINT RV NO_DYNAMIC_SIZED_OBJECTS RV SPARK_05 U ada.numerics.generic_real_arrays%b a-ngrear.adb 2d95cba1 NE OL PK GE W ada%s ada.ads ada.ali W ada.containers%s a-contai.ads a-contai.ali W ada.containers.generic_anonymous_array_sort%s W ada.numerics%s a-numeri.ads a-numeri.ali W system%s system.ads system.ali W system.generic_array_operations%s s-gearop.adb s-gearop.ali U ada.numerics.generic_real_arrays%s a-ngrear.ads 3dc8e80b BN NE OL PU PK GE W ada.numerics%s a-numeri.ads a-numeri.ali D ada.ads 20070406091342 3ffc8e18 ada%s D a-contai.ads 20151020122137 61e5e089 ada.containers%s D a-cgaaso.ads 20101021101406 0179e0e0 ada.containers.generic_anonymous_array_sort%s D a-cgaaso.adb 20111104134501 a55922a1 ada.containers.generic_anonymous_array_sort%b D a-cogeso.ads 20111104134501 fb85939d ada.containers.generic_sort%s D a-numeri.ads 20080324174807 bb51c45a ada.numerics%s D a-ngrear.ads 20120307145339 86992c51 ada.numerics.generic_real_arrays%s D a-ngrear.adb 20120307144551 05e4fe6d ada.numerics.generic_real_arrays%b D a-unccon.ads 20070406091342 f9eb8f06 ada.unchecked_conversion%s D system.ads 20151123113124 2da59038 system%s D s-exctab.ads 20140225151139 54135002 system.exception_table%s D s-gearop.ads 20111013105608 82346945 system.generic_array_operations%s D s-stalib.ads 20151112104907 09bd3940 system.standard_library%s X 1 ada.ads 16K9*Ada 19e8 7|38r9 142r5 8|39r6 39r55 44r14 774r5 X 2 a-contai.ads 16K13*Containers 24e19 8|39r10 39r59 X 3 a-cgaaso.ads 39u26*Generic_Anonymous_Array_Sort 2|16k13 8|39w21 729r29 X 6 a-numeri.ads 16K13*Numerics 1|16k9 6|32e17 7|38r13 142r9 8|44r18 774r9 X 7 a-ngrear.ads 37F9 Real 43r52 44r70 57r54 59r54 63r25 64r46 65r46 94r25 95r46 96r46 103r50 . 8|48r30 51r24 56r23 61r23 62r23 68r23 72r26 79r43 91r49 95r36 95r53 103r41 . 106r35 115r36 115r53 116r24 117r24 127r41 128r23 141r29 142r29 149r29 150r29 . 157r29 158r29 159r29 167r29 168r29 169r29 177r29 178r29 185r29 186r29 193r29 . 194r29 195r29 203r29 204r29 205r29 213r29 214r29 215r29 222r29 223r29 224r29 . 231r29 232r29 233r29 240r29 241r29 242r29 249r29 250r29 251r29 258r29 259r29 . 260r29 267r29 268r29 269r29 277r29 278r29 279r29 287r29 288r29 289r29 297r29 . 298r29 299r29 306r29 307r29 308r29 315r29 316r29 326r29 327r29 334r29 335r29 . 341r38 343r53 347r29 354r29 399r25 402r46 405r25 408r46 413r52 434r46 437r46 . 444r48 457r50 460r11 554r37 554r50 555r11 557r36 557r49 561r60 568r60 569r16 . 582r19 583r19 629r58 656r37 658r37 659r37 660r37 661r37 38k22*Generic_Real_Arrays 6|16k13 7|37z9 39r17 142l18 142e37 8|44b27 774l18 . 774t37 43A9*Real_Vector 50r28 50r54 51r28 51r54 52r28 52r54 54r34 54r54 . 55r34 55r54 57r34 59r28 63r46 63r66 64r25 64r66 65r25 65r66 72r36 87r32 . 89r25 89r66 90r46 90r66 100r41 100r61 107r50 111r21 8|57r23 86r29 99r24 . 