This repository has been archived on 2024-12-16. You can view files and clone it, but cannot push or open issues or pull requests.
CodeBlocksPortable/MinGW/lib/gcc/mingw32/6.3.0/adainclude/a-cforse.adb

1545 lines
39 KiB
Ada

------------------------------------------------------------------------------
-- --
-- GNAT LIBRARY COMPONENTS --
-- --
-- A D A . C O N T A I N E R S . F O R M A L _ O R D E R E D _ S E T S --
-- --
-- B o d y --
-- --
-- Copyright (C) 2010-2015, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
------------------------------------------------------------------------------
with Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations;
pragma Elaborate_All
(Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations);
with Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys;
pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys);
with Ada.Containers.Red_Black_Trees.Generic_Bounded_Set_Operations;
pragma Elaborate_All
(Ada.Containers.Red_Black_Trees.Generic_Bounded_Set_Operations);
with System; use type System.Address;
package body Ada.Containers.Formal_Ordered_Sets with
SPARK_Mode => Off
is
------------------------------
-- Access to Fields of Node --
------------------------------
-- These subprograms provide functional notation for access to fields
-- of a node, and procedural notation for modifiying these fields.
function Color (Node : Node_Type) return Red_Black_Trees.Color_Type;
pragma Inline (Color);
function Left_Son (Node : Node_Type) return Count_Type;
pragma Inline (Left_Son);
function Parent (Node : Node_Type) return Count_Type;
pragma Inline (Parent);
function Right_Son (Node : Node_Type) return Count_Type;
pragma Inline (Right_Son);
procedure Set_Color
(Node : in out Node_Type;
Color : Red_Black_Trees.Color_Type);
pragma Inline (Set_Color);
procedure Set_Left (Node : in out Node_Type; Left : Count_Type);
pragma Inline (Set_Left);
procedure Set_Right (Node : in out Node_Type; Right : Count_Type);
pragma Inline (Set_Right);
procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type);
pragma Inline (Set_Parent);
-----------------------
-- Local Subprograms --
-----------------------
-- Comments needed???
generic
with procedure Set_Element (Node : in out Node_Type);
procedure Generic_Allocate
(Tree : in out Tree_Types.Tree_Type'Class;
Node : out Count_Type);
procedure Free (Tree : in out Set; X : Count_Type);
procedure Insert_Sans_Hint
(Container : in out Set;
New_Item : Element_Type;
Node : out Count_Type;
Inserted : out Boolean);
procedure Insert_With_Hint
(Dst_Set : in out Set;
Dst_Hint : Count_Type;
Src_Node : Node_Type;
Dst_Node : out Count_Type);
function Is_Greater_Element_Node
(Left : Element_Type;
Right : Node_Type) return Boolean;
pragma Inline (Is_Greater_Element_Node);
function Is_Less_Element_Node
(Left : Element_Type;
Right : Node_Type) return Boolean;
pragma Inline (Is_Less_Element_Node);
function Is_Less_Node_Node (L, R : Node_Type) return Boolean;
pragma Inline (Is_Less_Node_Node);
procedure Replace_Element
(Tree : in out Set;
Node : Count_Type;
Item : Element_Type);
--------------------------
-- Local Instantiations --
--------------------------
package Tree_Operations is
new Red_Black_Trees.Generic_Bounded_Operations
(Tree_Types,
Left => Left_Son,
Right => Right_Son);
use Tree_Operations;
package Element_Keys is
new Red_Black_Trees.Generic_Bounded_Keys
(Tree_Operations => Tree_Operations,
Key_Type => Element_Type,
Is_Less_Key_Node => Is_Less_Element_Node,
Is_Greater_Key_Node => Is_Greater_Element_Node);
package Set_Ops is
new Red_Black_Trees.Generic_Bounded_Set_Operations
(Tree_Operations => Tree_Operations,
Set_Type => Set,
Assign => Assign,
Insert_With_Hint => Insert_With_Hint,
Is_Less => Is_Less_Node_Node);
---------
-- "=" --
---------
function "=" (Left, Right : Set) return Boolean is
Lst : Count_Type;
Node : Count_Type;
ENode : Count_Type;
begin
if Length (Left) /= Length (Right) then
return False;
end if;
if Is_Empty (Left) then
return True;
end if;
Lst := Next (Left, Last (Left).Node);
