This repository has been archived on 2024-12-16. You can view files and clone it, but cannot push or open issues or pull requests.
CodeBlocksPortable/MinGW/lib/gcc/mingw32/6.3.0/adainclude/a-ciormu.adb

2014 lines
55 KiB
Ada

------------------------------------------------------------------------------
-- --
-- GNAT LIBRARY COMPONENTS --
-- --
-- ADA.CONTAINERS.INDEFINITE_ORDERED_MULTISETS --
-- --
-- B o d y --
-- --
-- Copyright (C) 2004-2015, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- This unit was originally developed by Matthew J Heaney. --
------------------------------------------------------------------------------
with Ada.Unchecked_Deallocation;
with Ada.Containers.Red_Black_Trees.Generic_Operations;
pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Operations);
with Ada.Containers.Red_Black_Trees.Generic_Keys;
pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Keys);
with Ada.Containers.Red_Black_Trees.Generic_Set_Operations;
pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Set_Operations);
with System; use type System.Address;
package body Ada.Containers.Indefinite_Ordered_Multisets is
pragma Warnings (Off, "variable ""Busy*"" is not referenced");
pragma Warnings (Off, "variable ""Lock*"" is not referenced");
-- See comment in Ada.Containers.Helpers
-----------------------------
-- Node Access Subprograms --
-----------------------------
-- These subprograms provide a functional interface to access fields
-- of a node, and a procedural interface for modifying these values.
function Color (Node : Node_Access) return Color_Type;
pragma Inline (Color);
function Left (Node : Node_Access) return Node_Access;
pragma Inline (Left);
function Parent (Node : Node_Access) return Node_Access;
pragma Inline (Parent);
function Right (Node : Node_Access) return Node_Access;
pragma Inline (Right);
procedure Set_Parent (Node : Node_Access; Parent : Node_Access);
pragma Inline (Set_Parent);
procedure Set_Left (Node : Node_Access; Left : Node_Access);
pragma Inline (Set_Left);
procedure Set_Right (Node : Node_Access; Right : Node_Access);
pragma Inline (Set_Right);
procedure Set_Color (Node : Node_Access; Color : Color_Type);
pragma Inline (Set_Color);
-----------------------
-- Local Subprograms --
-----------------------
function Copy_Node (Source : Node_Access) return Node_Access;
pragma Inline (Copy_Node);
procedure Free (X : in out Node_Access);
procedure Insert_Sans_Hint
(Tree : in out Tree_Type;
New_Item : Element_Type;
Node : out Node_Access);
procedure Insert_With_Hint
(Dst_Tree : in out Tree_Type;
Dst_Hint : Node_Access;
Src_Node : Node_Access;
Dst_Node : out Node_Access);
function Is_Equal_Node_Node (L, R : Node_Access) return Boolean;
pragma Inline (Is_Equal_Node_Node);
function Is_Greater_Element_Node
(Left : Element_Type;
Right : Node_Access) return Boolean;
pragma Inline (Is_Greater_Element_Node);
function Is_Less_Element_Node
(Left : Element_Type;
Right : Node_Access) return Boolean;
pragma Inline (Is_Less_Element_Node);
function Is_Less_Node_Node (L, R : Node_Access) return Boolean;
pragma Inline (Is_Less_Node_Node);
procedure Replace_Element
(Tree : in out Tree_Type;
Node : Node_Access;
Item : Element_Type);
--------------------------
-- Local Instantiations --
--------------------------
package Tree_Operations is
new Red_Black_Trees.Generic_Operations (Tree_Types);
procedure Delete_Tree is
new Tree_Operations.Generic_Delete_Tree (Free);
function Copy_Tree is
new Tree_Operations.Generic_Copy_Tree (Copy_Node, Delete_Tree);
use Tree_Operations;
procedure Free_Element is
new Ada.Unchecked_Deallocation (Element_Type, Element_Access);
function Is_Equal is
new Tree_Operations.Generic_Equal (Is_Equal_Node_Node);
package Set_Ops is
new Generic_Set_Operations
(Tree_Operations => Tree_Operations,
Insert_With_Hint => Insert_With_Hint,
Copy_Tree => Copy_Tree,
Delete_Tree => Delete_Tree,
Is_Less => Is_Less_Node_Node,
Free => Free);
package Element_Keys is
new Red_Black_Trees.Generic_Keys
(Tree_Operations => Tree_Operations,
Key_Type => Element_Type,
Is_Less_Key_Node => Is_Less_Element_Node,
Is_Greater_Key_Node => Is_Greater_Element_Node);
---------
-- "<" --
---------
function "<" (Left, Right : Cursor) return Boolean is
begin
if Left.Node = null then
raise Constraint_Error with "Left cursor equals No_Element";
end if;
if Right.Node = null then
raise Constraint_Error with "Right cursor equals No_Element";
end if;
if Left.Node.Element = null then
raise Program_Error with "Left cursor is bad";
end if;
if Right.Node.Element = null then
raise Program_Error with "Right cursor is bad";
end if;
pragma Assert (Vet (Left.Container.Tree, Left.Node),
"bad Left cursor in ""<""");
pragma Assert (Vet (Right.Container.Tree, Right.Node),
"bad Right cursor in ""<""");
return Left.Node.Element.all < Right.Node.Element.all;
end "<";
function "<" (Left : Cursor; Right : Element_Type) return Boolean is
begin
if Left.Node = null then
raise Constraint_Error with "Left cursor equals No_Element";
end if;
if Left.Node.Element = null then
raise Program_Error with "Left cursor is bad";
end if;
pragma Assert (Vet (Left.Container.Tree, Left.Node),