143r29 144r29 160r29 161r29 162r29 179r29 180r29 196r29 197r29 198r29 216r29 . 217r29 234r29 235r29 252r29 253r29 261r29 262r29 271r29 272r29 280r29 282r29 . 300r29 301r29 317r29 328r29 329r29 341r49 355r29 365r26 365r46 371r32 371r52 . 381r26 381r46 387r32 387r52 399r44 399r64 402r25 402r64 413r32 416r32 419r25 . 419r66 422r46 422r66 434r25 434r64 444r28 447r28 447r48 472r21 484r50 486r23 . 509r29 584r19 585r19 707r41 707r61 718r24 771r36 44A9*Real_Matrix 78r32 78r52 79r32 79r52 80r32 80r52 81r32 . 81r52 83r32 83r52 84r32 84r52 85r32 85r52 87r52 89r46 90r25 94r46 94r66 . 95r25 95r66 96r25 96r66 100r24 101r27 101r47 102r26 102r46 103r30 107r30 . 110r17 112r21 119r38 8|52r24 58r23 63r23 69r23 73r26 75r31 85r25 87r29 . 91r60 100r24 151r29 152r29 170r29 171r29 172r29 187r29 188r29 206r29 207r29 . 208r29 225r29 226r29 243r29 244r29 254r29 270r29 281r29 290r29 291r29 292r29 . 309r29 310r29 336r29 337r29 341r62 343r64 348r29 368r26 368r46 374r32 374r52 . 384r26 384r46 390r32 390r52 405r44 405r64 408r25 408r64 416r52 419r46 422r25 . 427r32 427r52 437r25 437r64 450r28 450r48 457r30 458r11 459r11 471r17 473r21 . 484r30 488r23 500r26 500r46 508r25 510r29 541r32 707r24 710r27 710r47 719r24 . 747r28 747r48 749r18 761r38 50V14*"+"{43A9} 50>20 8|365b14 50a20 Right{43A9} 8|365b18 51V14*"-"{43A9} 51>20 8|381b14 51a20 Right{43A9} 8|381b18 52V14*"abs"{43A9} 52>20 8|447b14 52a20 Right{43A9} 8|447b20 54V14*"+"{43A9} 54>20 54>26 8|371b14 693s27 54a20 Left{43A9} 8|371b18 54a26 Right{43A9} 8|371b24 55V14*"-"{43A9} 55>20 55>26 8|387b14 55a20 Left{43A9} 8|387b18 55a26 Right{43A9} 8|387b24 57V14*"*" 57>20 57>26 8|413b14 57a20 Left{43A9} 8|413b18 57a26 Right{43A9} 8|413b24 59V14*"abs" 59>20 8|444b14 59a20 Right{43A9} 8|444b20 63V14*"*"{43A9} 63>18 63>38 8|399b14 63*18 Left 8|399b18 63a38 Right{43A9} 8|399b36 64V14*"*"{43A9} 64>18 64>38 8|402b14 64a18 Left{43A9} 8|402b18 64*38 Right 8|402b38 65V14*"/"{43A9} 65>18 65>38 8|434b14 65a18 Left{43A9} 8|434b18 65*38 Right 8|434b38 69V13*Unit_Vector{43A9} 70>7 71>7 72>7 141r19 8|768b13 70i7 Index{integer} 8|769b7 71i7 Order{positive} 8|770b7 72i7 First{integer} 8|771b7 78V14*"+"{44A9} 78>24 8|368b14 78a24 Right{44A9} 8|368b18 79V14*"-"{44A9} 79>24 8|384b14 79a24 Right{44A9} 8|384b18 80V14*"abs"{44A9} 80>24 8|450b14 80a24 Right{44A9} 8|450b20 81V13*Transpose{44A9} 81>24 139r19 8|76s7 747b13 752l8 752t17 81a24 X{44A9} 8|747b24 749r31 749r44 750r21 83V14*"+"{44A9} 83>18 83>24 8|374b14 83a18 Left{44A9} 8|374b18 83a24 Right{44A9} 8|374b24 84V14*"-"{44A9} 84>18 84>24 8|390b14 84a18 Left{44A9} 8|390b18 84a24 Right{44A9} 8|390b24 85V14*"*"{44A9} 85>18 85>24 8|427b14 85a18 Left{44A9} 8|427b18 85a24 Right{44A9} 8|427b24 87V14*"*"{44A9} 87>18 87>24 8|416b14 87a18 Left{43A9} 8|416b18 