This repository has been archived on 2024-12-16. You can view files and clone it, but cannot push or open issues or pull requests.
CodeBlocksPortable/MinGW/lib/gcc/mingw32/6.3.0/adainclude/a-cforma.adb

1077 lines
27 KiB
Ada

------------------------------------------------------------------------------
-- --
-- GNAT LIBRARY COMPONENTS --
-- --
-- A D A . C O N T A I N E R S . F O R M A L _ O R D E R E D _ M A P S --
-- --
-- B o d y --
-- --
-- Copyright (C) 2010-2015, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
------------------------------------------------------------------------------
with Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations;
pragma Elaborate_All
(Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations);
with Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys;
pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys);
with System; use type System.Address;
package body Ada.Containers.Formal_Ordered_Maps with
SPARK_Mode => Off
is
-----------------------------
-- Node Access Subprograms --
-----------------------------
-- These subprograms provide a functional interface to access fields
-- of a node, and a procedural interface for modifying these values.
function Color
(Node : Node_Type) return Ada.Containers.Red_Black_Trees.Color_Type;
pragma Inline (Color);
function Left_Son (Node : Node_Type) return Count_Type;
pragma Inline (Left_Son);
function Parent (Node : Node_Type) return Count_Type;
pragma Inline (Parent);
function Right_Son (Node : Node_Type) return Count_Type;
pragma Inline (Right_Son);
procedure Set_Color
(Node : in out Node_Type;
Color : Ada.Containers.Red_Black_Trees.Color_Type);
pragma Inline (Set_Color);
procedure Set_Left (Node : in out Node_Type; Left : Count_Type);
pragma Inline (Set_Left);
procedure Set_Right (Node : in out Node_Type; Right : Count_Type);
pragma Inline (Set_Right);
procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type);
pragma Inline (Set_Parent);
-----------------------
-- Local Subprograms --
-----------------------
-- All need comments ???
generic
with procedure Set_Element (Node : in out Node_Type);
procedure Generic_Allocate
(Tree : in out Tree_Types.Tree_Type'Class;
Node : out Count_Type);
procedure Free (Tree : in out Map; X : Count_Type);
function Is_Greater_Key_Node
(Left : Key_Type;
Right : Node_Type) return Boolean;
pragma Inline (Is_Greater_Key_Node);
function Is_Less_Key_Node
(Left : Key_Type;
Right : Node_Type) return Boolean;
pragma Inline (Is_Less_Key_Node);
--------------------------
-- Local Instantiations --
--------------------------
package Tree_Operations is
new Red_Black_Trees.Generic_Bounded_Operations
(Tree_Types => Tree_Types,
Left => Left_Son,
Right => Right_Son);
use Tree_Operations;
package Key_Ops is
new Red_Black_Trees.Generic_Bounded_Keys
(Tree_Operations => Tree_Operations,
Key_Type => Key_Type,
Is_Less_Key_Node => Is_Less_Key_Node,
Is_Greater_Key_Node => Is_Greater_Key_Node);
---------
-- "=" --
---------
function "=" (Left, Right : Map) return Boolean is
Lst : Count_Type;
Node : Count_Type;
ENode : Count_Type;
begin
if Length (Left) /= Length (Right) then
return False;
end if;
if Is_Empty (Left) then
return True;
end if;
Lst := Next (Left, Last (Left).Node);
Node := First (Left).Node;
while Node /= Lst loop
ENode := Find (Right, Left.Nodes (Node).Key).Node;
if ENode = 0 or else
Left.Nodes (Node).Element /= Right.Nodes (ENode).Element
then
return False;
end if;
Node := Next (Left, Node);
end loop;
return True;
end "=";
------------
-- Assign --
------------
procedure Assign (Target : in out Map; Source : Map) is
procedure Append_Element (Source_Node : Count_Type);
procedure Append_Elements is
new Tree_Operations.Generic_Iteration (Append_Element);
--------------------
-- Append_Element --
--------------------
procedure Append_Element (Source_Node : Count_Type) is
SN : Node_Type renames Source.Nodes (Source_Node);
procedure Set_Element (Node : in out Node_Type);
pragma Inline (Set_Element);
function New_Node return Count_Type;
pragma Inline (New_Node);
procedure Insert_Post is new Key_Ops.Generic_Insert_Post (New_Node);
procedure Unconditional_Insert_Sans_Hint is
new Key_Ops.Generic_Unconditional_Insert (Insert_Post);
procedure Unconditional_Insert_Avec_Hint is
new Key_Ops.Generic_Unconditional_Insert_With_Hint
(Insert_Post,
Unconditional_Insert_Sans_Hint);
procedure Allocate is new Generic_Allocate (Set_Element);
--------------
-- New_Node --
--------------
function New_Node return Count_Type is
Result : Count_Type;
begin
Allocate (Target, Result);
return Result;
end New_Node;
-----------------
-- Set_Element --
-----------------
procedure Set_Element (Node : in out Node_Type) is
begin
Node.Key := SN.Key;
Node.Element := SN.Element;
end Set_Element;
Target_Node : Count_Type;
-- Start of processing for Append_Element
begin
Unconditional_Insert_Avec_Hint
(Tree => Target,
Hint => 0,
Key => SN.Key,
Node => Target_Node);
end Append_Element;
-- Start of processing for Assign
begin
if Target'Address = Source'Address then
return;
end if;
if Target.Capacity < Length (Source) then
raise Storage_Error with "not enough capacity"; -- SE or CE? ???