"bad Left cursor in ""<""");
return Left.Node.Element.all < Right;
end "<";
function "<" (Left : Element_Type; Right : Cursor) return Boolean is
begin
if Right.Node = null then
raise Constraint_Error with "Right cursor equals No_Element";
end if;
if Right.Node.Element = null then
raise Program_Error with "Right cursor is bad";
end if;
pragma Assert (Vet (Right.Container.Tree, Right.Node),
"bad Right cursor in ""<""");
return Left < Right.Node.Element.all;
end "<";
---------
-- "=" --
---------
function "=" (Left, Right : Set) return Boolean is
begin
return Is_Equal (Left.Tree, Right.Tree);
end "=";
---------
-- ">" --
---------
function ">" (Left, Right : Cursor) return Boolean is
begin
if Left.Node = null then
raise Constraint_Error with "Left cursor equals No_Element";
end if;
if Right.Node = null then
raise Constraint_Error with "Right cursor equals No_Element";
end if;
if Left.Node.Element = null then
raise Program_Error with "Left cursor is bad";
end if;
if Right.Node.Element = null then
raise Program_Error with "Right cursor is bad";
end if;
pragma Assert (Vet (Left.Container.Tree, Left.Node),
"bad Left cursor in "">""");
pragma Assert (Vet (Right.Container.Tree, Right.Node),
"bad Right cursor in "">""");
-- L > R same as R < L
return Right.Node.Element.all < Left.Node.Element.all;
end ">";
function ">" (Left : Cursor; Right : Element_Type) return Boolean is
begin
if Left.Node = null then
raise Constraint_Error with "Left cursor equals No_Element";
end if;
if Left.Node.Element = null then
raise Program_Error with "Left cursor is bad";
end if;
pragma Assert (Vet (Left.Container.Tree, Left.Node),
"bad Left cursor in "">""");
return Right < Left.Node.Element.all;
end ">";
function ">" (Left : Element_Type; Right : Cursor) return Boolean is
begin
if Right.Node = null then
raise Constraint_Error with "Right cursor equals No_Element";
end if;
if Right.Node.Element = null then
raise Program_Error with "Right cursor is bad";
end if;
pragma Assert (Vet (Right.Container.Tree, Right.Node),
"bad Right cursor in "">""");
return Right.Node.Element.all < Left;
end ">";
------------
-- Adjust --
------------
procedure Adjust is
new Tree_Operations.Generic_Adjust (Copy_Tree);
procedure Adjust (Container : in out Set) is
begin
Adjust (Container.Tree);
end Adjust;
------------
-- Assign --
------------
procedure Assign (Target : in out Set; Source : Set) is
begin
if Target'Address = Source'Address then
return;
end if;
Target.Clear;
Target.Union (Source);
end Assign;
-------------
-- Ceiling --
-------------
function Ceiling (Container : Set; Item : Element_Type) return Cursor is
Node : constant Node_Access :=
Element_Keys.Ceiling (Container.Tree, Item);
begin
if Node = null then
return No_Element;
end if;
return Cursor'(Container'Unrestricted_Access, Node);
end Ceiling;
-----------
-- Clear --
-----------
procedure Clear is
new Tree_Operations.Generic_Clear (Delete_Tree);
procedure Clear (Container : in out Set) is
begin
Clear (Container.Tree);
end Clear;
-----------
-- Color --
-----------
function Color (Node : Node_Access) return Color_Type is
begin
return Node.Color;
end Color;
------------------------
-- Constant_Reference --
------------------------
function Constant_Reference
(Container : aliased Set;
Position : Cursor) return Constant_Reference_Type
is
begin
if Position.Container = null then
raise Constraint_Error with "Position cursor has no element";
end if;
if Position.Container /= Container'Unrestricted_Access then
raise Program_Error with
"Position cursor designates wrong container";
end if;
pragma Assert (Vet (Position.Container.Tree, Position.Node),
"bad cursor in Constant_Reference");
-- Note: in predefined container units, the creation of a reference
-- increments the busy bit of the container, and its finalization
-- decrements it. In the absence of control machinery, this tampering
-- protection is missing.
declare
T : Tree_Type renames Container.Tree'Unrestricted_Access.all;
pragma Unreferenced (T);
begin
return R : constant Constant_Reference_Type :=
(Element => Position.Node.Element,
Control => (Container => Container'Unrestricted_Access))
do
null;
end return;
end;
end Constant_Reference;
--------------
-- Contains --
--------------
function Contains (Container : Set; Item : Element_Type) return Boolean is
begin
return Find (Container, Item) /= No_Element;
end Contains;
----------
-- Copy --
----------
function Copy (Source : Set) return Set is
begin
return Target : Set do
Target.Assign (Source);
end return;
end Copy;
---------------
-- Copy_Node --
---------------
function Copy_Node (Source : Node_Access) return Node_Access is
X : Element_Access := new Element_Type'(Source.Element.all);
begin
return new Node_Type'(Parent => null,
Left => null,
Right => null,
Color => Source.Color,
Element => X);
exception
when others =>
Free_Element (X);
raise;
end Copy_Node;
------------
-- Delete --
------------
procedure Delete (Container : in out Set; Item : Element_Type) is
Tree : Tree_Type renames Container.Tree;
Node : Node_Access := Element_Keys.Ceiling (Tree, Item);
Done : constant Node_Access := Element_Keys.Upper_Bound (Tree, Item);
X : Node_Access;
begin