87a24 Right{43A9} 8|416b24 89V14*"*"{43A9} 89>18 89>38 8|419b14 89a18 Left{43A9} 8|419b18 89a38 Right{44A9} 8|419b38 90V14*"*"{43A9} 90>18 90>38 8|422b14 90a18 Left{44A9} 8|422b18 90a38 Right{43A9} 8|422b38 94V14*"*"{44A9} 94>18 94>38 8|405b14 94*18 Left 8|405b18 94a38 Right{44A9} 8|405b36 95V14*"*"{44A9} 95>18 95>38 8|408b14 95a18 Left{44A9} 8|408b18 95*38 Right 8|408b38 96V14*"/"{44A9} 96>18 96>38 8|437b14 96a18 Left{44A9} 8|437b18 96*38 Right 8|437b38 100V13*Solve{43A9} 100>20 100>37 8|707b13 100a20 A{44A9} 8|707b20 100a37 X{43A9} 8|707b37 101V13*Solve{44A9} 101>20 101>23 8|501s7 710b13 101a20 A{44A9} 8|710b20 101a23 X{44A9} 8|710b23 102V13*Inverse{44A9} 102>22 137r19 8|500b13 102a22 A{44A9} 8|501r14 501r38 103V13*Determinant 103>26 8|457b13 464l8 464t19 103a26 A{44A9} 8|457b26 458r26 459r24 107V13*Eigenvalues{43A9} 107>26 136r19 8|484b13 494l8 494t19 107a26 A{44A9} 8|484b26 486r36 490r21 109U14*Eigensystem 110>7 111<7 112<7 8|470b14 478l8 478t19 110a7 A{44A9} 8|471b7 476r15 111a7 Values{43A9} 8|472b7 476m18 477m25 112a7 Vectors{44A9} 8|473b7 476m26 477m33 116V13*Unit_Matrix{44A9} 117>7 118>7 119>7 140r19 8|501s17 613s24 758b13 117i7 Order{positive} 8|759b7 118i7 First_1{integer} 8|760b7 119i7 First_2{integer} 8|761b7 X 8 a-ngrear.adb 46K12 Ops=46:31 50r37 55r29 60r39 67r33 71r32 106r25 48V13 Is_Non_Zero{boolean} 48>26 53r24 48*26 X 48r60 50U14 Back_Substitute[12|46] 12|401i22 415i22 55V13 Diagonal[12|56]{7|43A9} 614s17 60U14 Forward_Eliminate[12|76] 462s7 12|402i22 416i22 67U14 Swap_Column[12|437] 735s10 71U14 Transpose[12|446] 750s10 75V13 Is_Symmetric{boolean} 75>27 603s17 75a27 A{7|44A9} 76r18 76r23 79V13 Is_Tiny{boolean} 79>22 79>29 558s14 649s28 650s28 79*22 Value{7|37F9} 80r38 79*29 Compared_To{7|37F9} 80r11 80r51 558r26 649r51 650r51 84U14 Jacobi 85>7 86<7 87<7 88>7 476s7 490s13 507b14 701l8 701t14 85a7 A{7|44A9} 508b7 539r53 581r36 86a7 Values{7|43A9} 509b7 600r13 614m7 634r18 693m10 693r20 87a7 Vectors{7|44A9} 510b7 596r20 596r52 612m7 613r37 613r57 683r31 684m33 . 684r33 684r55 685m33 685r33 685r55 88b7 Compute_Vectors{boolean} 476r35 490r41 511b7 595r10 612r26 91V13 Length[12|88]{natural} 501s30 539s45 95U14 Rotate 95=22 95=25 95>42 95>47 115b14 121l8 121t14 672s25 676s25 680s25 . 684s25 95*22 X{7|37F9} 115b22 116r32 119m7 95*25 Y{7|37F9} 115b25 117r32 120m7 95*42 Sin{7|37F9} 115b42 119r20 120r20 95*47 Tau{7|37F9} 115b47 119r43 120r43 98U14 Sort_Eigensystem 99=7 100=7 477s7 491s13 717b14 741l8 741t24 99a7 Values{7|43A9} 718b7 726r10 726r26 734m16 734r16 734m31 734r31 735r39 . 