Node := First (Left).Node;
while Node /= Lst loop
ENode := Find (Right, Left.Nodes (Node).Element).Node;
if ENode = 0
or else Left.Nodes (Node).Element /= Right.Nodes (ENode).Element
then
return False;
end if;
Node := Next (Left, Node);
end loop;
return True;
end "=";
------------
-- Assign --
------------
procedure Assign (Target : in out Set; Source : Set) is
procedure Append_Element (Source_Node : Count_Type);
procedure Append_Elements is
new Tree_Operations.Generic_Iteration (Append_Element);
--------------------
-- Append_Element --
--------------------
procedure Append_Element (Source_Node : Count_Type) is
SN : Node_Type renames Source.Nodes (Source_Node);
procedure Set_Element (Node : in out Node_Type);
pragma Inline (Set_Element);
function New_Node return Count_Type;
pragma Inline (New_Node);
procedure Insert_Post is
new Element_Keys.Generic_Insert_Post (New_Node);
procedure Unconditional_Insert_Sans_Hint is
new Element_Keys.Generic_Unconditional_Insert (Insert_Post);
procedure Unconditional_Insert_Avec_Hint is
new Element_Keys.Generic_Unconditional_Insert_With_Hint
(Insert_Post,
Unconditional_Insert_Sans_Hint);
procedure Allocate is new Generic_Allocate (Set_Element);
--------------
-- New_Node --
--------------
function New_Node return Count_Type is
Result : Count_Type;
begin
Allocate (Target, Result);
return Result;
end New_Node;
-----------------
-- Set_Element --
-----------------
procedure Set_Element (Node : in out Node_Type) is
begin
Node.Element := SN.Element;
end Set_Element;
-- Local variables
Target_Node : Count_Type;
-- Start of processing for Append_Element
begin
Unconditional_Insert_Avec_Hint
(Tree => Target,
Hint => 0,
Key => SN.Element,
Node => Target_Node);
end Append_Element;
-- Start of processing for Assign
begin
if Target'Address = Source'Address then
return;
end if;
if Target.Capacity < Source.Length then
raise Constraint_Error
with "Target capacity is less than Source length";
end if;
Tree_Operations.Clear_Tree (Target);
Append_Elements (Source);
end Assign;
-------------
-- Ceiling --
-------------
function Ceiling (Container : Set; Item : Element_Type) return Cursor is
Node : constant Count_Type := Element_Keys.Ceiling (Container, Item);
begin
if Node = 0 then
return No_Element;
end if;
return (Node => Node);
end Ceiling;
-----------
-- Clear --
-----------
procedure Clear (Container : in out Set) is
begin
Tree_Operations.Clear_Tree (Container);
end Clear;
-----------
-- Color --
-----------
function Color (Node : Node_Type) return Red_Black_Trees.Color_Type is
begin
return Node.Color;
end Color;
--------------
-- Contains --
--------------
function Contains
(Container : Set;
Item : Element_Type) return Boolean
is
begin
return Find (Container, Item) /= No_Element;
end Contains;
----------
-- Copy --
----------
function Copy (Source : Set; Capacity : Count_Type := 0) return Set is
Node : Count_Type;
N : Count_Type;
Target : Set (Count_Type'Max (Source.Capacity, Capacity));
begin
if 0 < Capacity and then Capacity < Source.Capacity then
raise Capacity_Error;
end if;
if Length (Source) > 0 then
Target.Length := Source.Length;
Target.Root := Source.Root;
Target.First := Source.First;
Target.Last := Source.Last;
Target.Free := Source.Free;
Node := 1;
while Node <= Source.Capacity loop
Target.Nodes (Node).Element :=
Source.Nodes (Node).Element;
Target.Nodes (Node).Parent :=
Source.Nodes (Node).Parent;
Target.Nodes (Node).Left :=
Source.Nodes (Node).Left;
Target.Nodes (Node).Right :=
Source.Nodes (Node).Right;
Target.Nodes (Node).Color :=
Source.Nodes (Node).Color;
Target.Nodes (Node).Has_Element :=
Source.Nodes (Node).Has_Element;
Node := Node + 1;
end loop;
while Node <= Target.Capacity loop
N := Node;
Formal_Ordered_Sets.Free (Tree => Target, X => N);
Node := Node + 1;
end loop;
end if;
return Target;
end Copy;
---------------------
-- Current_To_Last --
---------------------
function Current_To_Last (Container : Set; Current : Cursor) return Set is
Curs : Cursor := First (Container);