if Node = Done then
raise Constraint_Error with "attempt to delete element not in set";
end if;
loop
X := Node;
Node := Tree_Operations.Next (Node);
Tree_Operations.Delete_Node_Sans_Free (Tree, X);
Free (X);
exit when Node = Done;
end loop;
end Delete;
procedure Delete (Container : in out Set; Position : in out Cursor) is
begin
if Position.Node = null then
raise Constraint_Error with "Position cursor equals No_Element";
end if;
if Position.Node.Element = null then
raise Program_Error with "Position cursor is bad";
end if;
if Position.Container /= Container'Unrestricted_Access then
raise Program_Error with "Position cursor designates wrong set";
end if;
pragma Assert (Vet (Container.Tree, Position.Node),
"bad cursor in Delete");
Tree_Operations.Delete_Node_Sans_Free (Container.Tree, Position.Node);
Free (Position.Node);
Position.Container := null;
end Delete;
------------------
-- Delete_First --
------------------
procedure Delete_First (Container : in out Set) is
Tree : Tree_Type renames Container.Tree;
X : Node_Access := Tree.First;
begin
if X = null then
return;
end if;
Tree_Operations.Delete_Node_Sans_Free (Tree, X);
Free (X);
end Delete_First;
-----------------
-- Delete_Last --
-----------------
procedure Delete_Last (Container : in out Set) is
Tree : Tree_Type renames Container.Tree;
X : Node_Access := Tree.Last;
begin
if X = null then
return;
end if;
Tree_Operations.Delete_Node_Sans_Free (Tree, X);
Free (X);
end Delete_Last;
----------------
-- Difference --
----------------
procedure Difference (Target : in out Set; Source : Set) is
begin
Set_Ops.Difference (Target.Tree, Source.Tree);
end Difference;
function Difference (Left, Right : Set) return Set is
Tree : constant Tree_Type := Set_Ops.Difference (Left.Tree, Right.Tree);
begin
return Set'(Controlled with Tree);
end Difference;
-------------
-- Element --
-------------
function Element (Position : Cursor) return Element_Type is
begin
if Position.Node = null then
raise Constraint_Error with "Position cursor equals No_Element";
end if;
if Position.Node.Element = null then
raise Program_Error with "Position cursor is bad";
end if;
pragma Assert (Vet (Position.Container.Tree, Position.Node),
"bad cursor in Element");
return Position.Node.Element.all;
end Element;
-------------------------
-- Equivalent_Elements --
-------------------------
function Equivalent_Elements (Left, Right : Element_Type) return Boolean is
begin
if Left < Right
or else Right < Left
then
return False;
else
return True;
end if;
end Equivalent_Elements;
---------------------
-- Equivalent_Sets --
---------------------
function Equivalent_Sets (Left, Right : Set) return Boolean is
function Is_Equivalent_Node_Node (L, R : Node_Access) return Boolean;
pragma Inline (Is_Equivalent_Node_Node);
function Is_Equivalent is
new Tree_Operations.Generic_Equal (Is_Equivalent_Node_Node);
-----------------------------
-- Is_Equivalent_Node_Node --
-----------------------------
function Is_Equivalent_Node_Node (L, R : Node_Access) return Boolean is
begin
if L.Element.all < R.Element.all then
return False;
elsif R.Element.all < L.Element.all then
return False;
else
return True;
end if;
end Is_Equivalent_Node_Node;
-- Start of processing for Equivalent_Sets
begin
return Is_Equivalent (Left.Tree, Right.Tree);
end Equivalent_Sets;
-------------
-- Exclude --
-------------
procedure Exclude (Container : in out Set; Item : Element_Type) is
Tree : Tree_Type renames Container.Tree;
Node : Node_Access := Element_Keys.Ceiling (Tree, Item);
Done : constant Node_Access := Element_Keys.Upper_Bound (Tree, Item);
X : Node_Access;
begin
while Node /= Done loop
X := Node;
Node := Tree_Operations.Next (Node);
Tree_Operations.Delete_Node_Sans_Free (Tree, X);
Free (X);
end loop;
end Exclude;
----------
-- Find --
----------
function Find (Container : Set; Item : Element_Type) return Cursor is
Node : constant Node_Access := Element_Keys.Find (Container.Tree, Item);
begin
if Node = null then
return No_Element;
end if;
return Cursor'(Container'Unrestricted_Access, Node);
end Find;
--------------
-- Finalize --
--------------
procedure Finalize (Object : in out Iterator) is
begin
Unbusy (Object.Container.Tree.TC);
end Finalize;
-----------
-- First --
-----------
function First (Container : Set) return Cursor is
begin
if Container.Tree.First = null then
return No_Element;
end if;
return Cursor'(Container'Unrestricted_Access, Container.Tree.First);
end First;
function First (Object : Iterator) return Cursor is
begin
-- The value of the iterator object's Node component influences the
-- behavior of the First (and Last) selector function.
-- When the Node component is null, this means the iterator object was
-- constructed without a start expression, in which case the (forward)
-- iteration starts from the (logical) beginning of the entire sequence
-- of items (corresponding to Container.First, for a forward iterator).
-- Otherwise, this is iteration over a partial sequence of items. When
-- the Node component is non-null, the iterator object was constructed
-- with a start expression, that specifies the position from which the
-- (forward) partial iteration begins.