736r40 740r13 740r27 100a7 Vectors{7|44A9} 719b7 735m23 735r54 736r55 103U14 Swap 103=20 103=26 127b14 132l8 132t12 734s10 103*20 Left{7|37F9} 127b20 128r31 130m7 103*26 Right{7|37F9} 127b26 130r15 131m7 106V13 Sqrt[12|428] 555s46 658s51 12|300i21 116*7 Old_X{7|37F9} 119r12 119r35 120r27 117*7 Old_Y{7|37F9} 119r27 120r12 120r35 128*7 Temp{7|37F9} 131r16 137K12 Instantiations 359l8 359e22 366r14 369r14 372r14 375r14 382r14 385r14 . 388r14 391r15 400r14 403r14 406r14 409r14 414r14 417r14 420r14 423r14 428r14 . 435r14 438r14 445r14 448r14 451r14 708r15 711r15 762r14 772r14 139V16 "+"[12|101]{7|43A9} 366r30 147V16 "+"[12|114]{7|44A9} 369r30 155V16 "+"[12|130]{7|43A9} 372r30 165V16 "+"[12|172]{7|44A9} 375r30 175V16 "-"[12|101]{7|43A9} 382r30 183V16 "-"[12|114]{7|44A9} 385r30 191V16 "-"[12|130]{7|43A9} 388r30 201V16 "-"[12|172]{7|44A9} 391r31 211V16 "*"[12|247]{7|43A9} 400r30 220V16 "*"[12|266]{7|44A9} 406r30 229V16 "*"[12|211]{7|43A9} 403r30 238V16 "*"[12|230]{7|44A9} 409r30 247V16 "*"[12|318]{7|44A9} 417r30 256V16 "*"[12|287]{7|37F9} 414r30 265V16 "*"[12|341]{7|43A9} 423r30 275V16 "*"[12|364]{7|43A9} 420r30 285V16 "*"[12|389]{7|44A9} 428r30 295V16 "/"[12|211]{7|43A9} 435r30 304V16 "/"[12|230]{7|44A9} 438r30 313V16 "abs"[12|301] 445r30 324V16 "abs"[12|101]{7|43A9} 448r30 332V16 "abs"[12|114]{7|44A9} 451r30 340V16 Solve[12|406]{7|43A9} 708r30 343V16 Solve[12|420]{7|44A9} 711r30 345V16 Unit_Matrix[12|481]{7|44A9} 762r29 352V16 Unit_Vector[12|495]{7|43A9} 772r29 458a7 M{7|44A9} 462m26 462r26 459a7 B{7|44A9} 462m29 462r29 460*7 R 462m32 463r14 486a14 Values{7|43A9} 490m24 491m31 491r31 488a13 Vectors{7|44A9} 490m32 491m39 491r39 538N7 Max_Iterations 616r37 539i7 N{natural} 541r50 541r58 572r26 573r35 584r37 585r37 596r42 596r74 . 600r30 629r64 637r26 638r35 679r42 541A15 Square_Matrix{7|44A9} 561r38 568r38 581r19 554V16 Compute_Tan{7|37F9} 554>29 559s16 554*29 Theta{7|37F9} 555r38 555r58 555r70 559r29 557V16 Compute_Tan{7|37F9} 557>29 557>32 656s45 557*29 P{7|37F9} 558r23 558r49 559r49 557*32 H{7|37F9} 558r41 558r53 559r38 561V16 Sum_Strict_Upper{7|37F9} 561>34 568b16 579l11 579t27 625s17 561a34 M{541A15} 568b34 574r33 569*10 Sum{7|37F9} 574m16 574r23 578r17 572i14 Row{integer} 573r24 574r36 573i17 Col{integer} 574r41 581a7 M{541A15} 603r31 614r27 625r35 649r37 650r37 652m19 654r26 656r58 661r51 . 669m22 672m33 672r33 672m45 672r45 676m33 676r33 676m45 676r45 680m33 680r33 . 680m45 680r45 582*7 Threshold{7|37F9} 629m10 654r41 583*7 Sum{7|37F9} 625m10 627r26 629r52 698r10 584a7 Diag{7|43A9} 634m10 649r66 650r66 657r48 657r61 666m22 666r36 667m22 . 667r36 585a7 Diag_Adj{7|43A9} 635m10 664m22 664r40 665m22 665r40 693r29 616l7 Sweep 627r15 694l16 694e21 616i19 Iteration{integer} 629r27 648r19 637i14 Row{integer} 638r24 649r40 649r72 650r40 652r22 654r29 656r61 657r67 . 661r54 664r32 664r50 666r28 666r42 669r25 671r36 672r39 675r31 676r36 680r36 . 684r45 638i17 Col{integer} 649r45 650r45 650r72 652r27 654r34 656r66 657r54 661r59 . 