C : Set (Container.Capacity) := Copy (Container, Container.Capacity);
Node : Count_Type;
begin
if Curs = No_Element then
Clear (C);
return C;
end if;
if Current /= No_Element and not Has_Element (Container, Current) then
raise Constraint_Error;
end if;
while Curs.Node /= Current.Node loop
Node := Curs.Node;
Delete (C, Curs);
Curs := Next (Container, (Node => Node));
end loop;
return C;
end Current_To_Last;
------------
-- Delete --
------------
procedure Delete (Container : in out Set; Position : in out Cursor) is
begin
if not Has_Element (Container, Position) then
raise Constraint_Error with "Position cursor has no element";
end if;
pragma Assert (Vet (Container, Position.Node),
"bad cursor in Delete");
Tree_Operations.Delete_Node_Sans_Free (Container,
Position.Node);
Formal_Ordered_Sets.Free (Container, Position.Node);
Position := No_Element;
end Delete;
procedure Delete (Container : in out Set; Item : Element_Type) is
X : constant Count_Type := Element_Keys.Find (Container, Item);
begin
if X = 0 then
raise Constraint_Error with "attempt to delete element not in set";
end if;
Tree_Operations.Delete_Node_Sans_Free (Container, X);
Formal_Ordered_Sets.Free (Container, X);
end Delete;
------------------
-- Delete_First --
------------------
procedure Delete_First (Container : in out Set) is
X : constant Count_Type := Container.First;
begin
if X /= 0 then
Tree_Operations.Delete_Node_Sans_Free (Container, X);
Formal_Ordered_Sets.Free (Container, X);
end if;
end Delete_First;
-----------------
-- Delete_Last --
-----------------
procedure Delete_Last (Container : in out Set) is
X : constant Count_Type := Container.Last;
begin
if X /= 0 then
Tree_Operations.Delete_Node_Sans_Free (Container, X);
Formal_Ordered_Sets.Free (Container, X);
end if;
end Delete_Last;
----------------
-- Difference --
----------------
procedure Difference (Target : in out Set; Source : Set) is
begin
Set_Ops.Set_Difference (Target, Source);
end Difference;
function Difference (Left, Right : Set) return Set is
begin
if Left'Address = Right'Address then
return Empty_Set;
end if;
if Length (Left) = 0 then
return Empty_Set;
end if;
if Length (Right) = 0 then
return Left.Copy;
end if;
return S : Set (Length (Left)) do
Assign (S, Set_Ops.Set_Difference (Left, Right));
end return;
end Difference;
-------------
-- Element --
-------------
function Element (Container : Set; Position : Cursor) return Element_Type is
begin
if not Has_Element (Container, Position) then
raise Constraint_Error with "Position cursor has no element";
end if;
pragma Assert (Vet (Container, Position.Node),
"bad cursor in Element");
return Container.Nodes (Position.Node).Element;
end Element;
-------------------------
-- Equivalent_Elements --
-------------------------
function Equivalent_Elements (Left, Right : Element_Type) return Boolean is
begin
if Left < Right
or else Right < Left
then
return False;
else
return True;
end if;
end Equivalent_Elements;
---------------------
-- Equivalent_Sets --
---------------------
function Equivalent_Sets (Left, Right : Set) return Boolean is
function Is_Equivalent_Node_Node
(L, R : Node_Type) return Boolean;
pragma Inline (Is_Equivalent_Node_Node);
function Is_Equivalent is
new Tree_Operations.Generic_Equal (Is_Equivalent_Node_Node);
-----------------------------
-- Is_Equivalent_Node_Node --
-----------------------------
function Is_Equivalent_Node_Node (L, R : Node_Type) return Boolean is
begin
if L.Element < R.Element then
return False;
elsif R.Element < L.Element then
return False;
else
return True;
end if;
end Is_Equivalent_Node_Node;
-- Start of processing for Equivalent_Sets
begin
return Is_Equivalent (Left, Right);
end Equivalent_Sets;
-------------
-- Exclude --
-------------
procedure Exclude (Container : in out Set; Item : Element_Type) is
X : constant Count_Type := Element_Keys.Find (Container, Item);
begin
if X /= 0 then
Tree_Operations.Delete_Node_Sans_Free (Container, X);
Formal_Ordered_Sets.Free (Container, X);
end if;
end Exclude;
----------
-- Find --
----------
function Find (Container : Set; Item : Element_Type) return Cursor is