if Object.Node = null then
return Object.Container.First;
else
return Cursor'(Object.Container, Object.Node);
end if;
end First;
-------------------
-- First_Element --
-------------------
function First_Element (Container : Set) return Element_Type is
begin
if Container.Tree.First = null then
raise Constraint_Error with "set is empty";
end if;
pragma Assert (Container.Tree.First.Element /= null);
return Container.Tree.First.Element.all;
end First_Element;
-----------
-- Floor --
-----------
function Floor (Container : Set; Item : Element_Type) return Cursor is
Node : constant Node_Access := Element_Keys.Floor (Container.Tree, Item);
begin
if Node = null then
return No_Element;
end if;
return Cursor'(Container'Unrestricted_Access, Node);
end Floor;
----------
-- Free --
----------
procedure Free (X : in out Node_Access) is
procedure Deallocate is
new Ada.Unchecked_Deallocation (Node_Type, Node_Access);
begin
if X = null then
return;
end if;
X.Parent := X;
X.Left := X;
X.Right := X;
begin
Free_Element (X.Element);
exception
when others =>
X.Element := null;
Deallocate (X);
raise;
end;
Deallocate (X);
end Free;
------------------
-- Generic_Keys --
------------------
package body Generic_Keys is
-----------------------
-- Local Subprograms --
-----------------------
function Is_Less_Key_Node
(Left : Key_Type;
Right : Node_Access) return Boolean;
pragma Inline (Is_Less_Key_Node);
function Is_Greater_Key_Node
(Left : Key_Type;
Right : Node_Access) return Boolean;
pragma Inline (Is_Greater_Key_Node);
--------------------------
-- Local Instantiations --
--------------------------
package Key_Keys is
new Red_Black_Trees.Generic_Keys
(Tree_Operations => Tree_Operations,
Key_Type => Key_Type,
Is_Less_Key_Node => Is_Less_Key_Node,
Is_Greater_Key_Node => Is_Greater_Key_Node);
-------------
-- Ceiling --
-------------
function Ceiling (Container : Set; Key : Key_Type) return Cursor is
Node : constant Node_Access := Key_Keys.Ceiling (Container.Tree, Key);
begin
if Node = null then
return No_Element;
end if;
return Cursor'(Container'Unrestricted_Access, Node);
end Ceiling;
--------------
-- Contains --
--------------
function Contains (Container : Set; Key : Key_Type) return Boolean is
begin
return Find (Container, Key) /= No_Element;
end Contains;
------------
-- Delete --
------------
procedure Delete (Container : in out Set; Key : Key_Type) is
Tree : Tree_Type renames Container.Tree;
Node : Node_Access := Key_Keys.Ceiling (Tree, Key);
Done : constant Node_Access := Key_Keys.Upper_Bound (Tree, Key);
X : Node_Access;
begin
if Node = Done then
raise Constraint_Error with "attempt to delete key not in set";
end if;
loop
X := Node;
Node := Tree_Operations.Next (Node);
Tree_Operations.Delete_Node_Sans_Free (Tree, X);
Free (X);
exit when Node = Done;
end loop;
end Delete;
-------------
-- Element --
-------------
function Element (Container : Set; Key : Key_Type) return Element_Type is
Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key);
begin
if Node = null then
raise Constraint_Error with "key not in set";
end if;
return Node.Element.all;
end Element;
---------------------
-- Equivalent_Keys --
---------------------
function Equivalent_Keys (Left, Right : Key_Type) return Boolean is
begin
if Left < Right
or else Right < Left
then
return False;
else
return True;
end if;
end Equivalent_Keys;
-------------
-- Exclude --
-------------
procedure Exclude (Container : in out Set; Key : Key_Type) is
Tree : Tree_Type renames Container.Tree;
Node : Node_Access := Key_Keys.Ceiling (Tree, Key);
Done : constant Node_Access := Key_Keys.Upper_Bound (Tree, Key);
X : Node_Access;
begin
while Node /= Done loop
X := Node;
Node := Tree_Operations.Next (Node);
Tree_Operations.Delete_Node_Sans_Free (Tree, X);
Free (X);
end loop;
end Exclude;
----------
-- Find --
----------
function Find (Container : Set; Key : Key_Type) return Cursor is
Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key);
begin
if Node = null then
return No_Element;
end if;
return Cursor'(Container'Unrestricted_Access, Node);
end Find;
-----------
-- Floor --
-----------
function Floor (Container : Set; Key : Key_Type) return Cursor is
Node : constant Node_Access := Key_Keys.Floor (Container.Tree, Key);
begin
if Node = null then
return No_Element;
end if;
return Cursor'(Container'Unrestricted_Access, Node);
end Floor;
-------------------------
-- Is_Greater_Key_Node --
-------------------------
function Is_Greater_Key_Node
(Left : Key_Type;
Right : Node_Access) return Boolean
is
begin
return Key (Right.Element.all) < Left;
end Is_Greater_Key_Node;
----------------------
-- Is_Less_Key_Node --
----------------------
function Is_Less_Key_Node
(Left : Key_Type;
Right : Node_Access) return Boolean
is
begin
return Left < Key (Right.Element.all);
end Is_Less_Key_Node;
-------------
-- Iterate --
-------------
procedure Iterate
(Container : Set;
Key : Key_Type;
Process : not null access procedure (Position : Cursor))
is
procedure Process_Node (Node : Node_Access);
pragma Inline (Process_Node);
procedure Local_Iterate is
new Key_Keys.Generic_Iteration (Process_Node);
------------------
-- Process_Node --
------------------
procedure Process_Node (Node : Node_Access) is
begin
Process (Cursor'(Container'Unrestricted_Access, Node));
end Process_Node;
T : Tree_Type renames Container.Tree'Unrestricted_Access.all;
Busy : With_Busy (T.TC'Unrestricted_Access);
-- Start of processing for Iterate
begin
Local_Iterate (T, Key);
end Iterate;
---------
-- Key --
---------
function Key (Position : Cursor) return Key_Type is
begin
if Position.Node = null then
raise Constraint_Error with
"Position cursor equals No_Element";
end if;
if Position.Node.Element = null then
raise Program_Error with
"Position cursor is bad";
end if;
