3667 lines
124 KiB
Ada
3667 lines
124 KiB
Ada
------------------------------------------------------------------------------
|
|
-- --
|
|
-- GNAT LIBRARY COMPONENTS --
|
|
-- --
|
|
-- A D A . C O N T A I N E R S . I N D E F I N I T E _ V E C T O R S --
|
|
-- --
|
|
-- B o d y --
|
|
-- --
|
|
-- Copyright (C) 2004-2015, Free Software Foundation, Inc. --
|
|
-- --
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. --
|
|
-- --
|
|
-- As a special exception under Section 7 of GPL version 3, you are granted --
|
|
-- additional permissions described in the GCC Runtime Library Exception, --
|
|
-- version 3.1, as published by the Free Software Foundation. --
|
|
-- --
|
|
-- You should have received a copy of the GNU General Public License and --
|
|
-- a copy of the GCC Runtime Library Exception along with this program; --
|
|
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
|
|
-- <http://www.gnu.org/licenses/>. --
|
|
-- --
|
|
-- This unit was originally developed by Matthew J Heaney. --
|
|
------------------------------------------------------------------------------
|
|
|
|
with Ada.Containers.Generic_Array_Sort;
|
|
with Ada.Unchecked_Deallocation;
|
|
|
|
with System; use type System.Address;
|
|
|
|
package body Ada.Containers.Indefinite_Vectors is
|
|
|
|
pragma Warnings (Off, "variable ""Busy*"" is not referenced");
|
|
pragma Warnings (Off, "variable ""Lock*"" is not referenced");
|
|
-- See comment in Ada.Containers.Helpers
|
|
|
|
procedure Free is
|
|
new Ada.Unchecked_Deallocation (Elements_Type, Elements_Access);
|
|
|
|
procedure Free is
|
|
new Ada.Unchecked_Deallocation (Element_Type, Element_Access);
|
|
|
|
procedure Append_Slow_Path
|
|
(Container : in out Vector;
|
|
New_Item : Element_Type;
|
|
Count : Count_Type);
|
|
-- This is the slow path for Append. This is split out to minimize the size
|
|
-- of Append, because we have Inline (Append).
|
|
|
|
---------
|
|
-- "&" --
|
|
---------
|
|
|
|
-- We decide that the capacity of the result of "&" is the minimum needed
|
|
-- -- the sum of the lengths of the vector parameters. We could decide to
|
|
-- make it larger, but we have no basis for knowing how much larger, so we
|
|
-- just allocate the minimum amount of storage.
|
|
|
|
function "&" (Left, Right : Vector) return Vector is
|
|
begin
|
|
return Result : Vector do
|
|
Reserve_Capacity (Result, Length (Left) + Length (Right));
|
|
Append (Result, Left);
|
|
Append (Result, Right);
|
|
end return;
|
|
end "&";
|
|
|
|
function "&" (Left : Vector; Right : Element_Type) return Vector is
|
|
begin
|
|
return Result : Vector do
|
|
Reserve_Capacity (Result, Length (Left) + 1);
|
|
Append (Result, Left);
|
|
Append (Result, Right);
|
|
end return;
|
|
end "&";
|
|
|
|
function "&" (Left : Element_Type; Right : Vector) return Vector is
|
|
begin
|
|
return Result : Vector do
|
|
Reserve_Capacity (Result, 1 + Length (Right));
|
|
Append (Result, Left);
|
|
Append (Result, Right);
|
|
end return;
|
|
end "&";
|
|
|
|
function "&" (Left, Right : Element_Type) return Vector is
|
|
begin
|
|
return Result : Vector do
|
|
Reserve_Capacity (Result, 1 + 1);
|
|
Append (Result, Left);
|
|
Append (Result, Right);
|
|
end return;
|
|
end "&";
|
|
|
|
---------
|
|
-- "=" --
|
|
---------
|
|
|
|
overriding function "=" (Left, Right : Vector) return Boolean is
|
|
begin
|
|
if Left.Last /= Right.Last then
|
|
return False;
|
|
end if;
|
|
|
|
if Left.Length = 0 then
|
|
return True;
|
|
end if;
|
|
|
|
declare
|
|
-- Per AI05-0022, the container implementation is required to detect
|
|
-- element tampering by a generic actual subprogram.
|
|
|
|
Lock_Left : With_Lock (Left.TC'Unrestricted_Access);
|
|
Lock_Right : With_Lock (Right.TC'Unrestricted_Access);
|
|
begin
|
|
for J in Index_Type range Index_Type'First .. Left.Last loop
|
|
if Left.Elements.EA (J) = null then
|
|
if Right.Elements.EA (J) /= null then
|
|
return False;
|
|
end if;
|
|
|
|
elsif Right.Elements.EA (J) = null then
|
|
return False;
|
|
|
|
elsif Left.Elements.EA (J).all /= Right.Elements.EA (J).all then
|
|
return False;
|
|
end if;
|
|
end loop;
|
|
end;
|
|
|
|
return True;
|
|
end "=";
|
|
|
|
------------
|
|
-- Adjust --
|
|
------------
|
|
|
|
procedure Adjust (Container : in out Vector) is
|
|
begin
|
|
-- If the counts are nonzero, execution is technically erroneous, but
|
|
-- it seems friendly to allow things like concurrent "=" on shared
|
|
-- constants.
|
|
|
|
Zero_Counts (Container.TC);
|
|
|
|
if Container.Last = No_Index then
|
|
Container.Elements := null;
|
|
return;
|
|
end if;
|
|
|
|
declare
|
|
L : constant Index_Type := Container.Last;
|
|
E : Elements_Array renames
|
|
Container.Elements.EA (Index_Type'First .. L);
|
|
|
|
begin
|
|
Container.Elements := null;
|
|
Container.Last := No_Index;
|
|
|
|
Container.Elements := new Elements_Type (L);
|
|
|
|
for J in E'Range loop
|
|
if E (J) /= null then
|
|
Container.Elements.EA (J) := new Element_Type'(E (J).all);
|
|
end if;
|
|
|
|
Container.Last := J;
|
|
end loop;
|
|
end;
|
|
end Adjust;
|
|
|
|
------------
|
|
-- Append --
|
|
------------
|
|
|
|
procedure Append (Container : in out Vector; New_Item : Vector) is
|
|
begin
|
|
if Is_Empty (New_Item) then
|
|
return;
|
|
elsif Checks and then Container.Last = Index_Type'Last then
|
|
raise Constraint_Error with "vector is already at its maximum length";
|
|
else
|
|
Insert (Container, Container.Last + 1, New_Item);
|
|
end if;
|
|
end Append;
|
|
|
|
procedure Append
|
|
(Container : in out Vector;
|
|
New_Item : Element_Type;
|
|
Count : Count_Type := 1)
|
|
is
|
|
begin
|
|
-- In the general case, we pass the buck to Insert, but for efficiency,
|
|
-- we check for the usual case where Count = 1 and the vector has enough
|
|
-- room for at least one more element.
|
|
|
|
if Count = 1
|
|
and then Container.Elements /= null
|
|
and then Container.Last /= Container.Elements.Last
|
|
then
|
|
TC_Check (Container.TC);
|
|
|
|
-- Increment Container.Last after assigning the New_Item, so we
|
|
-- leave the Container unmodified in case Finalize/Adjust raises
|
|
-- an exception.
|
|
|
|
declare
|
|
New_Last : constant Index_Type := Container.Last + 1;
|
|
|
|
-- The element allocator may need an accessibility check in the
|
|
-- case actual type is class-wide or has access discriminants
|
|
-- (see RM 4.8(10.1) and AI12-0035).
|
|
|
|
pragma Unsuppress (Accessibility_Check);
|
|
begin
|
|
Container.Elements.EA (New_Last) := new Element_Type'(New_Item);
|
|
Container.Last := New_Last;
|
|
end;
|
|
|
|
else
|
|
Append_Slow_Path (Container, New_Item, Count);
|
|
end if;
|
|
end Append;
|
|
|
|
----------------------
|
|
-- Append_Slow_Path --
|
|
----------------------
|
|
|
|
procedure Append_Slow_Path
|
|
(Container : in out Vector;
|
|
New_Item : Element_Type;
|
|
Count : Count_Type)
|
|
is
|
|
begin
|
|
if Count = 0 then
|
|
return;
|
|
elsif Checks and then Container.Last = Index_Type'Last then
|
|
raise Constraint_Error with "vector is already at its maximum length";
|
|
else
|
|
Insert (Container, Container.Last + 1, New_Item, Count);
|
|
end if;
|
|
end Append_Slow_Path;
|
|
|
|
------------
|
|
-- Assign --
|
|
------------
|
|
|
|
procedure Assign (Target : in out Vector; Source : Vector) is
|
|
begin
|
|
if Target'Address = Source'Address then
|
|
return;
|
|
else
|
|
Target.Clear;
|
|
Target.Append (Source);
|
|
end if;
|
|
end Assign;
|
|
|
|
--------------
|
|
-- Capacity --
|
|
--------------
|
|
|
|
function Capacity (Container : Vector) return Count_Type is
|
|
begin
|
|
if Container.Elements = null then
|
|
return 0;
|
|
else
|
|
return Container.Elements.EA'Length;
|
|
end if;
|
|
end Capacity;
|
|
|
|
-----------
|
|
-- Clear --
|
|
-----------
|
|
|
|
procedure Clear (Container : in out Vector) is
|
|
begin
|
|
TC_Check (Container.TC);
|
|
|
|
while Container.Last >= Index_Type'First loop
|
|
declare
|
|
X : Element_Access := Container.Elements.EA (Container.Last);
|
|
begin
|
|
Container.Elements.EA (Container.Last) := null;
|
|
Container.Last := Container.Last - 1;
|
|
Free (X);
|
|
end;
|
|
end loop;
|
|
end Clear;
|
|
|
|
------------------------
|
|
-- Constant_Reference --
|
|
------------------------
|
|
|
|
function Constant_Reference
|
|
(Container : aliased Vector;
|
|
Position : Cursor) return Constant_Reference_Type
|
|
is
|
|
begin
|
|
if Checks then
|
|
if Position.Container = null then
|
|
raise Constraint_Error with "Position cursor has no element";
|
|
end if;
|
|
|
|
if Position.Container /= Container'Unrestricted_Access then
|
|
raise Program_Error with "Position cursor denotes wrong container";
|
|
end if;
|
|
|
|
if Position.Index > Position.Container.Last then
|
|
raise Constraint_Error with "Position cursor is out of range";
|
|
end if;
|
|
end if;
|
|
|
|
declare
|
|
TC : constant Tamper_Counts_Access :=
|
|
Container.TC'Unrestricted_Access;
|
|
begin
|
|
-- The following will raise Constraint_Error if Element is null
|
|
|
|
return R : constant Constant_Reference_Type :=
|
|
(Element => Container.Elements.EA (Position.Index),
|
|
Control => (Controlled with TC))
|
|
do
|
|
Lock (TC.all);
|
|
end return;
|
|
end;
|
|
end Constant_Reference;
|
|
|
|
function Constant_Reference
|
|
(Container : aliased Vector;
|
|
Index : Index_Type) return Constant_Reference_Type
|
|
is
|
|
begin
|
|
if Checks and then Index > Container.Last then
|
|
raise Constraint_Error with "Index is out of range";
|
|
end if;
|
|
|
|
declare
|
|
TC : constant Tamper_Counts_Access :=
|
|
Container.TC'Unrestricted_Access;
|
|
begin
|
|
-- The following will raise Constraint_Error if Element is null
|
|
|
|
return R : constant Constant_Reference_Type :=
|
|
(Element => Container.Elements.EA (Index),
|
|
Control => (Controlled with TC))
|
|
do
|
|
Lock (TC.all);
|
|
end return;
|
|
end;
|
|
end Constant_Reference;
|
|
|
|
--------------
|
|
-- Contains --
|
|
--------------
|
|
|
|
function Contains
|
|
(Container : Vector;
|
|
Item : Element_Type) return Boolean
|
|
is
|
|
begin
|
|
return Find_Index (Container, Item) /= No_Index;
|
|
end Contains;
|
|
|
|
----------
|
|
-- Copy --
|
|
----------
|
|
|
|
function Copy
|
|
(Source : Vector;
|
|
Capacity : Count_Type := 0) return Vector
|
|
is
|
|
C : Count_Type;
|
|
|
|
begin
|
|
if Capacity = 0 then
|
|
C := Source.Length;
|
|
|
|
elsif Capacity >= Source.Length then
|
|
C := Capacity;
|
|
|
|
elsif Checks then
|
|
raise Capacity_Error with
|
|
"Requested capacity is less than Source length";
|
|
end if;
|
|
|
|
return Target : Vector do
|
|
Target.Reserve_Capacity (C);
|
|
Target.Assign (Source);
|
|
end return;
|
|
end Copy;
|
|
|
|
------------
|
|
-- Delete --
|
|
------------
|
|
|
|
procedure Delete
|
|
(Container : in out Vector;
|
|
Index : Extended_Index;
|
|
Count : Count_Type := 1)
|
|
is
|
|
Old_Last : constant Index_Type'Base := Container.Last;
|
|
New_Last : Index_Type'Base;
|
|
Count2 : Count_Type'Base; -- count of items from Index to Old_Last
|
|
J : Index_Type'Base; -- first index of items that slide down
|
|
|
|
begin
|
|
-- Delete removes items from the vector, the number of which is the
|
|
-- minimum of the specified Count and the items (if any) that exist from
|
|
-- Index to Container.Last. There are no constraints on the specified
|
|
-- value of Count (it can be larger than what's available at this
|
|
-- position in the vector, for example), but there are constraints on
|
|
-- the allowed values of the Index.