Node : constant Count_Type := Element_Keys.Find (Container, Item);
begin
if Node = 0 then
return No_Element;
end if;
return (Node => Node);
end Find;
-----------
-- First --
-----------
function First (Container : Set) return Cursor is
begin
if Length (Container) = 0 then
return No_Element;
end if;
return (Node => Container.First);
end First;
-------------------
-- First_Element --
-------------------
function First_Element (Container : Set) return Element_Type is
Fst : constant Count_Type := First (Container).Node;
begin
if Fst = 0 then
raise Constraint_Error with "set is empty";
end if;
declare
N : Tree_Types.Nodes_Type renames Container.Nodes;
begin
return N (Fst).Element;
end;
end First_Element;
-----------------------
-- First_To_Previous --
-----------------------
function First_To_Previous
(Container : Set;
Current : Cursor) return Set
is
Curs : Cursor := Current;
C : Set (Container.Capacity) := Copy (Container, Container.Capacity);
Node : Count_Type;
begin
if Curs = No_Element then
return C;
elsif not Has_Element (Container, Curs) then
raise Constraint_Error;
else
while Curs.Node /= 0 loop
Node := Curs.Node;
Delete (C, Curs);
Curs := Next (Container, (Node => Node));
end loop;
return C;
end if;
end First_To_Previous;
-----------
-- Floor --
-----------
function Floor (Container : Set; Item : Element_Type) return Cursor is
begin
declare
Node : constant Count_Type := Element_Keys.Floor (Container, Item);
begin
if Node = 0 then
return No_Element;
end if;
return (Node => Node);
end;
end Floor;
----------
-- Free --
----------
procedure Free (Tree : in out Set; X : Count_Type) is
begin
Tree.Nodes (X).Has_Element := False;
Tree_Operations.Free (Tree, X);
end Free;
----------------------
-- Generic_Allocate --
----------------------
procedure Generic_Allocate
(Tree : in out Tree_Types.Tree_Type'Class;
Node : out Count_Type)
is
procedure Allocate is
new Tree_Operations.Generic_Allocate (Set_Element);
begin
Allocate (Tree, Node);
Tree.Nodes (Node).Has_Element := True;
end Generic_Allocate;
------------------
-- Generic_Keys --
------------------
package body Generic_Keys with SPARK_Mode => Off is
-----------------------
-- Local Subprograms --
-----------------------
function Is_Greater_Key_Node
(Left : Key_Type;
Right : Node_Type) return Boolean;
pragma Inline (Is_Greater_Key_Node);
function Is_Less_Key_Node
(Left : Key_Type;
Right : Node_Type) return Boolean;
pragma Inline (Is_Less_Key_Node);
--------------------------
-- Local Instantiations --
--------------------------
package Key_Keys is
new Red_Black_Trees.Generic_Bounded_Keys
(Tree_Operations => Tree_Operations,
Key_Type => Key_Type,
Is_Less_Key_Node => Is_Less_Key_Node,
Is_Greater_Key_Node => Is_Greater_Key_Node);
-------------
-- Ceiling --
-------------
function Ceiling (Container : Set; Key : Key_Type) return Cursor is
Node : constant Count_Type := Key_Keys.Ceiling (Container, Key);
begin
if Node = 0 then
return No_Element;
end if;
return (Node => Node);
end Ceiling;
--------------
-- Contains --
--------------
function Contains (Container : Set; Key : Key_Type) return Boolean is
begin
return Find (Container, Key) /= No_Element;
end Contains;
------------
-- Delete --
------------
procedure Delete (Container : in out Set; Key : Key_Type) is
X : constant Count_Type := Key_Keys.Find (Container, Key);
begin
if X = 0 then
raise Constraint_Error with "attempt to delete key not in set";
end if;
Delete_Node_Sans_Free (Container, X);
Formal_Ordered_Sets.Free (Container, X);
end Delete;
-------------
-- Element --
-------------
function Element (Container : Set; Key : Key_Type) return Element_Type is
Node : constant Count_Type := Key_Keys.Find (Container, Key);
begin
if Node = 0 then
raise Constraint_Error with "key not in set";
end if;
declare
N : Tree_Types.Nodes_Type renames Container.Nodes;
begin
return N (Node).Element;
end;
end Element;
---------------------
-- Equivalent_Keys --
---------------------
function Equivalent_Keys (Left, Right : Key_Type) return Boolean is