end if;
Tree_Operations.Clear_Tree (Target);
Append_Elements (Source);
end Assign;
-------------
-- Ceiling --
-------------
function Ceiling (Container : Map; Key : Key_Type) return Cursor is
Node : constant Count_Type := Key_Ops.Ceiling (Container, Key);
begin
if Node = 0 then
return No_Element;
end if;
return (Node => Node);
end Ceiling;
-----------
-- Clear --
-----------
procedure Clear (Container : in out Map) is
begin
Tree_Operations.Clear_Tree (Container);
end Clear;
-----------
-- Color --
-----------
function Color (Node : Node_Type) return Color_Type is
begin
return Node.Color;
end Color;
--------------
-- Contains --
--------------
function Contains (Container : Map; Key : Key_Type) return Boolean is
begin
return Find (Container, Key) /= No_Element;
end Contains;
----------
-- Copy --
----------
function Copy (Source : Map; Capacity : Count_Type := 0) return Map is
Node : Count_Type := 1;
N : Count_Type;
begin
if 0 < Capacity and then Capacity < Source.Capacity then
raise Capacity_Error;
end if;
return Target : Map (Count_Type'Max (Source.Capacity, Capacity)) do
if Length (Source) > 0 then
Target.Length := Source.Length;
Target.Root := Source.Root;
Target.First := Source.First;
Target.Last := Source.Last;
Target.Free := Source.Free;
while Node <= Source.Capacity loop
Target.Nodes (Node).Element :=
Source.Nodes (Node).Element;
Target.Nodes (Node).Key :=
Source.Nodes (Node).Key;
Target.Nodes (Node).Parent :=
Source.Nodes (Node).Parent;
Target.Nodes (Node).Left :=
Source.Nodes (Node).Left;
Target.Nodes (Node).Right :=
Source.Nodes (Node).Right;
Target.Nodes (Node).Color :=
Source.Nodes (Node).Color;
Target.Nodes (Node).Has_Element :=
Source.Nodes (Node).Has_Element;
Node := Node + 1;
end loop;
while Node <= Target.Capacity loop
N := Node;
Formal_Ordered_Maps.Free (Tree => Target, X => N);
Node := Node + 1;
end loop;
end if;
end return;
end Copy;
---------------------
-- Current_To_Last --
---------------------
function Current_To_Last (Container : Map; Current : Cursor) return Map is
Curs : Cursor := First (Container);
C : Map (Container.Capacity) := Copy (Container, Container.Capacity);
Node : Count_Type;
begin
if Curs = No_Element then
Clear (C);
return C;
elsif Current /= No_Element and not Has_Element (Container, Current) then
raise Constraint_Error;
else
while Curs.Node /= Current.Node loop
Node := Curs.Node;
Delete (C, Curs);
Curs := Next (Container, (Node => Node));
end loop;
return C;
end if;
end Current_To_Last;
------------
-- Delete --
------------
procedure Delete (Container : in out Map; Position : in out Cursor) is
begin
if not Has_Element (Container, Position) then
raise Constraint_Error with
"Position cursor of Delete has no element";
end if;
pragma Assert (Vet (Container, Position.Node),
"Position cursor of Delete is bad");
Tree_Operations.Delete_Node_Sans_Free (Container,
Position.Node);
Formal_Ordered_Maps.Free (Container, Position.Node);
end Delete;
procedure Delete (Container : in out Map; Key : Key_Type) is
X : constant Node_Access := Key_Ops.Find (Container, Key);
begin
if X = 0 then
raise Constraint_Error with "key not in map";
end if;
Tree_Operations.Delete_Node_Sans_Free (Container, X);
Formal_Ordered_Maps.Free (Container, X);
end Delete;
------------------
-- Delete_First --
------------------
procedure Delete_First (Container : in out Map) is
X : constant Node_Access := First (Container).Node;
begin
if X /= 0 then
Tree_Operations.Delete_Node_Sans_Free (Container, X);
Formal_Ordered_Maps.Free (Container, X);
end if;
end Delete_First;
-----------------
-- Delete_Last --
-----------------
procedure Delete_Last (Container : in out Map) is
X : constant Node_Access := Last (Container).Node;
begin
if X /= 0 then
Tree_Operations.Delete_Node_Sans_Free (Container, X);
Formal_Ordered_Maps.Free (Container, X);
end if;
end Delete_Last;
-------------
-- Element --
-------------
function Element (Container : Map; Position : Cursor) return Element_Type is
begin
if not Has_Element (Container, Position) then
raise Constraint_Error with
"Position cursor of function Element has no element";