|
|
|
|
-- As a precondition on the generic actual Index_Type, the base type
|
|
-- must include Index_Type'Pred (Index_Type'First); this is the value
|
|
-- that Container.Last assumes when the vector is empty. However, we do
|
|
-- not allow that as the value for Index when specifying which items
|
|
-- should be deleted, so we must manually check. (That the user is
|
|
-- allowed to specify the value at all here is a consequence of the
|
|
-- declaration of the Extended_Index subtype, which includes the values
|
|
-- in the base range that immediately precede and immediately follow the
|
|
-- values in the Index_Type.)
|
|
|
|
if Checks and then Index < Index_Type'First then
|
|
raise Constraint_Error with "Index is out of range (too small)";
|
|
end if;
|
|
|
|
-- We do allow a value greater than Container.Last to be specified as
|
|
-- the Index, but only if it's immediately greater. This allows the
|
|
-- corner case of deleting no items from the back end of the vector to
|
|
-- be treated as a no-op. (It is assumed that specifying an index value
|
|
-- greater than Last + 1 indicates some deeper flaw in the caller's
|
|
-- algorithm, so that case is treated as a proper error.)
|
|
|
|
if Index > Old_Last then
|
|
if Checks and then Index > Old_Last + 1 then
|
|
raise Constraint_Error with "Index is out of range (too large)";
|
|
else
|
|
return;
|
|
end if;
|
|
end if;
|
|
|
|
-- Here and elsewhere we treat deleting 0 items from the container as a
|
|
-- no-op, even when the container is busy, so we simply return.
|
|
|
|
if Count = 0 then
|
|
return;
|
|
end if;
|
|
|
|
-- The internal elements array isn't guaranteed to exist unless we have
|
|
-- elements, so we handle that case here in order to avoid having to
|
|
-- check it later. (Note that an empty vector can never be busy, so
|
|
-- there's no semantic harm in returning early.)
|
|
|
|
if Container.Is_Empty then
|
|
return;
|
|
end if;
|
|
|
|
-- The tampering bits exist to prevent an item from being deleted (or
|
|
-- otherwise harmfully manipulated) while it is being visited. Query,
|
|
-- Update, and Iterate increment the busy count on entry, and decrement
|
|
-- the count on exit. Delete checks the count to determine whether it is
|
|
-- being called while the associated callback procedure is executing.
|
|
|
|
TC_Check (Container.TC);
|
|
|
|
-- We first calculate what's available for deletion starting at
|
|
-- Index. Here and elsewhere we use the wider of Index_Type'Base and
|
|
-- Count_Type'Base as the type for intermediate values. (See function
|
|
-- Length for more information.)
|
|
|
|
if Count_Type'Base'Last >= Index_Type'Pos (Index_Type'Base'Last) then
|
|
Count2 := Count_Type'Base (Old_Last) - Count_Type'Base (Index) + 1;
|
|
else
|
|
Count2 := Count_Type'Base (Old_Last - Index + 1);
|
|
end if;
|
|
|
|
-- If the number of elements requested (Count) for deletion is equal to
|
|
-- (or greater than) the number of elements available (Count2) for
|
|
-- deletion beginning at Index, then everything from Index to
|
|
-- Container.Last is deleted (this is equivalent to Delete_Last).
|
|
|
|
if Count >= Count2 then
|
|
-- Elements in an indefinite vector are allocated, so we must iterate
|
|
-- over the loop and deallocate elements one-at-a-time. We work from
|
|
-- back to front, deleting the last element during each pass, in
|
|
-- order to gracefully handle deallocation failures.
|
|
|
|
declare
|
|
EA : Elements_Array renames Container.Elements.EA;
|
|
|
|
begin
|
|
while Container.Last >= Index loop
|
|
declare
|
|
K : constant Index_Type := Container.Last;
|
|
X : Element_Access := EA (K);
|
|
|
|
begin
|
|
-- We first isolate the element we're deleting, removing it
|
|
-- from the vector before we attempt to deallocate it, in
|
|
-- case the deallocation fails.
|
|
|
|
EA (K) := null;
|
|
Container.Last := K - 1;
|
|
|
|
-- Container invariants have been restored, so it is now
|
|
-- safe to attempt to deallocate the element.
|
|
|
|
Free (X);
|
|
end;
|
|
end loop;
|
|
end;
|
|
|
|
return;
|
|
end if;
|
|
|
|
-- There are some elements that aren't being deleted (the requested
|
|
-- count was less than the available count), so we must slide them down
|
|
-- to Index. We first calculate the index values of the respective array
|
|
-- slices, using the wider of Index_Type'Base and Count_Type'Base as the
|
|
-- type for intermediate calculations. For the elements that slide down,
|
|
-- index value New_Last is the last index value of their new home, and
|
|
-- index value J is the first index of their old home.
|
|
|
|
if Index_Type'Base'Last >= Count_Type_Last then
|
|
New_Last := Old_Last - Index_Type'Base (Count);
|
|
J := Index + Index_Type'Base (Count);
|
|
else
|
|
New_Last := Index_Type'Base (Count_Type'Base (Old_Last) - Count);
|
|
J := Index_Type'Base (Count_Type'Base (Index) + Count);
|
|
end if;
|
|
|
|
-- The internal elements array isn't guaranteed to exist unless we have
|
|
-- elements, but we have that guarantee here because we know we have
|
|
-- elements to slide. The array index values for each slice have
|
|
-- already been determined, so what remains to be done is to first
|
|
-- deallocate the elements that are being deleted, and then slide down
|
|
-- to Index the elements that aren't being deleted.
|
|
|
|
declare
|
|
EA : Elements_Array renames Container.Elements.EA;
|
|
|
|
begin
|
|
-- Before we can slide down the elements that aren't being deleted,
|
|
-- we need to deallocate the elements that are being deleted.
|
|
|
|
for K in Index .. J - 1 loop
|
|
declare
|
|
X : Element_Access := EA (K);
|
|
|
|
begin
|
|
-- First we remove the element we're about to deallocate from
|
|
-- the vector, in case the deallocation fails, in order to
|
|
-- preserve representation invariants.
|
|
|
|
EA (K) := null;
|
|
|
|
-- The element has been removed from the vector, so it is now
|
|
-- safe to attempt to deallocate it.
|
|
|
|
Free (X);
|
|
end;
|
|
end loop;
|
|
|
|
EA (Index .. New_Last) := EA (J .. Old_Last);
|
|
Container.Last := New_Last;
|
|
end;
|
|
end Delete;
|
|
|
|
procedure Delete
|
|
(Container : in out Vector;
|
|
Position : in out Cursor;
|
|
Count : Count_Type := 1)
|
|
is
|
|
begin
|
|
if Checks then
|
|
if Position.Container = null then
|
|
raise Constraint_Error with "Position cursor has no element";
|
|
|
|
elsif Position.Container /= Container'Unrestricted_Access then
|
|
raise Program_Error with "Position cursor denotes wrong container";
|
|
|
|
elsif Position.Index > Container.Last then
|
|
raise Program_Error with "Position index is out of range";
|
|
end if;
|
|
end if;
|
|
|
|
Delete (Container, Position.Index, Count);
|
|
Position := No_Element;
|
|
end Delete;
|
|
|
|
------------------
|
|
-- Delete_First --
|
|
------------------
|
|
|
|
procedure Delete_First
|
|
(Container : in out Vector;
|
|
Count : Count_Type := 1)
|
|
is
|
|
begin
|
|
if Count = 0 then
|
|
return;
|
|
|
|
elsif Count >= Length (Container) then
|
|
Clear (Container);
|
|
return;
|
|
|
|
else
|
|
Delete (Container, Index_Type'First, Count);
|
|
end if;
|
|
end Delete_First;
|
|
|
|
-----------------
|
|
-- Delete_Last --
|
|
-----------------
|
|
|
|
procedure Delete_Last
|
|
(Container : in out Vector;
|
|
Count : Count_Type := 1)
|
|
is
|
|
begin
|
|
-- It is not permitted to delete items while the container is busy (for
|
|
-- example, we're in the middle of a passive iteration). However, we
|
|
-- always treat deleting 0 items as a no-op, even when we're busy, so we
|
|
-- simply return without checking.
|
|
|
|
if Count = 0 then
|
|
return;
|
|
end if;
|
|
|
|
-- We cannot simply subsume the empty case into the loop below (the loop
|
|
-- would iterate 0 times), because we rename the internal array object
|
|
-- (which is allocated), but an empty vector isn't guaranteed to have
|
|
-- actually allocated an array. (Note that an empty vector can never be
|
|
-- busy, so there's no semantic harm in returning early here.)
|
|
|
|
if Container.Is_Empty then
|
|
return;
|
|
end if;
|
|
|
|
-- The tampering bits exist to prevent an item from being deleted (or
|
|
-- otherwise harmfully manipulated) while it is being visited. Query,
|
|
-- Update, and Iterate increment the busy count on entry, and decrement
|
|
-- the count on exit. Delete_Last checks the count to determine whether
|
|
-- it is being called while the associated callback procedure is
|
|
-- executing.
|
|
|
|
TC_Check (Container.TC);
|
|
|
|
-- Elements in an indefinite vector are allocated, so we must iterate
|
|
-- over the loop and deallocate elements one-at-a-time. We work from
|
|
-- back to front, deleting the last element during each pass, in order
|
|
-- to gracefully handle deallocation failures.
|
|
|
|
declare
|
|
E : Elements_Array renames Container.Elements.EA;
|
|
|
|
begin
|
|
for Indx in 1 .. Count_Type'Min (Count, Container.Length) loop
|
|
declare
|
|
J : constant Index_Type := Container.Last;
|
|
X : Element_Access := E (J);
|
|
|
|
begin
|
|
-- Note that we first isolate the element we're deleting,
|
|
-- removing it from the vector, before we actually deallocate
|
|
-- it, in order to preserve representation invariants even if
|
|
-- the deallocation fails.
|
|
|
|
E (J) := null;
|
|
Container.Last := J - 1;
|
|
|
|
-- Container invariants have been restored, so it is now safe
|
|
-- to deallocate the element.