begin
if Left < Right
or else Right < Left
then
return False;
else
return True;
end if;
end Equivalent_Keys;
-------------
-- Exclude --
-------------
procedure Exclude (Container : in out Set; Key : Key_Type) is
X : constant Count_Type := Key_Keys.Find (Container, Key);
begin
if X /= 0 then
Delete_Node_Sans_Free (Container, X);
Formal_Ordered_Sets.Free (Container, X);
end if;
end Exclude;
----------
-- Find --
----------
function Find (Container : Set; Key : Key_Type) return Cursor is
Node : constant Count_Type := Key_Keys.Find (Container, Key);
begin
return (if Node = 0 then No_Element else (Node => Node));
end Find;
-----------
-- Floor --
-----------
function Floor (Container : Set; Key : Key_Type) return Cursor is
Node : constant Count_Type := Key_Keys.Floor (Container, Key);
begin
return (if Node = 0 then No_Element else (Node => Node));
end Floor;
-------------------------
-- Is_Greater_Key_Node --
-------------------------
function Is_Greater_Key_Node
(Left : Key_Type;
Right : Node_Type) return Boolean
is
begin
return Key (Right.Element) < Left;
end Is_Greater_Key_Node;
----------------------
-- Is_Less_Key_Node --
----------------------
function Is_Less_Key_Node
(Left : Key_Type;
Right : Node_Type) return Boolean
is
begin
return Left < Key (Right.Element);
end Is_Less_Key_Node;
---------
-- Key --
---------
function Key (Container : Set; Position : Cursor) return Key_Type is
begin
if not Has_Element (Container, Position) then
raise Constraint_Error with
"Position cursor has no element";
end if;
pragma Assert (Vet (Container, Position.Node),
"bad cursor in Key");
declare
N : Tree_Types.Nodes_Type renames Container.Nodes;
begin
return Key (N (Position.Node).Element);
end;
end Key;
-------------
-- Replace --
-------------
procedure Replace
(Container : in out Set;
Key : Key_Type;
New_Item : Element_Type)
is
Node : constant Count_Type := Key_Keys.Find (Container, Key);
begin
if not Has_Element (Container, (Node => Node)) then
raise Constraint_Error with
"attempt to replace key not in set";
else
Replace_Element (Container, Node, New_Item);
end if;
end Replace;
end Generic_Keys;
-----------------
-- Has_Element --
-----------------
function Has_Element (Container : Set; Position : Cursor) return Boolean is
begin
if Position.Node = 0 then
return False;
else
return Container.Nodes (Position.Node).Has_Element;
end if;
end Has_Element;
-------------
-- Include --
-------------
procedure Include (Container : in out Set; New_Item : Element_Type) is
Position : Cursor;
Inserted : Boolean;
begin
Insert (Container, New_Item, Position, Inserted);
if not Inserted then
declare
N : Tree_Types.Nodes_Type renames Container.Nodes;
begin
N (Position.Node).Element := New_Item;
end;
end if;
end Include;
------------
-- Insert --
------------
procedure Insert
(Container : in out Set;
New_Item : Element_Type;
Position : out Cursor;
Inserted : out Boolean)
is
begin
Insert_Sans_Hint (Container, New_Item, Position.Node, Inserted);
end Insert;
procedure Insert
(Container : in out Set;
New_Item : Element_Type)
is
Position : Cursor;
Inserted : Boolean;
begin
Insert (Container, New_Item, Position, Inserted);
if not Inserted then
raise Constraint_Error with
"attempt to insert element already in set";
end if;
end Insert;
----------------------
-- Insert_Sans_Hint --
----------------------
procedure Insert_Sans_Hint
(Container : in out Set;
New_Item : Element_Type;
Node : out Count_Type;
Inserted : out Boolean)
is
procedure Set_Element (Node : in out Node_Type);
function New_Node return Count_Type;
pragma Inline (New_Node);
procedure Insert_Post is
new Element_Keys.Generic_Insert_Post (New_Node);
procedure Conditional_Insert_Sans_Hint is
new Element_Keys.Generic_Conditional_Insert (Insert_Post);
procedure Allocate is new Generic_Allocate (Set_Element);
--------------
-- New_Node --
--------------
function New_Node return Count_Type is
Result : Count_Type;
begin
Allocate (Container, Result);
return Result;
end New_Node;
-----------------
-- Set_Element --
-----------------