end if;
pragma Assert (Vet (Container, Position.Node),
"Position cursor of function Element is bad");
return Container.Nodes (Position.Node).Element;
end Element;
function Element (Container : Map; Key : Key_Type) return Element_Type is
Node : constant Node_Access := Find (Container, Key).Node;
begin
if Node = 0 then
raise Constraint_Error with "key not in map";
end if;
return Container.Nodes (Node).Element;
end Element;
---------------------
-- Equivalent_Keys --
---------------------
function Equivalent_Keys (Left, Right : Key_Type) return Boolean is
begin
if Left < Right
or else Right < Left
then
return False;
else
return True;
end if;
end Equivalent_Keys;
-------------
-- Exclude --
-------------
procedure Exclude (Container : in out Map; Key : Key_Type) is
X : constant Node_Access := Key_Ops.Find (Container, Key);
begin
if X /= 0 then
Tree_Operations.Delete_Node_Sans_Free (Container, X);
Formal_Ordered_Maps.Free (Container, X);
end if;
end Exclude;
----------
-- Find --
----------
function Find (Container : Map; Key : Key_Type) return Cursor is
Node : constant Count_Type := Key_Ops.Find (Container, Key);
begin
if Node = 0 then
return No_Element;
end if;
return (Node => Node);
end Find;
-----------
-- First --
-----------
function First (Container : Map) return Cursor is
begin
if Length (Container) = 0 then
return No_Element;
end if;
return (Node => Container.First);
end First;
-------------------
-- First_Element --
-------------------
function First_Element (Container : Map) return Element_Type is
begin
if Is_Empty (Container) then
raise Constraint_Error with "map is empty";
end if;
return Container.Nodes (First (Container).Node).Element;
end First_Element;
---------------
-- First_Key --
---------------
function First_Key (Container : Map) return Key_Type is
begin
if Is_Empty (Container) then
raise Constraint_Error with "map is empty";
end if;
return Container.Nodes (First (Container).Node).Key;
end First_Key;
-----------------------
-- First_To_Previous --
-----------------------
function First_To_Previous
(Container : Map;
Current : Cursor) return Map
is
Curs : Cursor := Current;
C : Map (Container.Capacity) := Copy (Container, Container.Capacity);
Node : Count_Type;
begin
if Curs = No_Element then
return C;
elsif not Has_Element (Container, Curs) then
raise Constraint_Error;
else
while Curs.Node /= 0 loop
Node := Curs.Node;
Delete (C, Curs);
Curs := Next (Container, (Node => Node));
end loop;
return C;
end if;
end First_To_Previous;
-----------
-- Floor --
-----------
function Floor (Container : Map; Key : Key_Type) return Cursor is
Node : constant Count_Type := Key_Ops.Floor (Container, Key);
begin
if Node = 0 then
return No_Element;
end if;
return (Node => Node);
end Floor;
----------
-- Free --
----------
procedure Free
(Tree : in out Map;
X : Count_Type)
is
begin
Tree.Nodes (X).Has_Element := False;
Tree_Operations.Free (Tree, X);
end Free;
----------------------
-- Generic_Allocate --
----------------------
procedure Generic_Allocate
(Tree : in out Tree_Types.Tree_Type'Class;
Node : out Count_Type)
is
procedure Allocate is
new Tree_Operations.Generic_Allocate (Set_Element);
begin
Allocate (Tree, Node);
Tree.Nodes (Node).Has_Element := True;
end Generic_Allocate;
-----------------
-- Has_Element --
-----------------
function Has_Element (Container : Map; Position : Cursor) return Boolean is
begin
if Position.Node = 0 then
return False;
end if;
return Container.Nodes (Position.Node).Has_Element;
end Has_Element;
-------------
-- Include --
-------------
procedure Include
(Container : in out Map;
Key : Key_Type;
New_Item : Element_Type)
is
Position : Cursor;
Inserted : Boolean;
begin
Insert (Container, Key, New_Item, Position, Inserted);
if not Inserted then
declare
N : Node_Type renames Container.Nodes (Position.Node);
begin
N.Key := Key;
N.Element := New_Item;
end;
end if;
end Include;
procedure Insert
(Container : in out Map;
Key : Key_Type;
New_Item : Element_Type;
Position : out Cursor;
Inserted : out Boolean)
is
function New_Node return Node_Access;
-- Comment ???