|
|
|
|
Free (X);
|
|
end;
|
|
end loop;
|
|
end;
|
|
end Delete_Last;
|
|
|
|
-------------
|
|
-- Element --
|
|
-------------
|
|
|
|
function Element
|
|
(Container : Vector;
|
|
Index : Index_Type) return Element_Type
|
|
is
|
|
begin
|
|
if Checks and then Index > Container.Last then
|
|
raise Constraint_Error with "Index is out of range";
|
|
end if;
|
|
|
|
declare
|
|
EA : constant Element_Access := Container.Elements.EA (Index);
|
|
begin
|
|
if Checks and then EA = null then
|
|
raise Constraint_Error with "element is empty";
|
|
else
|
|
return EA.all;
|
|
end if;
|
|
end;
|
|
end Element;
|
|
|
|
function Element (Position : Cursor) return Element_Type is
|
|
begin
|
|
if Checks then
|
|
if Position.Container = null then
|
|
raise Constraint_Error with "Position cursor has no element";
|
|
end if;
|
|
|
|
if Position.Index > Position.Container.Last then
|
|
raise Constraint_Error with "Position cursor is out of range";
|
|
end if;
|
|
end if;
|
|
|
|
declare
|
|
EA : constant Element_Access :=
|
|
Position.Container.Elements.EA (Position.Index);
|
|
begin
|
|
if Checks and then EA = null then
|
|
raise Constraint_Error with "element is empty";
|
|
else
|
|
return EA.all;
|
|
end if;
|
|
end;
|
|
end Element;
|
|
|
|
--------------
|
|
-- Finalize --
|
|
--------------
|
|
|
|
procedure Finalize (Container : in out Vector) is
|
|
begin
|
|
Clear (Container); -- Checks busy-bit
|
|
|
|
declare
|
|
X : Elements_Access := Container.Elements;
|
|
begin
|
|
Container.Elements := null;
|
|
Free (X);
|
|
end;
|
|
end Finalize;
|
|
|
|
procedure Finalize (Object : in out Iterator) is
|
|
pragma Warnings (Off);
|
|
pragma Assert (T_Check); -- not called if check suppressed
|
|
pragma Warnings (On);
|
|
begin
|
|
Unbusy (Object.Container.TC);
|
|
end Finalize;
|
|
|
|
----------
|
|
-- Find --
|
|
----------
|
|
|
|
function Find
|
|
(Container : Vector;
|
|
Item : Element_Type;
|
|
Position : Cursor := No_Element) return Cursor
|
|
is
|
|
begin
|
|
if Checks and then Position.Container /= null then
|
|
if Position.Container /= Container'Unrestricted_Access then
|
|
raise Program_Error with "Position cursor denotes wrong container";
|
|
end if;
|
|
|
|
if Position.Index > Container.Last then
|
|
raise Program_Error with "Position index is out of range";
|
|
end if;
|
|
end if;
|
|
|
|
-- Per AI05-0022, the container implementation is required to detect
|
|
-- element tampering by a generic actual subprogram.
|
|
|
|
declare
|
|
Lock : With_Lock (Container.TC'Unrestricted_Access);
|
|
begin
|
|
for J in Position.Index .. Container.Last loop
|
|
if Container.Elements.EA (J).all = Item then
|
|
return Cursor'(Container'Unrestricted_Access, J);
|
|
end if;
|
|
end loop;
|
|
|
|
return No_Element;
|
|
end;
|
|
end Find;
|
|
|
|
----------------
|
|
-- Find_Index --
|
|
----------------
|
|
|
|
function Find_Index
|
|
(Container : Vector;
|
|
Item : Element_Type;
|
|
Index : Index_Type := Index_Type'First) return Extended_Index
|
|
is
|
|
-- Per AI05-0022, the container implementation is required to detect
|
|
-- element tampering by a generic actual subprogram.
|
|
|
|
Lock : With_Lock (Container.TC'Unrestricted_Access);
|
|
begin
|
|
for Indx in Index .. Container.Last loop
|
|
if Container.Elements.EA (Indx).all = Item then
|
|
return Indx;
|
|
end if;
|
|
end loop;
|
|
|
|
return No_Index;
|
|
end Find_Index;
|
|
|
|
-----------
|
|
-- First --
|
|
-----------
|
|
|
|
function First (Container : Vector) return Cursor is
|
|
begin
|
|
if Is_Empty (Container) then
|
|
return No_Element;
|
|
end if;
|
|
|
|
return (Container'Unrestricted_Access, Index_Type'First);
|
|
end First;
|
|
|
|
function First (Object : Iterator) return Cursor is
|
|
begin
|
|
-- The value of the iterator object's Index component influences the
|
|
-- behavior of the First (and Last) selector function.
|
|
|
|
-- When the Index component is No_Index, this means the iterator
|
|
-- object was constructed without a start expression, in which case the
|
|
-- (forward) iteration starts from the (logical) beginning of the entire
|
|
-- sequence of items (corresponding to Container.First, for a forward
|
|
-- iterator).
|
|
|
|
-- Otherwise, this is iteration over a partial sequence of items.
|
|
-- When the Index component isn't No_Index, the iterator object was
|
|
-- constructed with a start expression, that specifies the position
|
|
-- from which the (forward) partial iteration begins.
|
|
|
|
if Object.Index = No_Index then
|
|
return First (Object.Container.all);
|
|
else
|
|
return Cursor'(Object.Container, Object.Index);
|
|
end if;
|
|
end First;
|
|
|
|
-------------------
|
|
-- First_Element --
|
|
-------------------
|
|
|
|
function First_Element (Container : Vector) return Element_Type is
|
|
begin
|
|
if Checks and then Container.Last = No_Index then
|
|
raise Constraint_Error with "Container is empty";
|
|
end if;
|
|
|
|
declare
|
|
EA : constant Element_Access :=
|
|
Container.Elements.EA (Index_Type'First);
|
|
begin
|
|
if Checks and then EA = null then
|
|
raise Constraint_Error with "first element is empty";
|
|
else
|
|
return EA.all;
|
|
end if;
|
|
end;
|
|
end First_Element;
|
|
|
|
-----------------
|
|
-- First_Index --
|
|
-----------------
|
|
|
|
function First_Index (Container : Vector) return Index_Type is
|
|
pragma Unreferenced (Container);
|
|
begin
|
|
return Index_Type'First;
|
|
end First_Index;
|
|
|
|
---------------------
|
|
-- Generic_Sorting --
|
|
---------------------
|
|
|
|
package body Generic_Sorting is
|
|
|
|
-----------------------
|
|
-- Local Subprograms --
|
|
-----------------------
|
|
|
|
function Is_Less (L, R : Element_Access) return Boolean;
|
|
pragma Inline (Is_Less);
|
|
|
|
-------------
|
|
-- Is_Less --
|
|
-------------
|
|
|
|
function Is_Less (L, R : Element_Access) return Boolean is
|
|
begin
|
|
if L = null then
|
|
return R /= null;
|
|
elsif R = null then
|
|
return False;
|
|
else
|
|
return L.all < R.all;
|
|
end if;
|
|
end Is_Less;
|
|
|
|
---------------
|
|
-- Is_Sorted --
|
|
---------------
|
|
|
|
function Is_Sorted (Container : Vector) return Boolean is
|
|
begin
|
|
if Container.Last <= Index_Type'First then
|
|
return True;
|
|
end if;
|
|
|
|
-- Per AI05-0022, the container implementation is required to detect
|
|
-- element tampering by a generic actual subprogram.
|
|
|
|
declare
|
|
Lock : With_Lock (Container.TC'Unrestricted_Access);
|
|
E : Elements_Array renames Container.Elements.EA;
|
|
begin
|
|
for J in Index_Type'First .. Container.Last - 1 loop
|
|
if Is_Less (E (J + 1), E (J)) then
|
|
return False;
|
|
end if;
|
|
end loop;
|
|
|
|
return True;
|
|
end;
|
|
end Is_Sorted;
|
|
|
|
-----------
|
|
-- Merge --
|
|
-----------
|
|
|
|
procedure Merge (Target, Source : in out Vector) is
|
|
I, J : Index_Type'Base;
|
|
|
|
begin
|
|
-- The semantics of Merge changed slightly per AI05-0021. It was
|
|
-- originally the case that if Target and Source denoted the same
|
|
-- container object, then the GNAT implementation of Merge did
|
|
-- nothing. However, it was argued that RM05 did not precisely
|
|
-- specify the semantics for this corner case. The decision of the
|
|
-- ARG was that if Target and Source denote the same non-empty
|
|
-- container object, then Program_Error is raised.
|
|
|
|
if Source.Last < Index_Type'First then -- Source is empty
|
|
return;
|
|
end if;
|
|
|
|
if Checks and then Target'Address = Source'Address then
|
|
raise Program_Error with
|
|
"Target and Source denote same non-empty container";
|
|
end if;
|
|
|
|
if Target.Last < Index_Type'First then -- Target is empty
|
|
Move (Target => Target, Source => Source);
|
|
return;
|
|
end if;
|
|
|
|
TC_Check (Source.TC);
|
|
|
|
I := Target.Last; -- original value (before Set_Length)
|
|
Target.Set_Length (Length (Target) + Length (Source));
|
|
|
|
-- Per AI05-0022, the container implementation is required to detect
|
|
-- element tampering by a generic actual subprogram.
|
|
|
|
declare
|
|
TA : Elements_Array renames Target.Elements.EA;
|
|
SA : Elements_Array renames Source.Elements.EA;
|
|
|
|
Lock_Target : With_Lock (Target.TC'Unchecked_Access);
|
|
Lock_Source : With_Lock (Source.TC'Unchecked_Access);
|
|
begin
|
|
J := Target.Last; -- new value (after Set_Length)
|
|
while Source.Last >= Index_Type'First loop
|
|
pragma Assert
|
|
(Source.Last <= Index_Type'First
|
|
or else not (Is_Less (SA (Source.Last),
|
|
SA (Source.Last - 1))));
|
|
|
|
if I < Index_Type'First then
|
|
declare
|
|
Src : Elements_Array renames
|
|
SA (Index_Type'First .. Source.Last);
|
|
begin
|
|
TA (Index_Type'First .. J) := Src;
|
|
Src := (others => null);
|
|
end;
|
|
|
|
Source.Last := No_Index;
|
|
exit;
|
|
end if;
|
|
|
|
pragma Assert
|
|
(I <= Index_Type'First
|
|
or else not (Is_Less (TA (I), TA (I - 1))));
|
|
|
|
declare
|
|
Src : Element_Access renames SA (Source.Last);
|
|
Tgt : Element_Access renames TA (I);
|
|
|
|
begin
|
|
if Is_Less (Src, Tgt) then
|
|
Target.Elements.EA (J) := Tgt;
|
|
Tgt := null;
|
|
I := I - 1;
|
|
|
|
else
|
|
Target.Elements.EA (J) := Src;
|
|
Src := null;
|
|
Source.Last := Source.Last - 1;
|
|
end if;
|
|
end;
|
|
|
|
J := J - 1;
|
|
end loop;
|
|
end;
|
|
end Merge;
|
|
|
|
----------
|
|
-- Sort --
|
|
----------
|
|
|
|
procedure Sort (Container : in out Vector) is
|
|
procedure Sort is new Generic_Array_Sort
|
|
(Index_Type => Index_Type,
|
|
Element_Type => Element_Access,
|
|
Array_Type => Elements_Array,
|
|
"<" => Is_Less);
|
|
|
|
-- Start of processing for Sort
|
|
|
|
begin
|
|
if Container.Last <= Index_Type'First then
|
|
return;
|
|
end if;
|
|
|
|
-- The exception behavior for the vector container must match that
|
|
-- for the list container, so we check for cursor tampering here
|
|
-- (which will catch more things) instead of for element tampering
|
|
-- (which will catch fewer things). It's true that the elements of
|
|
-- this vector container could be safely moved around while (say) an
|
|
-- iteration is taking place (iteration only increments the busy
|
|
-- counter), and so technically all we would need here is a test for
|
|
-- element tampering (indicated by the lock counter), that's simply
|
|
-- an artifact of our array-based implementation. Logically Sort
|
|
-- requires a check for cursor tampering.
|
|
|
|
TC_Check (Container.TC);
|
|
|
|
-- Per AI05-0022, the container implementation is required to detect
|
|
-- element tampering by a generic actual subprogram.