procedure Set_Element (Node : in out Node_Type) is
begin
Node.Element := New_Item;
end Set_Element;
-- Start of processing for Insert_Sans_Hint
begin
Conditional_Insert_Sans_Hint
(Container,
New_Item,
Node,
Inserted);
end Insert_Sans_Hint;
----------------------
-- Insert_With_Hint --
----------------------
procedure Insert_With_Hint
(Dst_Set : in out Set;
Dst_Hint : Count_Type;
Src_Node : Node_Type;
Dst_Node : out Count_Type)
is
Success : Boolean;
pragma Unreferenced (Success);
procedure Set_Element (Node : in out Node_Type);
function New_Node return Count_Type;
pragma Inline (New_Node);
procedure Insert_Post is
new Element_Keys.Generic_Insert_Post (New_Node);
procedure Insert_Sans_Hint is
new Element_Keys.Generic_Conditional_Insert (Insert_Post);
procedure Local_Insert_With_Hint is
new Element_Keys.Generic_Conditional_Insert_With_Hint
(Insert_Post, Insert_Sans_Hint);
procedure Allocate is new Generic_Allocate (Set_Element);
--------------
-- New_Node --
--------------
function New_Node return Count_Type is
Result : Count_Type;
begin
Allocate (Dst_Set, Result);
return Result;
end New_Node;
-----------------
-- Set_Element --
-----------------
procedure Set_Element (Node : in out Node_Type) is
begin
Node.Element := Src_Node.Element;
end Set_Element;
-- Start of processing for Insert_With_Hint
begin
Local_Insert_With_Hint
(Dst_Set,
Dst_Hint,
Src_Node.Element,
Dst_Node,
Success);
end Insert_With_Hint;
------------------
-- Intersection --
------------------
procedure Intersection (Target : in out Set; Source : Set) is
begin
Set_Ops.Set_Intersection (Target, Source);
end Intersection;
function Intersection (Left, Right : Set) return Set is
begin
if Left'Address = Right'Address then
return Left.Copy;
end if;
return S : Set (Count_Type'Min (Length (Left), Length (Right))) do
Assign (S, Set_Ops.Set_Intersection (Left, Right));
end return;
end Intersection;
--------------
-- Is_Empty --
--------------
function Is_Empty (Container : Set) return Boolean is
begin
return Length (Container) = 0;
end Is_Empty;
-----------------------------
-- Is_Greater_Element_Node --
-----------------------------
function Is_Greater_Element_Node
(Left : Element_Type;
Right : Node_Type) return Boolean
is
begin
-- Compute e > node same as node < e
return Right.Element < Left;
end Is_Greater_Element_Node;
--------------------------
-- Is_Less_Element_Node --
--------------------------
function Is_Less_Element_Node
(Left : Element_Type;
Right : Node_Type) return Boolean
is
begin
return Left < Right.Element;
end Is_Less_Element_Node;
-----------------------
-- Is_Less_Node_Node --
-----------------------
function Is_Less_Node_Node (L, R : Node_Type) return Boolean is
begin
return L.Element < R.Element;
end Is_Less_Node_Node;
---------------
-- Is_Subset --
---------------
function Is_Subset (Subset : Set; Of_Set : Set) return Boolean is
begin
return Set_Ops.Set_Subset (Subset, Of_Set => Of_Set);
end Is_Subset;
----------
-- Last --
----------
function Last (Container : Set) return Cursor is
begin
return (if Length (Container) = 0
then No_Element
else (Node => Container.Last));
end Last;
------------------
-- Last_Element --
------------------
function Last_Element (Container : Set) return Element_Type is
begin
if Last (Container).Node = 0 then
raise Constraint_Error with "set is empty";
end if;
declare
N : Tree_Types.Nodes_Type renames Container.Nodes;
begin
return N (Last (Container).Node).Element;
end;
end Last_Element;
--------------
-- Left_Son --
--------------
function Left_Son (Node : Node_Type) return Count_Type is
begin
return Node.Left;
end Left_Son;
------------
-- Length --
------------
function Length (Container : Set) return Count_Type is
begin
return Container.Length;
end Length;
----------
-- Move --
----------
procedure Move (Target : in out Set; Source : in out Set) is
N : Tree_Types.Nodes_Type renames Source.Nodes;
X : Count_Type;
begin
if Target'Address = Source'Address then
return;
end if;
if Target.Capacity < Length (Source) then
raise Constraint_Error with -- ???