665r32 665r50 667r28 667r42 669r30 672r51 675r42 676r51 679r31 680r48 685r45 655q19 Perform_Rotation 688l23 688e39 656*22 Tan{7|37F9} 658r63 659r45 661r45 658*22 Cos{7|37F9} 659r51 660r58 659*22 Sin{7|37F9} 660r45 672r57 676r57 680r57 686r33 660*22 Tau{7|37F9} 672r62 676r62 680r62 686r38 661*22 Adj{7|37F9} 664r57 665r57 666r49 667r49 671i26 J{integer} 672r36 672r48 675i26 J{integer} 676r41 676r48 679i26 J{integer} 680r41 680r53 683i26 J{integer} 684r42 685r42 721U17 Swap 3|37i19 8|721>23 721>29 732b17 737l11 737t15 721i23 Left{integer} 732b23 734r24 735r32 721i29 Right{integer} 732b29 734r39 736r32 725V16 Less{boolean} 3|36i18 8|725>22 725>28 725i22 Left{integer} 726r18 725i28 Right{integer} 726r34 729U17 Sort[3|39] 740s7 749a14 R{7|44A9} 750m24 X 10 system.ads 37K9*System 8|41w6 41r18 42r6 42r43 46r24 10|200e11 X 12 s-gearop.ads 32K16*Generic_Array_Operations 8|42w13 42r50 46r31 346r9 353r9 12|500e36 40+12 Scalar 8|51r7 41A12 Matrix(40+12) 8|52r7 45V21 Is_Non_Zero{boolean} 8|53r7 46u14*Back_Substitute 8|50r41 53+12 Scalar 8|56r7 54A12 Vector(53+12) 8|57r7 55A12 Matrix(53+12) 8|58r7 56v13*Diagonal 8|55r33 67+12 Scalar 8|61r6 68F12 Real 8|62r6 69A12 Matrix(67+12) 8|63r6 74*7 Zero{67+12} 8|64r6 75*7 One{67+12} 8|65r6 76u14*Forward_Eliminate 8|60r43 88v13*Square_Matrix_Length 8|91r27 96+12 X_Scalar 8|141r12 177r12 326r12 97+12 Result_Scalar 8|142r12 178r12 327r12 98A12 X_Vector(96+12) 8|143r12 179r12 328r12 99A12 Result_Vector(97+12) 8|144r12 180r12 329r12 100V21 Operation{97+12} 8|145r12 181r12 330r12 101v13*Vector_Elementwise_Operation 8|140r9 176r9 325r9 108+12 X_Scalar 8|149r12 185r12 334r12 109+12 Result_Scalar 8|150r12 186r12 335r12 110A12 X_Matrix(108+12) 8|151r12 187r12 336r12 111A12 Result_Matrix(109+12) 8|152r12 188r12 337r12 113V21 Operation{109+12} 8|153r12 189r12 338r12 114v13*Matrix_Elementwise_Operation 8|148r9 184r9 333r9 121+12 Left_Scalar 8|157r12 193r12 122+12 Right_Scalar 8|158r12 194r12 123+12 Result_Scalar 8|159r12 195r12 124A12 Left_Vector(121+12) 8|160r12 196r12 125A12 Right_Vector(122+12) 8|161r12 197r12 126A12 Result_Vector(123+12) 8|162r12 198r12 127V21 Operation{123+12} 8|163r12 199r12 130v13*Vector_Vector_Elementwise_Operation 8|156r9 192r9 160+12 Left_Scalar 8|167r12 203r12 161+12 Right_Scalar 8|168r12 204r12 162+12 Result_Scalar 8|169r12 205r12 163A12 Left_Matrix(160+12) 8|170r12 206r12 165A12 Right_Matrix(161+12) 8|171r12 207r12 167A12 Result_Matrix(162+12) 8|172r12 208r12 169V21 Operation{162+12} 8|173r12 209r12 172v13*Matrix_Matrix_Elementwise_Operation 8|166r9 202r9 203+12 Left_Scalar 8|231r12 297r12 204+12 Right_Scalar 8|232r12 298r12 205+12 Result_Scalar 8|233r12 299r12 206A12 Left_Vector(203+12) 8|234r12 300r12 207A12 Result_Vector(205+12) 8|235r12 301r12 208V21 