|
|
|
|
declare
|
|
Lock : With_Lock (Container.TC'Unchecked_Access);
|
|
begin
|
|
Sort (Container.Elements.EA (Index_Type'First .. Container.Last));
|
|
end;
|
|
end Sort;
|
|
|
|
end Generic_Sorting;
|
|
|
|
------------------------
|
|
-- Get_Element_Access --
|
|
------------------------
|
|
|
|
function Get_Element_Access
|
|
(Position : Cursor) return not null Element_Access
|
|
is
|
|
Ptr : constant Element_Access :=
|
|
Position.Container.Elements.EA (Position.Index);
|
|
|
|
begin
|
|
-- An indefinite vector may contain spaces that hold no elements.
|
|
-- Any iteration over an indefinite vector with spaces will raise
|
|
-- Constraint_Error.
|
|
|
|
if Ptr = null then
|
|
raise Constraint_Error;
|
|
|
|
else
|
|
return Ptr;
|
|
end if;
|
|
end Get_Element_Access;
|
|
|
|
-----------------
|
|
-- Has_Element --
|
|
-----------------
|
|
|
|
function Has_Element (Position : Cursor) return Boolean is
|
|
begin
|
|
if Position.Container = null then
|
|
return False;
|
|
else
|
|
return Position.Index <= Position.Container.Last;
|
|
end if;
|
|
end Has_Element;
|
|
|
|
------------
|
|
-- Insert --
|
|
------------
|
|
|
|
procedure Insert
|
|
(Container : in out Vector;
|
|
Before : Extended_Index;
|
|
New_Item : Element_Type;
|
|
Count : Count_Type := 1)
|
|
is
|
|
Old_Length : constant Count_Type := Container.Length;
|
|
|
|
Max_Length : Count_Type'Base; -- determined from range of Index_Type
|
|
New_Length : Count_Type'Base; -- sum of current length and Count
|
|
New_Last : Index_Type'Base; -- last index of vector after insertion
|
|
|
|
Index : Index_Type'Base; -- scratch for intermediate values
|
|
J : Count_Type'Base; -- scratch
|
|
|
|
New_Capacity : Count_Type'Base; -- length of new, expanded array
|
|
Dst_Last : Index_Type'Base; -- last index of new, expanded array
|
|
Dst : Elements_Access; -- new, expanded internal array
|
|
|
|
begin
|
|
if Checks then
|
|
-- As a precondition on the generic actual Index_Type, the base type
|
|
-- must include Index_Type'Pred (Index_Type'First); this is the value
|
|
-- that Container.Last assumes when the vector is empty. However, we
|
|
-- do not allow that as the value for Index when specifying where the
|
|
-- new items should be inserted, so we must manually check. (That the
|
|
-- user is allowed to specify the value at all here is a consequence
|
|
-- of the declaration of the Extended_Index subtype, which includes
|
|
-- the values in the base range that immediately precede and
|
|
-- immediately follow the values in the Index_Type.)
|
|
|
|
if Before < Index_Type'First then
|
|
raise Constraint_Error with
|
|
"Before index is out of range (too small)";
|
|
end if;
|
|
|
|
-- We do allow a value greater than Container.Last to be specified as
|
|
-- the Index, but only if it's immediately greater. This allows for
|
|
-- the case of appending items to the back end of the vector. (It is
|
|
-- assumed that specifying an index value greater than Last + 1
|
|
-- indicates some deeper flaw in the caller's algorithm, so that case
|
|
-- is treated as a proper error.)
|
|
|
|
if Before > Container.Last + 1 then
|
|
raise Constraint_Error with
|
|
"Before index is out of range (too large)";
|
|
end if;
|
|
end if;
|
|
|
|
-- We treat inserting 0 items into the container as a no-op, even when
|
|
-- the container is busy, so we simply return.
|
|
|
|
if Count = 0 then
|
|
return;
|
|
end if;
|
|
|
|
-- There are two constraints we need to satisfy. The first constraint is
|
|
-- that a container cannot have more than Count_Type'Last elements, so
|
|
-- we must check the sum of the current length and the insertion count.
|
|
-- Note: we cannot simply add these values, because of the possibility
|
|
-- of overflow.
|
|
|
|
if Checks and then Old_Length > Count_Type'Last - Count then
|
|
raise Constraint_Error with "Count is out of range";
|
|
end if;
|
|
|
|
-- It is now safe compute the length of the new vector, without fear of
|
|
-- overflow.
|
|
|
|
New_Length := Old_Length + Count;
|
|
|
|
-- The second constraint is that the new Last index value cannot exceed
|
|
-- Index_Type'Last. In each branch below, we calculate the maximum
|
|
-- length (computed from the range of values in Index_Type), and then
|
|
-- compare the new length to the maximum length. If the new length is
|
|
-- acceptable, then we compute the new last index from that.
|
|
|
|
if Index_Type'Base'Last >= Count_Type_Last then
|
|
|
|
-- We have to handle the case when there might be more values in the
|
|
-- range of Index_Type than in the range of Count_Type.
|
|
|
|
if Index_Type'First <= 0 then
|
|
|
|
-- We know that No_Index (the same as Index_Type'First - 1) is
|
|
-- less than 0, so it is safe to compute the following sum without
|
|
-- fear of overflow.
|
|
|
|
Index := No_Index + Index_Type'Base (Count_Type'Last);
|
|
|
|
if Index <= Index_Type'Last then
|
|
|
|
-- We have determined that range of Index_Type has at least as
|
|
-- many values as in Count_Type, so Count_Type'Last is the
|
|
-- maximum number of items that are allowed.
|
|
|
|
Max_Length := Count_Type'Last;
|
|
|
|
else
|
|
-- The range of Index_Type has fewer values than in Count_Type,
|
|
-- so the maximum number of items is computed from the range of
|
|
-- the Index_Type.
|
|
|
|
Max_Length := Count_Type'Base (Index_Type'Last - No_Index);
|
|
end if;
|
|
|
|
else
|
|
-- No_Index is equal or greater than 0, so we can safely compute
|
|
-- the difference without fear of overflow (which we would have to
|
|
-- worry about if No_Index were less than 0, but that case is
|
|
-- handled above).
|
|
|
|
if Index_Type'Last - No_Index >= Count_Type_Last then
|
|
-- We have determined that range of Index_Type has at least as
|
|
-- many values as in Count_Type, so Count_Type'Last is the
|
|
-- maximum number of items that are allowed.
|
|
|
|
Max_Length := Count_Type'Last;
|
|
|
|
else
|
|
-- The range of Index_Type has fewer values than in Count_Type,
|
|
-- so the maximum number of items is computed from the range of
|
|
-- the Index_Type.
|
|
|
|
Max_Length := Count_Type'Base (Index_Type'Last - No_Index);
|
|
end if;
|
|
end if;
|
|
|
|
elsif Index_Type'First <= 0 then
|
|
|
|
-- We know that No_Index (the same as Index_Type'First - 1) is less
|
|
-- than 0, so it is safe to compute the following sum without fear of
|
|
-- overflow.
|
|
|
|
J := Count_Type'Base (No_Index) + Count_Type'Last;
|
|
|
|
if J <= Count_Type'Base (Index_Type'Last) then
|
|
|
|
-- We have determined that range of Index_Type has at least as
|
|
-- many values as in Count_Type, so Count_Type'Last is the maximum
|
|
-- number of items that are allowed.
|
|
|
|
Max_Length := Count_Type'Last;
|
|
|
|
else
|
|
-- The range of Index_Type has fewer values than Count_Type does,
|
|
-- so the maximum number of items is computed from the range of
|
|
-- the Index_Type.
|
|
|
|
Max_Length :=
|
|
Count_Type'Base (Index_Type'Last) - Count_Type'Base (No_Index);
|
|
end if;
|
|
|
|
else
|
|
-- No_Index is equal or greater than 0, so we can safely compute the
|
|
-- difference without fear of overflow (which we would have to worry
|
|
-- about if No_Index were less than 0, but that case is handled
|
|
-- above).
|
|
|
|
Max_Length :=
|
|
Count_Type'Base (Index_Type'Last) - Count_Type'Base (No_Index);
|
|
end if;
|
|
|
|
-- We have just computed the maximum length (number of items). We must
|
|
-- now compare the requested length to the maximum length, as we do not
|
|
-- allow a vector expand beyond the maximum (because that would create
|
|
-- an internal array with a last index value greater than
|
|
-- Index_Type'Last, with no way to index those elements).
|
|
|
|
if Checks and then New_Length > Max_Length then
|
|
raise Constraint_Error with "Count is out of range";
|
|
end if;
|
|
|
|
-- New_Last is the last index value of the items in the container after
|
|
-- insertion. Use the wider of Index_Type'Base and Count_Type'Base to
|
|
-- compute its value from the New_Length.
|
|
|
|
if Index_Type'Base'Last >= Count_Type_Last then
|
|
New_Last := No_Index + Index_Type'Base (New_Length);
|
|
else
|
|
New_Last := Index_Type'Base (Count_Type'Base (No_Index) + New_Length);
|
|
end if;
|
|
|
|
if Container.Elements = null then
|
|
pragma Assert (Container.Last = No_Index);
|
|
|
|
-- This is the simplest case, with which we must always begin: we're
|
|
-- inserting items into an empty vector that hasn't allocated an
|
|
-- internal array yet. Note that we don't need to check the busy bit
|
|
-- here, because an empty container cannot be busy.
|
|
|
|
-- In an indefinite vector, elements are allocated individually, and
|
|
-- stored as access values on the internal array (the length of which
|
|
-- represents the vector "capacity"), which is separately allocated.
|
|
|
|
Container.Elements := new Elements_Type (New_Last);
|
|
|
|
-- The element backbone has been successfully allocated, so now we
|
|
-- allocate the elements.
|
|
|
|
for Idx in Container.Elements.EA'Range loop
|
|
|
|
-- In order to preserve container invariants, we always attempt
|
|
-- the element allocation first, before setting the Last index
|
|
-- value, in case the allocation fails (either because there is no
|
|
-- storage available, or because element initialization fails).
|
|
|
|
declare
|
|
-- The element allocator may need an accessibility check in the
|
|
-- case actual type is class-wide or has access discriminants
|
|
-- (see RM 4.8(10.1) and AI12-0035).
|
|
|
|
pragma Unsuppress (Accessibility_Check);
|
|
|
|
begin
|
|
Container.Elements.EA (Idx) := new Element_Type'(New_Item);
|
|
end;
|
|
|
|
-- The allocation of the element succeeded, so it is now safe to
|
|
-- update the Last index, restoring container invariants.
|
|
|
|
Container.Last := Idx;
|
|
end loop;
|
|
|
|
return;
|
|
end if;
|
|
|
|
-- The tampering bits exist to prevent an item from being harmfully
|
|
-- manipulated while it is being visited. Query, Update, and Iterate
|
|
-- increment the busy count on entry, and decrement the count on
|
|
-- exit. Insert checks the count to determine whether it is being called
|
|
-- while the associated callback procedure is executing.
|
|
|
|
TC_Check (Container.TC);
|
|
|
|
if New_Length <= Container.Elements.EA'Length then
|
|
|
|
-- In this case, we're inserting elements into a vector that has
|
|
-- already allocated an internal array, and the existing array has
|
|
-- enough unused storage for the new items.
|
|
|
|
declare
|
|
E : Elements_Array renames Container.Elements.EA;
|
|
K : Index_Type'Base;
|
|
|
|
begin
|
|
if Before > Container.Last then
|
|
|
|
-- The new items are being appended to the vector, so no
|
|
-- sliding of existing elements is required.
|
|
|
|
for Idx in Before .. New_Last loop
|
|
|
|
-- In order to preserve container invariants, we always
|
|
-- attempt the element allocation first, before setting the
|
|
-- Last index value, in case the allocation fails (either
|
|
-- because there is no storage available, or because element
|
|
-- initialization fails).
|
|
|
|
declare
|
|
-- The element allocator may need an accessibility check
|
|
-- in case the actual type is class-wide or has access
|
|
-- discriminants (see RM 4.8(10.1) and AI12-0035).
|
|
|
|
pragma Unsuppress (Accessibility_Check);
|
|
|
|
begin
|
|
E (Idx) := new Element_Type'(New_Item);
|
|
end;
|
|
|
|
-- The allocation of the element succeeded, so it is now
|
|
-- safe to update the Last index, restoring container
|
|
-- invariants.