pragma Assert (Vet (Position.Container.Tree, Position.Node),
"bad cursor in Key");
return Key (Position.Node.Element.all);
end Key;
---------------------
-- Reverse_Iterate --
---------------------
procedure Reverse_Iterate
(Container : Set;
Key : Key_Type;
Process : not null access procedure (Position : Cursor))
is
procedure Process_Node (Node : Node_Access);
pragma Inline (Process_Node);
-------------
-- Iterate --
-------------
procedure Local_Reverse_Iterate is
new Key_Keys.Generic_Reverse_Iteration (Process_Node);
------------------
-- Process_Node --
------------------
procedure Process_Node (Node : Node_Access) is
begin
Process (Cursor'(Container'Unrestricted_Access, Node));
end Process_Node;
T : Tree_Type renames Container.Tree'Unrestricted_Access.all;
Busy : With_Busy (T.TC'Unrestricted_Access);
-- Start of processing for Reverse_Iterate
begin
Local_Reverse_Iterate (T, Key);
end Reverse_Iterate;
--------------------
-- Update_Element --
--------------------
procedure Update_Element
(Container : in out Set;
Position : Cursor;
Process : not null access procedure (Element : in out Element_Type))
is
Tree : Tree_Type renames Container.Tree;
Node : constant Node_Access := Position.Node;
begin
if Node = null then
raise Constraint_Error with "Position cursor equals No_Element";
end if;
if Node.Element = null then
raise Program_Error with "Position cursor is bad";
end if;
if Position.Container /= Container'Unrestricted_Access then
raise Program_Error with "Position cursor designates wrong set";
end if;
pragma Assert (Vet (Tree, Node),
"bad cursor in Update_Element");
declare
E : Element_Type renames Node.Element.all;
K : constant Key_Type := Key (E);
Lock : With_Lock (Tree.TC'Unrestricted_Access);
begin
Process (E);
if Equivalent_Keys (Left => K, Right => Key (E)) then
return;
end if;
end;
-- Delete_Node checks busy-bit
Tree_Operations.Delete_Node_Sans_Free (Tree, Node);
Insert_New_Item : declare
function New_Node return Node_Access;
pragma Inline (New_Node);
procedure Insert_Post is
new Element_Keys.Generic_Insert_Post (New_Node);
procedure Unconditional_Insert is
new Element_Keys.Generic_Unconditional_Insert (Insert_Post);
--------------
-- New_Node --
--------------
function New_Node return Node_Access is
begin
Node.Color := Red_Black_Trees.Red;
Node.Parent := null;
Node.Left := null;
Node.Right := null;
return Node;
end New_Node;
Result : Node_Access;
-- Start of processing for Insert_New_Item
begin
Unconditional_Insert
(Tree => Tree,
Key => Node.Element.all,
Node => Result);
pragma Assert (Result = Node);
end Insert_New_Item;
end Update_Element;
end Generic_Keys;
-----------------
-- Has_Element --
-----------------
function Has_Element (Position : Cursor) return Boolean is
begin
return Position /= No_Element;
end Has_Element;
------------
-- Insert --
------------
procedure Insert (Container : in out Set; New_Item : Element_Type) is
Position : Cursor;
pragma Unreferenced (Position);
begin
Insert (Container, New_Item, Position);
end Insert;
procedure Insert
(Container : in out Set;
New_Item : Element_Type;
Position : out Cursor)
is
begin
Insert_Sans_Hint (Container.Tree, New_Item, Position.Node);
Position.Container := Container'Unrestricted_Access;
end Insert;
----------------------
-- Insert_Sans_Hint --
----------------------
procedure Insert_Sans_Hint
(Tree : in out Tree_Type;
New_Item : Element_Type;
Node : out Node_Access)
is
function New_Node return Node_Access;
pragma Inline (New_Node);
procedure Insert_Post is
new Element_Keys.Generic_Insert_Post (New_Node);
procedure Unconditional_Insert is
new Element_Keys.Generic_Unconditional_Insert (Insert_Post);
--------------
-- New_Node --
--------------
function New_Node return Node_Access is
-- The element allocator may need an accessibility check in the case
-- the actual type is class-wide or has access discriminants (see
-- RM 4.8(10.1) and AI12-0035).
pragma Unsuppress (Accessibility_Check);
Element : Element_Access := new Element_Type'(New_Item);
begin
return new Node_Type'(Parent => null,
Left => null,
Right => null,
Color => Red_Black_Trees.Red,
Element => Element);
exception
when others =>
Free_Element (Element);
raise;
end New_Node;
-- Start of processing for Insert_Sans_Hint
begin
Unconditional_Insert (Tree, New_Item, Node);
end Insert_Sans_Hint;
----------------------
-- Insert_With_Hint --
----------------------
procedure Insert_With_Hint
(Dst_Tree : in out Tree_Type;
Dst_Hint : Node_Access;
Src_Node : Node_Access;
Dst_Node : out Node_Access)
is
function New_Node return Node_Access;
pragma Inline (New_Node);
procedure Insert_Post is
new Element_Keys.Generic_Insert_Post (New_Node);
procedure Insert_Sans_Hint is
new Element_Keys.Generic_Unconditional_Insert (Insert_Post);
procedure Local_Insert_With_Hint is
new Element_Keys.Generic_Unconditional_Insert_With_Hint
(Insert_Post,
Insert_Sans_Hint);
--------------
-- New_Node --
--------------
function New_Node return Node_Access is
X : Element_Access := new Element_Type'(Src_Node.Element.all);
begin
return new Node_Type'(Parent => null,
Left => null,
Right => null,
Color => Red,
Element => X);
exception
when others =>
Free_Element (X);
raise;
end New_Node;
-- Start of processing for Insert_With_Hint
begin
Local_Insert_With_Hint
(Dst_Tree,
Dst_Hint,
Src_Node.Element.all,
Dst_Node);
end Insert_With_Hint;
------------------
-- Intersection --
------------------
procedure Intersection (Target : in out Set; Source : Set) is
begin
Set_Ops.Intersection (Target.Tree, Source.Tree);
end Intersection;
function Intersection (Left, Right : Set) return Set is
Tree : constant Tree_Type :=
Set_Ops.Intersection (Left.Tree, Right.Tree);
begin
return Set'(Controlled with Tree);
end Intersection;
--------------
-- Is_Empty --
--------------
function Is_Empty (Container : Set) return Boolean is
begin