"Source length exceeds Target capacity";
end if;
Clear (Target);
loop
X := Source.First;
exit when X = 0;
Insert (Target, N (X).Element); -- optimize???
Tree_Operations.Delete_Node_Sans_Free (Source, X);
Formal_Ordered_Sets.Free (Source, X);
end loop;
end Move;
----------
-- Next --
----------
function Next (Container : Set; Position : Cursor) return Cursor is
begin
if Position = No_Element then
return No_Element;
end if;
if not Has_Element (Container, Position) then
raise Constraint_Error;
end if;
pragma Assert (Vet (Container, Position.Node),
"bad cursor in Next");
return (Node => Tree_Operations.Next (Container, Position.Node));
end Next;
procedure Next (Container : Set; Position : in out Cursor) is
begin
Position := Next (Container, Position);
end Next;
-------------
-- Overlap --
-------------
function Overlap (Left, Right : Set) return Boolean is
begin
return Set_Ops.Set_Overlap (Left, Right);
end Overlap;
------------
-- Parent --
------------
function Parent (Node : Node_Type) return Count_Type is
begin
return Node.Parent;
end Parent;
--------------
-- Previous --
--------------
function Previous (Container : Set; Position : Cursor) return Cursor is
begin
if Position = No_Element then
return No_Element;
end if;
if not Has_Element (Container, Position) then
raise Constraint_Error;
end if;
pragma Assert (Vet (Container, Position.Node),
"bad cursor in Previous");
declare
Node : constant Count_Type :=
Tree_Operations.Previous (Container, Position.Node);
begin
return (if Node = 0 then No_Element else (Node => Node));
end;
end Previous;
procedure Previous (Container : Set; Position : in out Cursor) is
begin
Position := Previous (Container, Position);
end Previous;
-------------
-- Replace --
-------------
procedure Replace (Container : in out Set; New_Item : Element_Type) is
Node : constant Count_Type := Element_Keys.Find (Container, New_Item);
begin
if Node = 0 then
raise Constraint_Error with
"attempt to replace element not in set";
end if;
Container.Nodes (Node).Element := New_Item;
end Replace;
---------------------
-- Replace_Element --
---------------------
procedure Replace_Element
(Tree : in out Set;
Node : Count_Type;
Item : Element_Type)
is
pragma Assert (Node /= 0);
function New_Node return Count_Type;
pragma Inline (New_Node);
procedure Local_Insert_Post is
new Element_Keys.Generic_Insert_Post (New_Node);
procedure Local_Insert_Sans_Hint is
new Element_Keys.Generic_Conditional_Insert (Local_Insert_Post);
procedure Local_Insert_With_Hint is
new Element_Keys.Generic_Conditional_Insert_With_Hint
(Local_Insert_Post,
Local_Insert_Sans_Hint);
NN : Tree_Types.Nodes_Type renames Tree.Nodes;
--------------
-- New_Node --
--------------
function New_Node return Count_Type is
N : Node_Type renames NN (Node);
begin
N.Element := Item;
N.Color := Red;
N.Parent := 0;
N.Right := 0;
N.Left := 0;
return Node;
end New_Node;
Hint : Count_Type;
Result : Count_Type;
Inserted : Boolean;
-- Start of processing for Insert
begin
if Item < NN (Node).Element
or else NN (Node).Element < Item
then
null;
else
NN (Node).Element := Item;
return;
end if;
Hint := Element_Keys.Ceiling (Tree, Item);
if Hint = 0 then
null;
elsif Item < NN (Hint).Element then
if Hint = Node then
NN (Node).Element := Item;
return;
end if;
else
pragma Assert (not (NN (Hint).Element < Item));
raise Program_Error with "attempt to replace existing element";