|
|
|
|
Container.Last := Idx;
|
|
end loop;
|
|
|
|
else
|
|
-- The new items are being inserted before some existing
|
|
-- elements, so we must slide the existing elements up to their
|
|
-- new home. We use the wider of Index_Type'Base and
|
|
-- Count_Type'Base as the type for intermediate index values.
|
|
|
|
if Index_Type'Base'Last >= Count_Type_Last then
|
|
Index := Before + Index_Type'Base (Count);
|
|
else
|
|
Index := Index_Type'Base (Count_Type'Base (Before) + Count);
|
|
end if;
|
|
|
|
-- The new items are being inserted in the middle of the array,
|
|
-- in the range [Before, Index). Copy the existing elements to
|
|
-- the end of the array, to make room for the new items.
|
|
|
|
E (Index .. New_Last) := E (Before .. Container.Last);
|
|
Container.Last := New_Last;
|
|
|
|
-- We have copied the existing items up to the end of the
|
|
-- array, to make room for the new items in the middle of
|
|
-- the array. Now we actually allocate the new items.
|
|
|
|
-- Note: initialize K outside loop to make it clear that
|
|
-- K always has a value if the exception handler triggers.
|
|
|
|
K := Before;
|
|
|
|
declare
|
|
-- The element allocator may need an accessibility check in
|
|
-- the case the actual type is class-wide or has access
|
|
-- discriminants (see RM 4.8(10.1) and AI12-0035).
|
|
|
|
pragma Unsuppress (Accessibility_Check);
|
|
|
|
begin
|
|
while K < Index loop
|
|
E (K) := new Element_Type'(New_Item);
|
|
K := K + 1;
|
|
end loop;
|
|
|
|
exception
|
|
when others =>
|
|
|
|
-- Values in the range [Before, K) were successfully
|
|
-- allocated, but values in the range [K, Index) are
|
|
-- stale (these array positions contain copies of the
|
|
-- old items, that did not get assigned a new item,
|
|
-- because the allocation failed). We must finish what
|
|
-- we started by clearing out all of the stale values,
|
|
-- leaving a "hole" in the middle of the array.
|
|
|
|
E (K .. Index - 1) := (others => null);
|
|
raise;
|
|
end;
|
|
end if;
|
|
end;
|
|
|
|
return;
|
|
end if;
|
|
|
|
-- In this case, we're inserting elements into a vector that has already
|
|
-- allocated an internal array, but the existing array does not have
|
|
-- enough storage, so we must allocate a new, longer array. In order to
|
|
-- guarantee that the amortized insertion cost is O(1), we always
|
|
-- allocate an array whose length is some power-of-two factor of the
|
|
-- current array length. (The new array cannot have a length less than
|
|
-- the New_Length of the container, but its last index value cannot be
|
|
-- greater than Index_Type'Last.)
|
|
|
|
New_Capacity := Count_Type'Max (1, Container.Elements.EA'Length);
|
|
while New_Capacity < New_Length loop
|
|
if New_Capacity > Count_Type'Last / 2 then
|
|
New_Capacity := Count_Type'Last;
|
|
exit;
|
|
end if;
|
|
|
|
New_Capacity := 2 * New_Capacity;
|
|
end loop;
|
|
|
|
if New_Capacity > Max_Length then
|
|
|
|
-- We have reached the limit of capacity, so no further expansion
|
|
-- will occur. (This is not a problem, as there is never a need to
|
|
-- have more capacity than the maximum container length.)
|
|
|
|
New_Capacity := Max_Length;
|
|
end if;
|
|
|
|
-- We have computed the length of the new internal array (and this is
|
|
-- what "vector capacity" means), so use that to compute its last index.
|
|
|
|
if Index_Type'Base'Last >= Count_Type_Last then
|
|
Dst_Last := No_Index + Index_Type'Base (New_Capacity);
|
|
else
|
|
Dst_Last :=
|
|
Index_Type'Base (Count_Type'Base (No_Index) + New_Capacity);
|
|
end if;
|
|
|
|
-- Now we allocate the new, longer internal array. If the allocation
|
|
-- fails, we have not changed any container state, so no side-effect
|
|
-- will occur as a result of propagating the exception.
|
|
|
|
Dst := new Elements_Type (Dst_Last);
|
|
|
|
-- We have our new internal array. All that needs to be done now is to
|
|
-- copy the existing items (if any) from the old array (the "source"
|
|
-- array) to the new array (the "destination" array), and then
|
|
-- deallocate the old array.
|
|
|
|
declare
|
|
Src : Elements_Access := Container.Elements;
|
|
|
|
begin
|
|
Dst.EA (Index_Type'First .. Before - 1) :=
|
|
Src.EA (Index_Type'First .. Before - 1);
|
|
|
|
if Before > Container.Last then
|
|
|
|
-- The new items are being appended to the vector, so no
|
|
-- sliding of existing elements is required.
|
|
|
|
-- We have copied the elements from to the old source array to the
|
|
-- new destination array, so we can now deallocate the old array.
|
|
|
|
Container.Elements := Dst;
|
|
Free (Src);
|
|
|
|
-- Now we append the new items.
|
|
|
|
for Idx in Before .. New_Last loop
|
|
|
|
-- In order to preserve container invariants, we always attempt
|
|
-- the element allocation first, before setting the Last index
|
|
-- value, in case the allocation fails (either because there
|
|
-- is no storage available, or because element initialization
|
|
-- fails).
|
|
|
|
declare
|
|
-- The element allocator may need an accessibility check in
|
|
-- the case the actual type is class-wide or has access
|
|
-- discriminants (see RM 4.8(10.1) and AI12-0035).
|
|
|
|
pragma Unsuppress (Accessibility_Check);
|
|
|
|
begin
|
|
Dst.EA (Idx) := new Element_Type'(New_Item);
|
|
end;
|
|
|
|
-- The allocation of the element succeeded, so it is now safe
|
|
-- to update the Last index, restoring container invariants.
|
|
|
|
Container.Last := Idx;
|
|
end loop;
|
|
|
|
else
|
|
-- The new items are being inserted before some existing elements,
|
|
-- so we must slide the existing elements up to their new home.
|
|
|
|
if Index_Type'Base'Last >= Count_Type_Last then
|
|
Index := Before + Index_Type'Base (Count);
|
|
else
|
|
Index := Index_Type'Base (Count_Type'Base (Before) + Count);
|
|
end if;
|
|
|
|
Dst.EA (Index .. New_Last) := Src.EA (Before .. Container.Last);
|
|
|
|
-- We have copied the elements from to the old source array to the
|
|
-- new destination array, so we can now deallocate the old array.
|
|
|
|
Container.Elements := Dst;
|
|
Container.Last := New_Last;
|
|
Free (Src);
|
|
|
|
-- The new array has a range in the middle containing null access
|
|
-- values. Fill in that partition of the array with the new items.
|
|
|
|
for Idx in Before .. Index - 1 loop
|
|
|
|
-- Note that container invariants have already been satisfied
|
|
-- (in particular, the Last index value of the vector has
|
|
-- already been updated), so if this allocation fails we simply
|
|
-- let it propagate.
|
|
|
|
declare
|
|
-- The element allocator may need an accessibility check in
|
|
-- the case the actual type is class-wide or has access
|
|
-- discriminants (see RM 4.8(10.1) and AI12-0035).
|
|
|
|
pragma Unsuppress (Accessibility_Check);
|
|
|
|
begin
|
|
Dst.EA (Idx) := new Element_Type'(New_Item);
|
|
end;
|
|
end loop;
|
|
end if;
|
|
end;
|
|
end Insert;
|
|
|
|
procedure Insert
|
|
(Container : in out Vector;
|
|
Before : Extended_Index;
|
|
New_Item : Vector)
|
|
is
|
|
N : constant Count_Type := Length (New_Item);
|
|
J : Index_Type'Base;
|
|
|
|
begin
|
|
-- Use Insert_Space to create the "hole" (the destination slice) into
|
|
-- which we copy the source items.
|
|
|
|
Insert_Space (Container, Before, Count => N);
|
|
|
|
if N = 0 then
|
|
|
|
-- There's nothing else to do here (vetting of parameters was
|
|
-- performed already in Insert_Space), so we simply return.
|
|
|
|
return;
|
|
end if;
|
|
|
|
if Container'Address /= New_Item'Address then
|
|
|
|
-- This is the simple case. New_Item denotes an object different
|
|
-- from Container, so there's nothing special we need to do to copy
|
|
-- the source items to their destination, because all of the source
|
|
-- items are contiguous.
|
|
|
|
declare
|
|
subtype Src_Index_Subtype is Index_Type'Base range
|
|
Index_Type'First .. New_Item.Last;
|
|
|
|
Src : Elements_Array renames
|
|
New_Item.Elements.EA (Src_Index_Subtype);
|
|
|
|
Dst : Elements_Array renames Container.Elements.EA;
|
|
|
|
Dst_Index : Index_Type'Base;
|
|
|
|
begin
|
|
Dst_Index := Before - 1;
|
|
for Src_Index in Src'Range loop
|
|
Dst_Index := Dst_Index + 1;
|
|
|
|
if Src (Src_Index) /= null then
|
|
Dst (Dst_Index) := new Element_Type'(Src (Src_Index).all);
|
|
end if;
|
|
end loop;
|
|
end;
|
|
|
|
return;
|
|
end if;
|
|
|
|
-- New_Item denotes the same object as Container, so an insertion has
|
|
-- potentially split the source items. The first source slice is
|
|
-- [Index_Type'First, Before), and the second source slice is
|
|
-- [J, Container.Last], where index value J is the first index of the
|
|
-- second slice. (J gets computed below, but only after we have
|
|
-- determined that the second source slice is non-empty.) The
|
|
-- destination slice is always the range [Before, J). We perform the
|
|
-- copy in two steps, using each of the two slices of the source items.
|
|
|
|
declare
|
|
L : constant Index_Type'Base := Before - 1;
|
|
|
|
subtype Src_Index_Subtype is Index_Type'Base range
|
|
Index_Type'First .. L;
|
|
|
|
Src : Elements_Array renames
|
|
Container.Elements.EA (Src_Index_Subtype);
|
|
|
|
Dst : Elements_Array renames Container.Elements.EA;
|
|
|
|
Dst_Index : Index_Type'Base;
|
|
|
|
begin
|
|
-- We first copy the source items that precede the space we
|
|
-- inserted. (If Before equals Index_Type'First, then this first
|
|
-- source slice will be empty, which is harmless.)
|
|
|
|
Dst_Index := Before - 1;
|
|
for Src_Index in Src'Range loop
|
|
Dst_Index := Dst_Index + 1;
|
|
|
|
if Src (Src_Index) /= null then
|
|
Dst (Dst_Index) := new Element_Type'(Src (Src_Index).all);
|
|
end if;
|
|
end loop;
|
|
|
|
if Src'Length = N then
|
|
|
|
-- The new items were effectively appended to the container, so we
|
|
-- have already copied all of the items that need to be copied.
|
|
-- We return early here, even though the source slice below is
|
|
-- empty (so the assignment would be harmless), because we want to
|
|
-- avoid computing J, which will overflow if J is greater than
|
|
-- Index_Type'Base'Last.
|
|
|
|
return;
|
|
end if;
|
|
end;
|
|
|
|
-- Index value J is the first index of the second source slice. (It is
|
|
-- also 1 greater than the last index of the destination slice.) Note:
|
|
-- avoid computing J if J is greater than Index_Type'Base'Last, in order
|
|
-- to avoid overflow. Prevent that by returning early above, immediately
|
|
-- after copying the first slice of the source, and determining that
|
|
-- this second slice of the source is empty.
|
|
|
|
if Index_Type'Base'Last >= Count_Type_Last then
|
|
J := Before + Index_Type'Base (N);
|
|
else
|
|
J := Index_Type'Base (Count_Type'Base (Before) + N);
|
|
end if;
|
|
|
|
declare
|
|
subtype Src_Index_Subtype is Index_Type'Base range
|
|
J .. Container.Last;
|
|
|
|
Src : Elements_Array renames
|
|
Container.Elements.EA (Src_Index_Subtype);
|
|
|
|
Dst : Elements_Array renames Container.Elements.EA;
|
|
|
|
Dst_Index : Index_Type'Base;
|
|
|
|
begin
|
|
-- We next copy the source items that follow the space we inserted.