return Container.Tree.Length = 0;
end Is_Empty;
------------------------
-- Is_Equal_Node_Node --
------------------------
function Is_Equal_Node_Node (L, R : Node_Access) return Boolean is
begin
return L.Element.all = R.Element.all;
end Is_Equal_Node_Node;
-----------------------------
-- Is_Greater_Element_Node --
-----------------------------
function Is_Greater_Element_Node
(Left : Element_Type;
Right : Node_Access) return Boolean
is
begin
-- e > node same as node < e
return Right.Element.all < Left;
end Is_Greater_Element_Node;
--------------------------
-- Is_Less_Element_Node --
--------------------------
function Is_Less_Element_Node
(Left : Element_Type;
Right : Node_Access) return Boolean
is
begin
return Left < Right.Element.all;
end Is_Less_Element_Node;
-----------------------
-- Is_Less_Node_Node --
-----------------------
function Is_Less_Node_Node (L, R : Node_Access) return Boolean is
begin
return L.Element.all < R.Element.all;
end Is_Less_Node_Node;
---------------
-- Is_Subset --
---------------
function Is_Subset (Subset : Set; Of_Set : Set) return Boolean is
begin
return Set_Ops.Is_Subset (Subset => Subset.Tree, Of_Set => Of_Set.Tree);
end Is_Subset;
-------------
-- Iterate --
-------------
procedure Iterate
(Container : Set;
Item : Element_Type;
Process : not null access procedure (Position : Cursor))
is
procedure Process_Node (Node : Node_Access);
pragma Inline (Process_Node);
procedure Local_Iterate is
new Element_Keys.Generic_Iteration (Process_Node);
------------------
-- Process_Node --
------------------
procedure Process_Node (Node : Node_Access) is
begin
Process (Cursor'(Container'Unrestricted_Access, Node));
end Process_Node;
T : Tree_Type renames Container.Tree'Unrestricted_Access.all;
Busy : With_Busy (T.TC'Unrestricted_Access);
-- Start of processing for Iterate
begin
Local_Iterate (T, Item);
end Iterate;
procedure Iterate
(Container : Set;
Process : not null access procedure (Position : Cursor))
is
procedure Process_Node (Node : Node_Access);
pragma Inline (Process_Node);
procedure Local_Iterate is
new Tree_Operations.Generic_Iteration (Process_Node);
------------------
-- Process_Node --
------------------
procedure Process_Node (Node : Node_Access) is
begin
Process (Cursor'(Container'Unrestricted_Access, Node));
end Process_Node;
T : Tree_Type renames Container.Tree'Unrestricted_Access.all;
Busy : With_Busy (T.TC'Unrestricted_Access);
-- Start of processing for Iterate
begin
Local_Iterate (T);
end Iterate;
function Iterate (Container : Set)
return Set_Iterator_Interfaces.Reversible_Iterator'Class
is
S : constant Set_Access := Container'Unrestricted_Access;
begin
-- The value of the Node component influences the behavior of the First
-- and Last selector functions of the iterator object. When the Node
-- component is null (as is the case here), this means the iterator
-- object was constructed without a start expression. This is a complete
-- iterator, meaning that the iteration starts from the (logical)
-- beginning of the sequence of items.
-- Note: For a forward iterator, Container.First is the beginning, and
-- for a reverse iterator, Container.Last is the beginning.
return It : constant Iterator := (Limited_Controlled with S, null) do
Busy (S.Tree.TC);
end return;
end Iterate;
function Iterate (Container : Set; Start : Cursor)
return Set_Iterator_Interfaces.Reversible_Iterator'Class
is
S : constant Set_Access := Container'Unrestricted_Access;
begin
-- It was formerly the case that when Start = No_Element, the partial
-- iterator was defined to behave the same as for a complete iterator,
-- and iterate over the entire sequence of items. However, those
-- semantics were unintuitive and arguably error-prone (it is too easy
-- to accidentally create an endless loop), and so they were changed,
-- per the ARG meeting in Denver on 2011/11. However, there was no
-- consensus about what positive meaning this corner case should have,
-- and so it was decided to simply raise an exception. This does imply,
-- however, that it is not possible to use a partial iterator to specify
-- an empty sequence of items.
if Start = No_Element then
raise Constraint_Error with
"Start position for iterator equals No_Element";
end if;
if Start.Container /= Container'Unrestricted_Access then
raise Program_Error with
"Start cursor of Iterate designates wrong set";
end if;
pragma Assert (Vet (Container.Tree, Start.Node),
"Start cursor of Iterate is bad");
-- The value of the Node component influences the behavior of the First
-- and Last selector functions of the iterator object. When the Node
-- component is non-null (as is the case here), it means that this is a
-- partial iteration, over a subset of the complete sequence of
-- items. The iterator object was constructed with a start expression,
-- indicating the position from which the iteration begins. Note that
-- the start position has the same value irrespective of whether this is
-- a forward or reverse iteration.
return It : constant Iterator :=
(Limited_Controlled with S, Start.Node)
do
Busy (S.Tree.TC);
end return;
end Iterate;
----------
-- Last --
----------
function Last (Container : Set) return Cursor is
begin
if Container.Tree.Last = null then
return No_Element;
end if;
return Cursor'(Container'Unrestricted_Access, Container.Tree.Last);
end Last;
function Last (Object : Iterator) return Cursor is
begin
-- The value of the iterator object's Node component influences the
-- behavior of the Last (and First) selector function.
-- When the Node component is null, this means the iterator object was
-- constructed without a start expression, in which case the (reverse)
-- iteration starts from the (logical) beginning of the entire sequence
-- (corresponding to Container.Last, for a reverse iterator).