Operation{205+12} 8|236r12 302r12 211v13*Vector_Scalar_Elementwise_Operation 8|230r9 296r9 220+12 Left_Scalar 8|240r12 306r12 221+12 Right_Scalar 8|241r12 307r12 222+12 Result_Scalar 8|242r12 308r12 223A12 Left_Matrix(220+12) 8|243r12 309r12 225A12 Result_Matrix(222+12) 8|244r12 310r12 227V21 Operation{222+12} 8|245r12 311r12 230v13*Matrix_Scalar_Elementwise_Operation 8|239r9 305r9 239+12 Left_Scalar 8|213r12 240+12 Right_Scalar 8|214r12 241+12 Result_Scalar 8|215r12 242A12 Right_Vector(240+12) 8|216r12 243A12 Result_Vector(241+12) 8|217r12 244V21 Operation{241+12} 8|218r12 247v13*Scalar_Vector_Elementwise_Operation 8|212r9 256+12 Left_Scalar 8|222r12 257+12 Right_Scalar 8|223r12 258+12 Result_Scalar 8|224r12 259A12 Right_Matrix(257+12) 8|225r12 261A12 Result_Matrix(258+12) 8|226r12 263V21 Operation{258+12} 8|227r12 266v13*Scalar_Matrix_Elementwise_Operation 8|221r9 275+12 Left_Scalar 8|258r12 276+12 Right_Scalar 8|259r12 277+12 Result_Scalar 8|260r12 278A12 Left_Vector(275+12) 8|261r12 279A12 Right_Vector(276+12) 8|262r12 280*7 Zero{277+12} 8|263r12 287v13*Inner_Product 8|257r9 296+12 X_Scalar 8|315r12 297F12 Result_Real 8|316r12 298A12 X_Vector(296+12) 8|317r12 299V22 "abs"{297F12} 8|318r13 301v13*L2_Norm 8|314r9 308+12 Left_Scalar 8|249r12 309+12 Right_Scalar 8|250r12 310+12 Result_Scalar 8|251r12 311A12 Left_Vector(308+12) 8|252r12 312A12 Right_Vector(309+12) 8|253r12 313A12 Matrix(310+12) 8|254r12 318v13*Outer_Product 8|248r9 327+12 Left_Scalar 8|267r12 328+12 Right_Scalar 8|268r12 329+12 Result_Scalar 8|269r12 330A12 Matrix(327+12) 8|270r12 332A12 Right_Vector(328+12) 8|271r12 333A12 Result_Vector(329+12) 8|272r12 334*7 Zero{329+12} 8|273r12 341v13*Matrix_Vector_Product 8|266r9 350+12 Left_Scalar 8|277r12 351+12 Right_Scalar 8|278r12 352+12 Result_Scalar 8|279r12 353A12 Left_Vector(350+12) 8|280r12 354A12 Matrix(351+12) 8|281r12 356A12 Result_Vector(352+12) 8|282r12 357*7 Zero{352+12} 8|283r12 364v13*Vector_Matrix_Product 8|276r9 373+12 Left_Scalar 8|287r12 374+12 Right_Scalar 8|288r12 375+12 Result_Scalar 8|289r12 376A12 Left_Matrix(373+12) 8|290r12 378A12 Right_Matrix(374+12) 8|291r12 380A12 Result_Matrix(375+12) 8|292r12 382*7 Zero{375+12} 8|293r12 389v13*Matrix_Matrix_Product 8|286r9 406v13*Matrix_Vector_Solution 8|341r14 420v13*Matrix_Matrix_Solution 8|343r29 428v13*Sqrt 8|106r29 435+12 Scalar 8|68r6 436A12 Matrix(435+12) 8|69r6 437u14*Swap_Column 8|67r37 444+12 Scalar 8|72r9 445A12 Matrix(444+12) 8|73r9 446u14*Transpose 8|71r36 477+12 Scalar 8|347r12 478A12 Matrix(477+12) 8|348r12 479*7 Zero{477+12} 8|349r12 480*7 One{477+12} 8|350r12 481v13*Unit_Matrix 8|346r34 491+12 Scalar 8|354r12 492A12 Vector(491+12) 8|355r12 493*7 Zero{491+12} 8|356r12 494*7 One{491+12} 8|357r12 495v13*Unit_Vector 8|353r34