|
|
-- Index value Dst_Index is the first index of that portion of the
|
|
-- destination that receives this slice of the source. (For the
|
|
-- reasons given above, this slice is guaranteed to be non-empty.)
|
|
|
|
if Index_Type'Base'Last >= Count_Type_Last then
|
|
Dst_Index := J - Index_Type'Base (Src'Length);
|
|
else
|
|
Dst_Index := Index_Type'Base (Count_Type'Base (J) - Src'Length);
|
|
end if;
|
|
|
|
for Src_Index in Src'Range loop
|
|
if Src (Src_Index) /= null then
|
|
Dst (Dst_Index) := new Element_Type'(Src (Src_Index).all);
|
|
end if;
|
|
|
|
Dst_Index := Dst_Index + 1;
|
|
end loop;
|
|
end;
|
|
end Insert;
|
|
|
|
procedure Insert
|
|
(Container : in out Vector;
|
|
Before : Cursor;
|
|
New_Item : Vector)
|
|
is
|
|
Index : Index_Type'Base;
|
|
|
|
begin
|
|
if Checks and then Before.Container /= null
|
|
and then Before.Container /= Container'Unrestricted_Access
|
|
then
|
|
raise Program_Error with "Before cursor denotes wrong container";
|
|
end if;
|
|
|
|
if Is_Empty (New_Item) then
|
|
return;
|
|
end if;
|
|
|
|
if Before.Container = null or else Before.Index > Container.Last then
|
|
if Checks and then Container.Last = Index_Type'Last then
|
|
raise Constraint_Error with
|
|
"vector is already at its maximum length";
|
|
end if;
|
|
|
|
Index := Container.Last + 1;
|
|
|
|
else
|
|
Index := Before.Index;
|
|
end if;
|
|
|
|
Insert (Container, Index, New_Item);
|
|
end Insert;
|
|
|
|
procedure Insert
|
|
(Container : in out Vector;
|
|
Before : Cursor;
|
|
New_Item : Vector;
|
|
Position : out Cursor)
|
|
is
|
|
Index : Index_Type'Base;
|
|
|
|
begin
|
|
if Checks and then Before.Container /= null
|
|
and then Before.Container /= Container'Unrestricted_Access
|
|
then
|
|
raise Program_Error with "Before cursor denotes wrong container";
|
|
end if;
|
|
|
|
if Is_Empty (New_Item) then
|
|
if Before.Container = null or else Before.Index > Container.Last then
|
|
Position := No_Element;
|
|
else
|
|
Position := (Container'Unrestricted_Access, Before.Index);
|
|
end if;
|
|
|
|
return;
|
|
end if;
|
|
|
|
if Before.Container = null or else Before.Index > Container.Last then
|
|
if Checks and then Container.Last = Index_Type'Last then
|
|
raise Constraint_Error with
|
|
"vector is already at its maximum length";
|
|
end if;
|
|
|
|
Index := Container.Last + 1;
|
|
|
|
else
|
|
Index := Before.Index;
|
|
end if;
|
|
|
|
Insert (Container, Index, New_Item);
|
|
|
|
Position := (Container'Unrestricted_Access, Index);
|
|
end Insert;
|
|
|
|
procedure Insert
|
|
(Container : in out Vector;
|
|
Before : Cursor;
|
|
New_Item : Element_Type;
|
|
Count : Count_Type := 1)
|
|
is
|
|
Index : Index_Type'Base;
|
|
|
|
begin
|
|
if Checks and then Before.Container /= null
|
|
and then Before.Container /= Container'Unrestricted_Access
|
|
then
|
|
raise Program_Error with "Before cursor denotes wrong container";
|
|
end if;
|
|
|
|
if Count = 0 then
|
|
return;
|
|
end if;
|
|
|
|
if Before.Container = null or else Before.Index > Container.Last then
|
|
if Checks and then Container.Last = Index_Type'Last then
|
|
raise Constraint_Error with
|
|
"vector is already at its maximum length";
|
|
end if;
|
|
|
|
Index := Container.Last + 1;
|
|
|
|
else
|
|
Index := Before.Index;
|
|
end if;
|
|
|
|
Insert (Container, Index, New_Item, Count);
|
|
end Insert;
|
|
|
|
procedure Insert
|
|
(Container : in out Vector;
|
|
Before : Cursor;
|
|
New_Item : Element_Type;
|
|
Position : out Cursor;
|
|
Count : Count_Type := 1)
|
|
is
|
|
Index : Index_Type'Base;
|
|
|
|
begin
|
|
if Checks and then Before.Container /= null
|
|
and then Before.Container /= Container'Unrestricted_Access
|
|
then
|
|
raise Program_Error with "Before cursor denotes wrong container";
|
|
end if;
|
|
|
|
if Count = 0 then
|
|
if Before.Container = null or else Before.Index > Container.Last then
|
|
Position := No_Element;
|
|
else
|
|
Position := (Container'Unrestricted_Access, Before.Index);
|
|
end if;
|
|
|
|
return;
|
|
end if;
|
|
|
|
if Before.Container = null or else Before.Index > Container.Last then
|
|
if Checks and then Container.Last = Index_Type'Last then
|
|
raise Constraint_Error with
|
|
"vector is already at its maximum length";
|
|
end if;
|
|
|
|
Index := Container.Last + 1;
|
|
|
|
else
|
|
Index := Before.Index;
|
|
end if;
|
|
|
|
Insert (Container, Index, New_Item, Count);
|
|
|
|
Position := (Container'Unrestricted_Access, Index);
|
|
end Insert;
|
|
|
|
------------------
|
|
-- Insert_Space --
|
|
------------------
|
|
|
|
procedure Insert_Space
|
|
(Container : in out Vector;
|
|
Before : Extended_Index;
|
|
Count : Count_Type := 1)
|
|
is
|
|
Old_Length : constant Count_Type := Container.Length;
|
|
|
|
Max_Length : Count_Type'Base; -- determined from range of Index_Type
|
|
New_Length : Count_Type'Base; -- sum of current length and Count
|
|
New_Last : Index_Type'Base; -- last index of vector after insertion
|
|
|
|
Index : Index_Type'Base; -- scratch for intermediate values
|
|
J : Count_Type'Base; -- scratch
|
|
|
|
New_Capacity : Count_Type'Base; -- length of new, expanded array
|
|
Dst_Last : Index_Type'Base; -- last index of new, expanded array
|
|
Dst : Elements_Access; -- new, expanded internal array
|
|
|
|
begin
|
|
if Checks then
|
|
-- As a precondition on the generic actual Index_Type, the base type
|
|
-- must include Index_Type'Pred (Index_Type'First); this is the value
|
|
-- that Container.Last assumes when the vector is empty. However, we
|
|
-- do not allow that as the value for Index when specifying where the
|
|
-- new items should be inserted, so we must manually check. (That the
|
|
-- user is allowed to specify the value at all here is a consequence
|
|
-- of the declaration of the Extended_Index subtype, which includes
|
|
-- the values in the base range that immediately precede and
|
|
-- immediately follow the values in the Index_Type.)
|
|
|
|
if Before < Index_Type'First then
|
|
raise Constraint_Error with
|
|
"Before index is out of range (too small)";
|
|
end if;
|
|
|
|
-- We do allow a value greater than Container.Last to be specified as
|
|
-- the Index, but only if it's immediately greater. This allows for
|
|
-- the case of appending items to the back end of the vector. (It is
|
|
-- assumed that specifying an index value greater than Last + 1
|
|
-- indicates some deeper flaw in the caller's algorithm, so that case
|
|
-- is treated as a proper error.)
|
|
|
|
if Before > Container.Last + 1 then
|
|
raise Constraint_Error with
|
|
"Before index is out of range (too large)";
|
|
end if;
|
|
end if;
|
|
|
|
-- We treat inserting 0 items into the container as a no-op, even when
|
|
-- the container is busy, so we simply return.
|
|
|
|
if Count = 0 then
|
|
return;
|
|
end if;
|
|
|
|
-- There are two constraints we need to satisfy. The first constraint is
|
|
-- that a container cannot have more than Count_Type'Last elements, so
|
|
-- we must check the sum of the current length and the insertion count.
|
|
-- Note: we cannot simply add these values, because of the possibility
|
|
-- of overflow.
|
|
|
|
if Checks and then Old_Length > Count_Type'Last - Count then
|
|
raise Constraint_Error with "Count is out of range";
|
|
end if;
|
|
|
|
-- It is now safe compute the length of the new vector, without fear of
|
|
-- overflow.
|
|
|
|
New_Length := Old_Length + Count;
|
|
|
|
-- The second constraint is that the new Last index value cannot exceed
|
|
-- Index_Type'Last. In each branch below, we calculate the maximum
|
|
-- length (computed from the range of values in Index_Type), and then
|
|
-- compare the new length to the maximum length. If the new length is
|
|
-- acceptable, then we compute the new last index from that.
|
|
|
|
if Index_Type'Base'Last >= Count_Type_Last then
|
|
-- We have to handle the case when there might be more values in the
|
|
-- range of Index_Type than in the range of Count_Type.
|
|
|
|
if Index_Type'First <= 0 then
|
|
|
|
-- We know that No_Index (the same as Index_Type'First - 1) is
|
|
-- less than 0, so it is safe to compute the following sum without
|
|
-- fear of overflow.
|
|
|
|
Index := No_Index + Index_Type'Base (Count_Type'Last);
|
|
|
|
if Index <= Index_Type'Last then
|
|
|
|
-- We have determined that range of Index_Type has at least as
|
|
-- many values as in Count_Type, so Count_Type'Last is the
|
|
-- maximum number of items that are allowed.
|
|
|
|
Max_Length := Count_Type'Last;
|
|
|
|
else
|
|
-- The range of Index_Type has fewer values than in Count_Type,
|
|
-- so the maximum number of items is computed from the range of
|
|
-- the Index_Type.
|
|
|
|
Max_Length := Count_Type'Base (Index_Type'Last - No_Index);
|
|
end if;
|
|
|
|
else
|
|
-- No_Index is equal or greater than 0, so we can safely compute
|
|
-- the difference without fear of overflow (which we would have to
|
|
-- worry about if No_Index were less than 0, but that case is
|
|
-- handled above).
|
|
|
|
if Index_Type'Last - No_Index >= Count_Type_Last then
|
|
-- We have determined that range of Index_Type has at least as
|
|
-- many values as in Count_Type, so Count_Type'Last is the
|
|
-- maximum number of items that are allowed.
|
|
|
|
Max_Length := Count_Type'Last;
|
|
|
|
else
|
|
-- The range of Index_Type has fewer values than in Count_Type,
|
|
-- so the maximum number of items is computed from the range of
|
|
-- the Index_Type.
|
|
|
|
Max_Length := Count_Type'Base (Index_Type'Last - No_Index);
|
|
end if;
|
|
end if;
|
|
|
|
elsif Index_Type'First <= 0 then
|
|
|
|
-- We know that No_Index (the same as Index_Type'First - 1) is less
|
|
-- than 0, so it is safe to compute the following sum without fear of
|
|
-- overflow.
|
|
|
|
J := Count_Type'Base (No_Index) + Count_Type'Last;
|
|
|
|
if J <= Count_Type'Base (Index_Type'Last) then
|
|
|
|
-- We have determined that range of Index_Type has at least as
|
|
-- many values as in Count_Type, so Count_Type'Last is the maximum
|
|
-- number of items that are allowed.
|
|
|
|
Max_Length := Count_Type'Last;
|
|
|
|
else
|
|
-- The range of Index_Type has fewer values than Count_Type does,
|
|
-- so the maximum number of items is computed from the range of
|
|
-- the Index_Type.