procedure Insert_Post is
new Key_Ops.Generic_Insert_Post (New_Node);
procedure Insert_Sans_Hint is
new Key_Ops.Generic_Conditional_Insert (Insert_Post);
--------------
-- New_Node --
--------------
function New_Node return Node_Access is
procedure Initialize (Node : in out Node_Type);
procedure Allocate_Node is new Generic_Allocate (Initialize);
procedure Initialize (Node : in out Node_Type) is
begin
Node.Key := Key;
Node.Element := New_Item;
end Initialize;
X : Node_Access;
begin
Allocate_Node (Container, X);
return X;
end New_Node;
-- Start of processing for Insert
begin
Insert_Sans_Hint
(Container,
Key,
Position.Node,
Inserted);
end Insert;
procedure Insert
(Container : in out Map;
Key : Key_Type;
New_Item : Element_Type)
is
Position : Cursor;
Inserted : Boolean;
begin
Insert (Container, Key, New_Item, Position, Inserted);
if not Inserted then
raise Constraint_Error with "key already in map";
end if;
end Insert;
--------------
-- Is_Empty --
--------------
function Is_Empty (Container : Map) return Boolean is
begin
return Length (Container) = 0;
end Is_Empty;
-------------------------
-- Is_Greater_Key_Node --
-------------------------
function Is_Greater_Key_Node
(Left : Key_Type;
Right : Node_Type) return Boolean
is
begin
-- k > node same as node < k
return Right.Key < Left;
end Is_Greater_Key_Node;
----------------------
-- Is_Less_Key_Node --
----------------------
function Is_Less_Key_Node
(Left : Key_Type;
Right : Node_Type) return Boolean
is
begin
return Left < Right.Key;
end Is_Less_Key_Node;
---------
-- Key --
---------
function Key (Container : Map; Position : Cursor) return Key_Type is
begin
if not Has_Element (Container, Position) then
raise Constraint_Error with
"Position cursor of function Key has no element";
end if;
pragma Assert (Vet (Container, Position.Node),
"Position cursor of function Key is bad");
return Container.Nodes (Position.Node).Key;
end Key;
----------
-- Last --
----------
function Last (Container : Map) return Cursor is
begin
if Length (Container) = 0 then
return No_Element;
end if;
return (Node => Container.Last);
end Last;
------------------
-- Last_Element --
------------------
function Last_Element (Container : Map) return Element_Type is
begin
if Is_Empty (Container) then
raise Constraint_Error with "map is empty";
end if;
return Container.Nodes (Last (Container).Node).Element;
end Last_Element;
--------------
-- Last_Key --
--------------
function Last_Key (Container : Map) return Key_Type is
begin
if Is_Empty (Container) then
raise Constraint_Error with "map is empty";
end if;
return Container.Nodes (Last (Container).Node).Key;
end Last_Key;
--------------
-- Left_Son --
--------------
function Left_Son (Node : Node_Type) return Count_Type is
begin
return Node.Left;
end Left_Son;
------------
-- Length --
------------
function Length (Container : Map) return Count_Type is
begin
return Container.Length;
end Length;
----------
-- Move --
----------
procedure Move (Target : in out Map; Source : in out Map) is
NN : Tree_Types.Nodes_Type renames Source.Nodes;
X : Node_Access;
begin
if Target'Address = Source'Address then
return;
end if;
if Target.Capacity < Length (Source) then
raise Constraint_Error with -- ???
"Source length exceeds Target capacity";
end if;
Clear (Target);
loop
X := First (Source).Node;
exit when X = 0;
-- Here we insert a copy of the source element into the target, and
-- then delete the element from the source. Another possibility is
-- that delete it first (and hang onto its index), then insert it.
-- ???
Insert (Target, NN (X).Key, NN (X).Element); -- optimize???