end if;
Tree_Operations.Delete_Node_Sans_Free (Tree, Node);
Local_Insert_With_Hint
(Tree => Tree,
Position => Hint,
Key => Item,
Node => Result,
Inserted => Inserted);
pragma Assert (Inserted);
pragma Assert (Result = Node);
end Replace_Element;
procedure Replace_Element
(Container : in out Set;
Position : Cursor;
New_Item : Element_Type)
is
begin
if not Has_Element (Container, Position) then
raise Constraint_Error with
"Position cursor has no element";
end if;
pragma Assert (Vet (Container, Position.Node),
"bad cursor in Replace_Element");
Replace_Element (Container, Position.Node, New_Item);
end Replace_Element;
---------------
-- Right_Son --
---------------
function Right_Son (Node : Node_Type) return Count_Type is
begin
return Node.Right;
end Right_Son;
---------------
-- Set_Color --
---------------
procedure Set_Color
(Node : in out Node_Type;
Color : Red_Black_Trees.Color_Type)
is
begin
Node.Color := Color;
end Set_Color;
--------------
-- Set_Left --
--------------
procedure Set_Left (Node : in out Node_Type; Left : Count_Type) is
begin
Node.Left := Left;
end Set_Left;
----------------
-- Set_Parent --
----------------
procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type) is
begin
Node.Parent := Parent;
end Set_Parent;
---------------
-- Set_Right --
---------------
procedure Set_Right (Node : in out Node_Type; Right : Count_Type) is
begin
Node.Right := Right;
end Set_Right;
------------------
-- Strict_Equal --
------------------
function Strict_Equal (Left, Right : Set) return Boolean is
LNode : Count_Type := First (Left).Node;
RNode : Count_Type := First (Right).Node;
begin
if Length (Left) /= Length (Right) then
return False;
end if;
while LNode = RNode loop
if LNode = 0 then
return True;
end if;
if Left.Nodes (LNode).Element /= Right.Nodes (RNode).Element then
exit;
end if;
LNode := Next (Left, LNode);
RNode := Next (Right, RNode);
end loop;
return False;
end Strict_Equal;
--------------------------
-- Symmetric_Difference --
--------------------------
procedure Symmetric_Difference (Target : in out Set; Source : Set) is
begin
Set_Ops.Set_Symmetric_Difference (Target, Source);
end Symmetric_Difference;
function Symmetric_Difference (Left, Right : Set) return Set is
begin
if Left'Address = Right'Address then
return Empty_Set;
end if;
if Length (Right) = 0 then
return Left.Copy;
end if;
if Length (Left) = 0 then
return Right.Copy;
end if;
return S : Set (Length (Left) + Length (Right)) do
Assign (S, Set_Ops.Set_Symmetric_Difference (Left, Right));
end return;
end Symmetric_Difference;
------------
-- To_Set --
------------
function To_Set (New_Item : Element_Type) return Set is
Node : Count_Type;
Inserted : Boolean;
begin
return S : Set (Capacity => 1) do
Insert_Sans_Hint (S, New_Item, Node, Inserted);
pragma Assert (Inserted);
end return;
end To_Set;
-----------
-- Union --
-----------
procedure Union (Target : in out Set; Source : Set) is
begin
Set_Ops.Set_Union (Target, Source);
end Union;
function Union (Left, Right : Set) return Set is
begin
if Left'Address = Right'Address then
return Left.Copy;
end if;
if Length (Left) = 0 then
return Right.Copy;
end if;
if Length (Right) = 0 then
return Left.Copy;
end if;
return S : Set (Length (Left) + Length (Right)) do
Assign (S, Source => Left);
Union (S, Right);
end return;
end Union;
end Ada.Containers.Formal_Ordered_Sets;