|
|
|
|
Max_Length :=
|
|
Count_Type'Base (Index_Type'Last) - Count_Type'Base (No_Index);
|
|
end if;
|
|
|
|
else
|
|
-- No_Index is equal or greater than 0, so we can safely compute the
|
|
-- difference without fear of overflow (which we would have to worry
|
|
-- about if No_Index were less than 0, but that case is handled
|
|
-- above).
|
|
|
|
Max_Length :=
|
|
Count_Type'Base (Index_Type'Last) - Count_Type'Base (No_Index);
|
|
end if;
|
|
|
|
-- We have just computed the maximum length (number of items). We must
|
|
-- now compare the requested length to the maximum length, as we do not
|
|
-- allow a vector expand beyond the maximum (because that would create
|
|
-- an internal array with a last index value greater than
|
|
-- Index_Type'Last, with no way to index those elements).
|
|
|
|
if Checks and then New_Length > Max_Length then
|
|
raise Constraint_Error with "Count is out of range";
|
|
end if;
|
|
|
|
-- New_Last is the last index value of the items in the container after
|
|
-- insertion. Use the wider of Index_Type'Base and Count_Type'Base to
|
|
-- compute its value from the New_Length.
|
|
|
|
if Index_Type'Base'Last >= Count_Type_Last then
|
|
New_Last := No_Index + Index_Type'Base (New_Length);
|
|
else
|
|
New_Last := Index_Type'Base (Count_Type'Base (No_Index) + New_Length);
|
|
end if;
|
|
|
|
if Container.Elements = null then
|
|
pragma Assert (Container.Last = No_Index);
|
|
|
|
-- This is the simplest case, with which we must always begin: we're
|
|
-- inserting items into an empty vector that hasn't allocated an
|
|
-- internal array yet. Note that we don't need to check the busy bit
|
|
-- here, because an empty container cannot be busy.
|
|
|
|
-- In an indefinite vector, elements are allocated individually, and
|
|
-- stored as access values on the internal array (the length of which
|
|
-- represents the vector "capacity"), which is separately allocated.
|
|
-- We have no elements here (because we're inserting "space"), so all
|
|
-- we need to do is allocate the backbone.
|
|
|
|
Container.Elements := new Elements_Type (New_Last);
|
|
Container.Last := New_Last;
|
|
|
|
return;
|
|
end if;
|
|
|
|
-- The tampering bits exist to prevent an item from being harmfully
|
|
-- manipulated while it is being visited. Query, Update, and Iterate
|
|
-- increment the busy count on entry, and decrement the count on exit.
|
|
-- Insert checks the count to determine whether it is being called while
|
|
-- the associated callback procedure is executing.
|
|
|
|
TC_Check (Container.TC);
|
|
|
|
if New_Length <= Container.Elements.EA'Length then
|
|
|
|
-- In this case, we are inserting elements into a vector that has
|
|
-- already allocated an internal array, and the existing array has
|
|
-- enough unused storage for the new items.
|
|
|
|
declare
|
|
E : Elements_Array renames Container.Elements.EA;
|
|
|
|
begin
|
|
if Before <= Container.Last then
|
|
|
|
-- The new space is being inserted before some existing
|
|
-- elements, so we must slide the existing elements up to
|
|
-- their new home. We use the wider of Index_Type'Base and
|
|
-- Count_Type'Base as the type for intermediate index values.
|
|
|
|
if Index_Type'Base'Last >= Count_Type_Last then
|
|
Index := Before + Index_Type'Base (Count);
|
|
else
|
|
Index := Index_Type'Base (Count_Type'Base (Before) + Count);
|
|
end if;
|
|
|
|
E (Index .. New_Last) := E (Before .. Container.Last);
|
|
E (Before .. Index - 1) := (others => null);
|
|
end if;
|
|
end;
|
|
|
|
Container.Last := New_Last;
|
|
return;
|
|
end if;
|
|
|
|
-- In this case, we're inserting elements into a vector that has already
|
|
-- allocated an internal array, but the existing array does not have
|
|
-- enough storage, so we must allocate a new, longer array. In order to
|
|
-- guarantee that the amortized insertion cost is O(1), we always
|
|
-- allocate an array whose length is some power-of-two factor of the
|
|
-- current array length. (The new array cannot have a length less than
|
|
-- the New_Length of the container, but its last index value cannot be
|
|
-- greater than Index_Type'Last.)
|
|
|
|
New_Capacity := Count_Type'Max (1, Container.Elements.EA'Length);
|
|
while New_Capacity < New_Length loop
|
|
if New_Capacity > Count_Type'Last / 2 then
|
|
New_Capacity := Count_Type'Last;
|
|
exit;
|
|
end if;
|
|
|
|
New_Capacity := 2 * New_Capacity;
|
|
end loop;
|
|
|
|
if New_Capacity > Max_Length then
|
|
|
|
-- We have reached the limit of capacity, so no further expansion
|
|
-- will occur. (This is not a problem, as there is never a need to
|
|
-- have more capacity than the maximum container length.)
|
|
|
|
New_Capacity := Max_Length;
|
|
end if;
|
|
|
|
-- We have computed the length of the new internal array (and this is
|
|
-- what "vector capacity" means), so use that to compute its last index.
|
|
|
|
if Index_Type'Base'Last >= Count_Type_Last then
|
|
Dst_Last := No_Index + Index_Type'Base (New_Capacity);
|
|
else
|
|
Dst_Last :=
|
|
Index_Type'Base (Count_Type'Base (No_Index) + New_Capacity);
|
|
end if;
|
|
|
|
-- Now we allocate the new, longer internal array. If the allocation
|
|
-- fails, we have not changed any container state, so no side-effect
|
|
-- will occur as a result of propagating the exception.
|
|
|
|
Dst := new Elements_Type (Dst_Last);
|
|
|
|
-- We have our new internal array. All that needs to be done now is to
|
|
-- copy the existing items (if any) from the old array (the "source"
|
|
-- array) to the new array (the "destination" array), and then
|
|
-- deallocate the old array.
|
|
|
|
declare
|
|
Src : Elements_Access := Container.Elements;
|
|
|
|
begin
|
|
Dst.EA (Index_Type'First .. Before - 1) :=
|
|
Src.EA (Index_Type'First .. Before - 1);
|
|
|
|
if Before <= Container.Last then
|
|
|
|
-- The new items are being inserted before some existing elements,
|
|
-- so we must slide the existing elements up to their new home.
|
|
|
|
if Index_Type'Base'Last >= Count_Type_Last then
|
|
Index := Before + Index_Type'Base (Count);
|
|
else
|
|
Index := Index_Type'Base (Count_Type'Base (Before) + Count);
|
|
end if;
|
|
|
|
Dst.EA (Index .. New_Last) := Src.EA (Before .. Container.Last);
|
|
end if;
|
|
|
|
-- We have copied the elements from to the old, source array to the
|
|
-- new, destination array, so we can now restore invariants, and
|
|
-- deallocate the old array.
|
|
|
|
Container.Elements := Dst;
|
|
Container.Last := New_Last;
|
|
Free (Src);
|
|
end;
|
|
end Insert_Space;
|
|
|
|
procedure Insert_Space
|
|
(Container : in out Vector;
|
|
Before : Cursor;
|
|
Position : out Cursor;
|
|
Count : Count_Type := 1)
|
|
is
|
|
Index : Index_Type'Base;
|
|
|
|
begin
|
|
if Checks and then Before.Container /= null
|
|
and then Before.Container /= Container'Unrestricted_Access
|
|
then
|
|
raise Program_Error with "Before cursor denotes wrong container";
|
|
end if;
|
|
|
|
if Count = 0 then
|
|
if Before.Container = null or else Before.Index > Container.Last then
|
|
Position := No_Element;
|
|
else
|
|
Position := (Container'Unrestricted_Access, Before.Index);
|
|
end if;
|
|
|
|
return;
|
|
end if;
|
|
|
|
if Before.Container = null or else Before.Index > Container.Last then
|
|
if Checks and then Container.Last = Index_Type'Last then
|
|
raise Constraint_Error with
|
|
"vector is already at its maximum length";
|
|
end if;
|
|
|
|
Index := Container.Last + 1;
|
|
|
|
else
|
|
Index := Before.Index;
|
|
end if;
|
|
|
|
Insert_Space (Container, Index, Count);
|
|
|
|
Position := (Container'Unrestricted_Access, Index);
|
|
end Insert_Space;
|
|
|
|
--------------
|
|
-- Is_Empty --
|
|
--------------
|
|
|
|
function Is_Empty (Container : Vector) return Boolean is
|
|
begin
|
|
return Container.Last < Index_Type'First;
|
|
end Is_Empty;
|
|
|
|
-------------
|
|
-- Iterate --
|
|
-------------
|
|
|
|
procedure Iterate
|
|
(Container : Vector;
|
|
Process : not null access procedure (Position : Cursor))
|
|
is
|
|
Busy : With_Busy (Container.TC'Unrestricted_Access);
|
|
begin
|
|
for Indx in Index_Type'First .. Container.Last loop
|
|
Process (Cursor'(Container'Unrestricted_Access, Indx));
|
|
end loop;
|
|
end Iterate;
|
|
|
|
function Iterate
|
|
(Container : Vector)
|
|
return Vector_Iterator_Interfaces.Reversible_Iterator'Class
|
|
is
|
|
V : constant Vector_Access := Container'Unrestricted_Access;
|
|
begin
|
|
-- The value of its Index component influences the behavior of the First
|
|
-- and Last selector functions of the iterator object. When the Index
|
|
-- component is No_Index (as is the case here), this means the iterator
|
|
-- object was constructed without a start expression. This is a complete
|
|
-- iterator, meaning that the iteration starts from the (logical)
|
|
-- beginning of the sequence of items.
|
|
|
|
-- Note: For a forward iterator, Container.First is the beginning, and
|
|
-- for a reverse iterator, Container.Last is the beginning.
|
|
|
|
return It : constant Iterator :=
|
|
(Limited_Controlled with
|
|
Container => V,
|
|
Index => No_Index)
|
|
do
|
|
Busy (Container.TC'Unrestricted_Access.all);
|
|
end return;
|
|
end Iterate;
|
|
|
|
function Iterate
|
|
(Container : Vector;
|
|
Start : Cursor)
|
|
return Vector_Iterator_Interfaces.Reversible_Iterator'Class
|
|
is
|
|
V : constant Vector_Access := Container'Unrestricted_Access;
|
|
begin
|
|
-- It was formerly the case that when Start = No_Element, the partial
|
|
-- iterator was defined to behave the same as for a complete iterator,
|
|
-- and iterate over the entire sequence of items. However, those
|
|
-- semantics were unintuitive and arguably error-prone (it is too easy
|
|
-- to accidentally create an endless loop), and so they were changed,
|
|
-- per the ARG meeting in Denver on 2011/11. However, there was no
|
|
-- consensus about what positive meaning this corner case should have,
|
|
-- and so it was decided to simply raise an exception. This does imply,
|
|
-- however, that it is not possible to use a partial iterator to specify
|
|
-- an empty sequence of items.
|
|
|
|
if Checks then
|
|
if Start.Container = null then
|
|
raise Constraint_Error with
|
|
"Start position for iterator equals No_Element";
|
|
end if;
|
|
|
|
if Start.Container /= V then
|
|
raise Program_Error with
|
|
"Start cursor of Iterate designates wrong vector";
|
|
end if;
|
|
|
|
if Start.Index > V.Last then
|
|
raise Constraint_Error with
|
|
"Start position for iterator equals No_Element";
|
|
end if;
|
|
end if;
|
|
|
|
-- The value of its Index component influences the behavior of the First
|
|
-- and Last selector functions of the iterator object. When the Index
|
|
-- component is not No_Index (as is the case here), it means that this
|
|
-- is a partial iteration, over a subset of the complete sequence of
|
|
-- items. The iterator object was constructed with a start expression,
|
|
-- indicating the position from which the iteration begins. Note that
|
|
-- the start position has the same value irrespective of whether this
|
|
-- is a forward or reverse iteration.