Tree_Operations.Delete_Node_Sans_Free (Source, X);
Formal_Ordered_Maps.Free (Source, X);
end loop;
end Move;
----------
-- Next --
----------
procedure Next (Container : Map; Position : in out Cursor) is
begin
Position := Next (Container, Position);
end Next;
function Next (Container : Map; Position : Cursor) return Cursor is
begin
if Position = No_Element then
return No_Element;
end if;
if not Has_Element (Container, Position) then
raise Constraint_Error;
end if;
pragma Assert (Vet (Container, Position.Node),
"bad cursor in Next");
return (Node => Tree_Operations.Next (Container, Position.Node));
end Next;
-------------
-- Overlap --
-------------
function Overlap (Left, Right : Map) return Boolean is
begin
if Length (Left) = 0 or Length (Right) = 0 then
return False;
end if;
declare
L_Node : Count_Type := First (Left).Node;
R_Node : Count_Type := First (Right).Node;
L_Last : constant Count_Type := Next (Left, Last (Left).Node);
R_Last : constant Count_Type := Next (Right, Last (Right).Node);
begin
if Left'Address = Right'Address then
return True;
end if;
loop
if L_Node = L_Last
or else R_Node = R_Last
then
return False;
end if;
if Left.Nodes (L_Node).Key < Right.Nodes (R_Node).Key then
L_Node := Next (Left, L_Node);
elsif Right.Nodes (R_Node).Key < Left.Nodes (L_Node).Key then
R_Node := Next (Right, R_Node);
else
return True;
end if;
end loop;
end;
end Overlap;
------------
-- Parent --
------------
function Parent (Node : Node_Type) return Count_Type is
begin
return Node.Parent;
end Parent;
--------------
-- Previous --
--------------
procedure Previous (Container : Map; Position : in out Cursor) is
begin
Position := Previous (Container, Position);
end Previous;
function Previous (Container : Map; Position : Cursor) return Cursor is
begin
if Position = No_Element then
return No_Element;
end if;
if not Has_Element (Container, Position) then
raise Constraint_Error;
end if;
pragma Assert (Vet (Container, Position.Node),
"bad cursor in Previous");
declare
Node : constant Count_Type :=
Tree_Operations.Previous (Container, Position.Node);
begin
if Node = 0 then
return No_Element;
end if;
return (Node => Node);
end;
end Previous;
-------------
-- Replace --
-------------
procedure Replace
(Container : in out Map;
Key : Key_Type;
New_Item : Element_Type)
is
begin
declare
Node : constant Node_Access := Key_Ops.Find (Container, Key);
begin
if Node = 0 then
raise Constraint_Error with "key not in map";
end if;
declare
N : Node_Type renames Container.Nodes (Node);
begin
N.Key := Key;
N.Element := New_Item;
end;
end;
end Replace;
---------------------
-- Replace_Element --
---------------------
procedure Replace_Element
(Container : in out Map;
Position : Cursor;
New_Item : Element_Type)
is
begin
if not Has_Element (Container, Position) then
raise Constraint_Error with
"Position cursor of Replace_Element has no element";
end if;
pragma Assert (Vet (Container, Position.Node),
"Position cursor of Replace_Element is bad");
Container.Nodes (Position.Node).Element := New_Item;
end Replace_Element;
---------------
-- Right_Son --
---------------
function Right_Son (Node : Node_Type) return Count_Type is
begin
return Node.Right;
end Right_Son;
---------------
-- Set_Color --
---------------
procedure Set_Color (Node : in out Node_Type; Color : Color_Type) is
begin
Node.Color := Color;
end Set_Color;
--------------
-- Set_Left --
--------------
procedure Set_Left (Node : in out Node_Type; Left : Count_Type) is
begin
Node.Left := Left;
end Set_Left;
----------------
-- Set_Parent --
----------------
procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type) is
begin
Node.Parent := Parent;
end Set_Parent;
---------------
-- Set_Right --
---------------
procedure Set_Right (Node : in out Node_Type; Right : Count_Type) is
begin
Node.Right := Right;
end Set_Right;
------------------
-- Strict_Equal --
------------------
function Strict_Equal (Left, Right : Map) return Boolean is
LNode : Count_Type := First (Left).Node;
RNode : Count_Type := First (Right).Node;
begin
if Length (Left) /= Length (Right) then
return False;
end if;
while LNode = RNode loop
if LNode = 0 then
return True;
end if;
if Left.Nodes (LNode).Element /= Right.Nodes (RNode).Element
or else Left.Nodes (LNode).Key /= Right.Nodes (RNode).Key
then
exit;
end if;
LNode := Next (Left, LNode);
RNode := Next (Right, RNode);
end loop;
return False;
end Strict_Equal;
end Ada.Containers.Formal_Ordered_Maps;