-- Otherwise, this is iteration over a partial sequence of items. When
-- the Node component is non-null, the iterator object was constructed
-- with a start expression, that specifies the position from which the
-- (reverse) partial iteration begins.
if Object.Node = null then
return Object.Container.Last;
else
return Cursor'(Object.Container, Object.Node);
end if;
end Last;
------------------
-- Last_Element --
------------------
function Last_Element (Container : Set) return Element_Type is
begin
if Container.Tree.Last = null then
raise Constraint_Error with "set is empty";
end if;
pragma Assert (Container.Tree.Last.Element /= null);
return Container.Tree.Last.Element.all;
end Last_Element;
----------
-- Left --
----------
function Left (Node : Node_Access) return Node_Access is
begin
return Node.Left;
end Left;
------------
-- Length --
------------
function Length (Container : Set) return Count_Type is
begin
return Container.Tree.Length;
end Length;
----------
-- Move --
----------
procedure Move is
new Tree_Operations.Generic_Move (Clear);
procedure Move (Target : in out Set; Source : in out Set) is
begin
Move (Target => Target.Tree, Source => Source.Tree);
end Move;
----------
-- Next --
----------
function Next (Position : Cursor) return Cursor is
begin
if Position = No_Element then
return No_Element;
end if;
pragma Assert (Vet (Position.Container.Tree, Position.Node),
"bad cursor in Next");
declare
Node : constant Node_Access :=
Tree_Operations.Next (Position.Node);
begin
if Node = null then
return No_Element;
end if;
return Cursor'(Position.Container, Node);
end;
end Next;
procedure Next (Position : in out Cursor) is
begin
Position := Next (Position);
end Next;
function Next (Object : Iterator; Position : Cursor) return Cursor is
begin
if Position.Container = null then
return No_Element;
end if;
if Position.Container /= Object.Container then
raise Program_Error with
"Position cursor of Next designates wrong set";
end if;
return Next (Position);
end Next;
-------------
-- Overlap --
-------------
function Overlap (Left, Right : Set) return Boolean is
begin
return Set_Ops.Overlap (Left.Tree, Right.Tree);
end Overlap;
------------
-- Parent --
------------
function Parent (Node : Node_Access) return Node_Access is
begin
return Node.Parent;
end Parent;
--------------
-- Previous --
--------------
function Previous (Position : Cursor) return Cursor is
begin
if Position = No_Element then
return No_Element;
end if;
pragma Assert (Vet (Position.Container.Tree, Position.Node),
"bad cursor in Previous");
declare
Node : constant Node_Access :=
Tree_Operations.Previous (Position.Node);
begin
if Node = null then
return No_Element;
end if;
return Cursor'(Position.Container, Node);
end;
end Previous;
procedure Previous (Position : in out Cursor) is
begin
Position := Previous (Position);
end Previous;
function Previous (Object : Iterator; Position : Cursor) return Cursor is
begin
if Position.Container = null then
return No_Element;
end if;
if Position.Container /= Object.Container then
raise Program_Error with
"Position cursor of Previous designates wrong set";
end if;
return Previous (Position);
end Previous;
-------------------
-- Query_Element --
-------------------
procedure Query_Element
(Position : Cursor;
Process : not null access procedure (Element : Element_Type))
is
begin
if Position.Node = null then
raise Constraint_Error with "Position cursor equals No_Element";
end if;
if Position.Node.Element = null then
raise Program_Error with "Position cursor is bad";
end if;
pragma Assert (Vet (Position.Container.Tree, Position.Node),
"bad cursor in Query_Element");
declare
T : Tree_Type renames Position.Container.Tree;
Lock : With_Lock (T.TC'Unrestricted_Access);
begin
Process (Position.Node.Element.all);
end;
end Query_Element;
----------
-- Read --
----------
procedure Read
(Stream : not null access Root_Stream_Type'Class;
Container : out Set)
is
function Read_Node
(Stream : not null access Root_Stream_Type'Class) return Node_Access;
pragma Inline (Read_Node);
procedure Read is
new Tree_Operations.Generic_Read (Clear, Read_Node);
---------------
-- Read_Node --
---------------
function Read_Node
(Stream : not null access Root_Stream_Type'Class) return Node_Access
is
Node : Node_Access := new Node_Type;
begin
Node.Element := new Element_Type'(Element_Type'Input (Stream));
return Node;
exception
when others =>
Free (Node); -- Note that Free deallocates elem too
raise;
end Read_Node;
-- Start of processing for Read
begin
Read (Stream, Container.Tree);
end Read;
procedure Read
(Stream : not null access Root_Stream_Type'Class;
Item : out Cursor)
is
begin
raise Program_Error with "attempt to stream set cursor";
end Read;
procedure Read
(Stream : not null access Root_Stream_Type'Class;
Item : out Constant_Reference_Type)
is
begin
raise Program_Error with "attempt to stream reference";
end Read;
---------------------
-- Replace_Element --
---------------------
procedure Replace_Element
(Tree : in out Tree_Type;
Node : Node_Access;
Item : Element_Type)
is
begin
if Item < Node.Element.all
or else Node.Element.all < Item
then
null;
else
TE_Check (Tree.TC);
declare
X : Element_Access := Node.Element;
-- The element allocator may need an accessibility check in the
-- case the actual type is class-wide or has access discriminants
-- (see RM 4.8(10.1) and AI12-0035).
pragma Unsuppress (Accessibility_Check);
begin
Node.Element := new Element_Type'(Item);
Free_Element (X);
end;
return;
end if;
Tree_Operations.Delete_Node_Sans_Free (Tree, Node); -- Checks busy-bit
Insert_New_Item : declare
function New_Node return Node_Access;
pragma Inline (New_Node);
procedure Insert_Post is
new Element_Keys.Generic_Insert_Post (New_Node);
procedure Unconditional_Insert is
new Element_Keys.Generic_Unconditional_Insert (Insert_Post);
--------------
-- New_Node --
--------------
function New_Node return Node_Access is
-- The element allocator may need an accessibility check in the
-- case the actual type is class-wide or has access discriminants
-- (see RM 4.8(10.1) and AI12-0035).
pragma Unsuppress (Accessibility_Check);
begin
Node.Element := new Element_Type'(Item); -- OK if fails
Node.Color := Red_Black_Trees.Red;
Node.Parent := null;
Node.Left := null;
Node.Right := null;
return Node;
end New_Node;
Result : Node_Access;
X : Element_Access := Node.Element;
-- Start of processing for Insert_New_Item
begin
Unconditional_Insert
(Tree => Tree,
Key => Item,
Node => Result);
pragma Assert (Result = Node);
Free_Element (X); -- OK if fails
end Insert_New_Item;
end Replace_Element;
procedure Replace_Element
(Container : in out Set;
Position : Cursor;
New_Item : Element_Type)
is
begin
if Position.Node = null then
raise Constraint_Error with "Position cursor equals No_Element";
end if;
if Position.Node.Element = null then
raise Program_Error with "Position cursor is bad";
end if;
if Position.Container /= Container'Unrestricted_Access then
raise Program_Error with "Position cursor designates wrong set";
end if;
pragma Assert (Vet (Container.Tree, Position.Node),
"bad cursor in Replace_Element");
Replace_Element (Container.Tree, Position.Node, New_Item);
end Replace_Element;
---------------------
-- Reverse_Iterate --
---------------------
procedure Reverse_Iterate
(Container : Set;
Item : Element_Type;
Process : not null access procedure (Position : Cursor))
is
procedure Process_Node (Node : Node_Access);
pragma Inline (Process_Node);
procedure Local_Reverse_Iterate is
new Element_Keys.Generic_Reverse_Iteration (Process_Node);
------------------
-- Process_Node --
------------------
procedure Process_Node (Node : Node_Access) is
begin
Process (Cursor'(Container'Unrestricted_Access, Node));
end Process_Node;
T : Tree_Type renames Container.Tree'Unrestricted_Access.all;
Busy : With_Busy (T.TC'Unrestricted_Access);
-- Start of processing for Reverse_Iterate
begin
Local_Reverse_Iterate (T, Item);
end Reverse_Iterate;
procedure Reverse_Iterate
(Container : Set;
Process : not null access procedure (Position : Cursor))
is
procedure Process_Node (Node : Node_Access);
pragma Inline (Process_Node);
procedure Local_Reverse_Iterate is
new Tree_Operations.Generic_Reverse_Iteration (Process_Node);
------------------
-- Process_Node --
------------------
procedure Process_Node (Node : Node_Access) is
begin
Process (Cursor'(Container'Unrestricted_Access, Node));
end Process_Node;
T : Tree_Type renames Container.Tree'Unrestricted_Access.all;
Busy : With_Busy (T.TC'Unrestricted_Access);
-- Start of processing for Reverse_Iterate
begin
Local_Reverse_Iterate (T);
end Reverse_Iterate;
-----------
-- Right --
-----------
function Right (Node : Node_Access) return Node_Access is
begin
return Node.Right;
end Right;
---------------
-- Set_Color --
---------------
procedure Set_Color (Node : Node_Access; Color : Color_Type) is
begin
Node.Color := Color;
end Set_Color;
--------------
-- Set_Left --
--------------
procedure Set_Left (Node : Node_Access; Left : Node_Access) is
begin
Node.Left := Left;
end Set_Left;
----------------
-- Set_Parent --
----------------
procedure Set_Parent (Node : Node_Access; Parent : Node_Access) is
begin
Node.Parent := Parent;
end Set_Parent;
---------------
-- Set_Right --
---------------
procedure Set_Right (Node : Node_Access; Right : Node_Access) is
begin
Node.Right := Right;
end Set_Right;
--------------------------
-- Symmetric_Difference --
--------------------------
procedure Symmetric_Difference (Target : in out Set; Source : Set) is
begin
Set_Ops.Symmetric_Difference (Target.Tree, Source.Tree);
end Symmetric_Difference;
function Symmetric_Difference (Left, Right : Set) return Set is
Tree : constant Tree_Type :=
Set_Ops.Symmetric_Difference (Left.Tree, Right.Tree);
begin
return Set'(Controlled with Tree);
end Symmetric_Difference;
------------
-- To_Set --
------------
function To_Set (New_Item : Element_Type) return Set is
Tree : Tree_Type;
Node : Node_Access;
pragma Unreferenced (Node);
begin
Insert_Sans_Hint (Tree, New_Item, Node);
return Set'(Controlled with Tree);
end To_Set;
-----------
-- Union --
-----------
procedure Union (Target : in out Set; Source : Set) is
begin
Set_Ops.Union (Target.Tree, Source.Tree);
end Union;
function Union (Left, Right : Set) return Set is
Tree : constant Tree_Type :=
Set_Ops.Union (Left.Tree, Right.Tree);
begin
return Set'(Controlled with Tree);
end Union;
-----------
-- Write --
-----------
procedure Write
(Stream : not null access Root_Stream_Type'Class;
Container : Set)
is
procedure Write_Node
(Stream : not null access Root_Stream_Type'Class;
Node : Node_Access);
pragma Inline (Write_Node);
procedure Write is
new Tree_Operations.Generic_Write (Write_Node);
----------------
-- Write_Node --
----------------
procedure Write_Node
(Stream : not null access Root_Stream_Type'Class;
Node : Node_Access)
is
begin
Element_Type'Output (Stream, Node.Element.all);
end Write_Node;
-- Start of processing for Write
begin
Write (Stream, Container.Tree);
end Write;
procedure Write
(Stream : not null access Root_Stream_Type'Class;
Item : Cursor)
is
begin
raise Program_Error with "attempt to stream set cursor";
end Write;
procedure Write
(Stream : not null access Root_Stream_Type'Class;
Item : Constant_Reference_Type)
is
begin
raise Program_Error with "attempt to stream reference";
end Write;
end Ada.Containers.Indefinite_Ordered_Multisets;