|
|
|
|
return It : constant Iterator :=
|
|
(Limited_Controlled with
|
|
Container => V,
|
|
Index => Start.Index)
|
|
do
|
|
Busy (Container.TC'Unrestricted_Access.all);
|
|
end return;
|
|
end Iterate;
|
|
|
|
----------
|
|
-- Last --
|
|
----------
|
|
|
|
function Last (Container : Vector) return Cursor is
|
|
begin
|
|
if Is_Empty (Container) then
|
|
return No_Element;
|
|
end if;
|
|
|
|
return (Container'Unrestricted_Access, Container.Last);
|
|
end Last;
|
|
|
|
function Last (Object : Iterator) return Cursor is
|
|
begin
|
|
-- The value of the iterator object's Index component influences the
|
|
-- behavior of the Last (and First) selector function.
|
|
|
|
-- When the Index component is No_Index, this means the iterator
|
|
-- object was constructed without a start expression, in which case the
|
|
-- (reverse) iteration starts from the (logical) beginning of the entire
|
|
-- sequence (corresponding to Container.Last, for a reverse iterator).
|
|
|
|
-- Otherwise, this is iteration over a partial sequence of items.
|
|
-- When the Index component is not No_Index, the iterator object was
|
|
-- constructed with a start expression, that specifies the position
|
|
-- from which the (reverse) partial iteration begins.
|
|
|
|
if Object.Index = No_Index then
|
|
return Last (Object.Container.all);
|
|
else
|
|
return Cursor'(Object.Container, Object.Index);
|
|
end if;
|
|
end Last;
|
|
|
|
------------------
|
|
-- Last_Element --
|
|
------------------
|
|
|
|
function Last_Element (Container : Vector) return Element_Type is
|
|
begin
|
|
if Checks and then Container.Last = No_Index then
|
|
raise Constraint_Error with "Container is empty";
|
|
end if;
|
|
|
|
declare
|
|
EA : constant Element_Access :=
|
|
Container.Elements.EA (Container.Last);
|
|
begin
|
|
if Checks and then EA = null then
|
|
raise Constraint_Error with "last element is empty";
|
|
else
|
|
return EA.all;
|
|
end if;
|
|
end;
|
|
end Last_Element;
|
|
|
|
----------------
|
|
-- Last_Index --
|
|
----------------
|
|
|
|
function Last_Index (Container : Vector) return Extended_Index is
|
|
begin
|
|
return Container.Last;
|
|
end Last_Index;
|
|
|
|
------------
|
|
-- Length --
|
|
------------
|
|
|
|
function Length (Container : Vector) return Count_Type is
|
|
L : constant Index_Type'Base := Container.Last;
|
|
F : constant Index_Type := Index_Type'First;
|
|
|
|
begin
|
|
-- The base range of the index type (Index_Type'Base) might not include
|
|
-- all values for length (Count_Type). Contrariwise, the index type
|
|
-- might include values outside the range of length. Hence we use
|
|
-- whatever type is wider for intermediate values when calculating
|
|
-- length. Note that no matter what the index type is, the maximum
|
|
-- length to which a vector is allowed to grow is always the minimum
|
|
-- of Count_Type'Last and (IT'Last - IT'First + 1).
|
|
|
|
-- For example, an Index_Type with range -127 .. 127 is only guaranteed
|
|
-- to have a base range of -128 .. 127, but the corresponding vector
|
|
-- would have lengths in the range 0 .. 255. In this case we would need
|
|
-- to use Count_Type'Base for intermediate values.
|
|
|
|
-- Another case would be the index range -2**63 + 1 .. -2**63 + 10. The
|
|
-- vector would have a maximum length of 10, but the index values lie
|
|
-- outside the range of Count_Type (which is only 32 bits). In this
|
|
-- case we would need to use Index_Type'Base for intermediate values.
|
|
|
|
if Count_Type'Base'Last >= Index_Type'Pos (Index_Type'Base'Last) then
|
|
return Count_Type'Base (L) - Count_Type'Base (F) + 1;
|
|
else
|
|
return Count_Type (L - F + 1);
|
|
end if;
|
|
end Length;
|
|
|
|
----------
|
|
-- Move --
|
|
----------
|
|
|
|
procedure Move
|
|
(Target : in out Vector;
|
|
Source : in out Vector)
|
|
is
|
|
begin
|
|
if Target'Address = Source'Address then
|
|
return;
|
|
end if;
|
|
|
|
TC_Check (Source.TC);
|
|
|
|
Clear (Target); -- Checks busy-bit
|
|
|
|
declare
|
|
Target_Elements : constant Elements_Access := Target.Elements;
|
|
begin
|
|
Target.Elements := Source.Elements;
|
|
Source.Elements := Target_Elements;
|
|
end;
|
|
|
|
Target.Last := Source.Last;
|
|
Source.Last := No_Index;
|
|
end Move;
|
|
|
|
----------
|
|
-- Next --
|
|
----------
|
|
|
|
function Next (Position : Cursor) return Cursor is
|
|
begin
|
|
if Position.Container = null then
|
|
return No_Element;
|
|
elsif Position.Index < Position.Container.Last then
|
|
return (Position.Container, Position.Index + 1);
|
|
else
|
|
return No_Element;
|
|
end if;
|
|
end Next;
|
|
|
|
function Next (Object : Iterator; Position : Cursor) return Cursor is
|
|
begin
|
|
if Position.Container = null then
|
|
return No_Element;
|
|
elsif Checks and then Position.Container /= Object.Container then
|
|
raise Program_Error with
|
|
"Position cursor of Next designates wrong vector";
|
|
else
|
|
return Next (Position);
|
|
end if;
|
|
end Next;
|
|
|
|
procedure Next (Position : in out Cursor) is
|
|
begin
|
|
if Position.Container = null then
|
|
return;
|
|
elsif Position.Index < Position.Container.Last then
|
|
Position.Index := Position.Index + 1;
|
|
else
|
|
Position := No_Element;
|
|
end if;
|
|
end Next;
|
|
|
|
-------------
|
|
-- Prepend --
|
|
-------------
|
|
|
|
procedure Prepend (Container : in out Vector; New_Item : Vector) is
|
|
begin
|
|
Insert (Container, Index_Type'First, New_Item);
|
|
end Prepend;
|
|
|
|
procedure Prepend
|
|
(Container : in out Vector;
|
|
New_Item : Element_Type;
|
|
Count : Count_Type := 1)
|
|
is
|
|
begin
|
|
Insert (Container, Index_Type'First, New_Item, Count);
|
|
end Prepend;
|
|
|
|
--------------
|
|
-- Previous --
|
|
--------------
|
|
|
|
function Previous (Position : Cursor) return Cursor is
|
|
begin
|
|
if Position.Container = null then
|
|
return No_Element;
|
|
elsif Position.Index > Index_Type'First then
|
|
return (Position.Container, Position.Index - 1);
|
|
else
|
|
return No_Element;
|
|
end if;
|
|
end Previous;
|
|
|
|
function Previous (Object : Iterator; Position : Cursor) return Cursor is
|
|
begin
|
|
if Position.Container = null then
|
|
return No_Element;
|
|
elsif Checks and then Position.Container /= Object.Container then
|
|
raise Program_Error with
|
|
"Position cursor of Previous designates wrong vector";
|
|
else
|
|
return Previous (Position);
|
|
end if;
|
|
end Previous;
|
|
|
|
procedure Previous (Position : in out Cursor) is
|
|
begin
|
|
if Position.Container = null then
|
|
return;
|
|
elsif Position.Index > Index_Type'First then
|
|
Position.Index := Position.Index - 1;
|
|
else
|
|
Position := No_Element;
|
|
end if;
|
|
end Previous;
|
|
|
|
----------------------
|
|
-- Pseudo_Reference --
|
|
----------------------
|
|
|
|
function Pseudo_Reference
|
|
(Container : aliased Vector'Class) return Reference_Control_Type
|
|
is
|
|
TC : constant Tamper_Counts_Access := Container.TC'Unrestricted_Access;
|
|
begin
|
|
return R : constant Reference_Control_Type := (Controlled with TC) do
|
|
Lock (TC.all);
|
|
end return;
|
|
end Pseudo_Reference;
|
|
|
|
-------------------
|
|
-- Query_Element --
|
|
-------------------
|
|
|
|
procedure Query_Element
|
|
(Container : Vector;
|
|
Index : Index_Type;
|
|
Process : not null access procedure (Element : Element_Type))
|
|
is
|
|
Lock : With_Lock (Container.TC'Unrestricted_Access);
|
|
V : Vector renames Container'Unrestricted_Access.all;
|
|
|
|
begin
|
|
if Checks and then Index > Container.Last then
|
|
raise Constraint_Error with "Index is out of range";
|
|
end if;
|
|
|
|
if Checks and then V.Elements.EA (Index) = null then
|
|
raise Constraint_Error with "element is null";
|
|
end if;
|
|
|
|
Process (V.Elements.EA (Index).all);
|
|
end Query_Element;
|
|
|
|
procedure Query_Element
|
|
(Position : Cursor;
|
|
Process : not null access procedure (Element : Element_Type))
|
|
is
|
|
begin
|
|
if Checks and then Position.Container = null then
|
|
raise Constraint_Error with "Position cursor has no element";
|
|
else
|
|
Query_Element (Position.Container.all, Position.Index, Process);
|
|
end if;
|
|
end Query_Element;
|
|
|
|
----------
|
|
-- Read --
|
|
----------
|
|
|
|
procedure Read
|
|
(Stream : not null access Root_Stream_Type'Class;
|
|
Container : out Vector)
|
|
is
|
|
Length : Count_Type'Base;
|
|
Last : Index_Type'Base := Index_Type'Pred (Index_Type'First);
|
|
B : Boolean;
|
|
|
|
begin
|
|
Clear (Container);
|
|
|
|
Count_Type'Base'Read (Stream, Length);
|
|
|
|
if Length > Capacity (Container) then
|
|
Reserve_Capacity (Container, Capacity => Length);
|
|
end if;
|
|
|
|
for J in Count_Type range 1 .. Length loop
|
|
Last := Last + 1;
|
|
|
|
Boolean'Read (Stream, B);
|
|
|
|
if B then
|
|
Container.Elements.EA (Last) :=
|
|
new Element_Type'(Element_Type'Input (Stream));
|
|
end if;
|
|
|
|
Container.Last := Last;
|
|
end loop;
|
|
end Read;
|
|
|
|
procedure Read
|
|
(Stream : not null access Root_Stream_Type'Class;
|
|
Position : out Cursor)
|
|
is
|
|
begin
|
|
raise Program_Error with "attempt to stream vector cursor";
|
|
end Read;
|
|
|
|
procedure Read
|
|
(Stream : not null access Root_Stream_Type'Class;
|
|
Item : out Reference_Type)
|
|
is
|
|
begin
|
|
raise Program_Error with "attempt to stream reference";
|
|
end Read;
|
|
|
|
procedure Read
|
|
(Stream : not null access Root_Stream_Type'Class;
|
|
Item : out Constant_Reference_Type)
|
|
is
|
|
begin
|
|
raise Program_Error with "attempt to stream reference";
|
|
end Read;
|
|
|
|
---------------
|
|
-- Reference --
|
|
---------------
|
|
|
|
function Reference
|
|
(Container : aliased in out Vector;
|
|
Position : Cursor) return Reference_Type
|
|
is
|
|
begin
|
|
if Checks then
|
|
if Position.Container = null then
|
|
raise Constraint_Error with "Position cursor has no element";
|
|
end if;
|
|
|
|
if Position.Container /= Container'Unrestricted_Access then
|
|
raise Program_Error with "Position cursor denotes wrong container";
|
|
end if;
|
|
|
|
if Position.Index > Position.Container.Last then
|
|
raise Constraint_Error with "Position cursor is out of range";
|
|
end if;
|
|
end if;
|
|
|
|
declare
|
|
TC : constant Tamper_Counts_Access :=
|
|
Container.TC'Unrestricted_Access;
|
|
begin
|
|
-- The following will raise Constraint_Error if Element is null
|
|
|
|
return R : constant Reference_Type :=
|
|
(Element => Container.Elements.EA (Position.Index),
|
|
Control => (Controlled with TC))
|
|
do
|
|
Lock (TC.all);
|
|
end return;
|
|
end;
|
|
end Reference;
|
|
|
|
function Reference
|
|
(Container : aliased in out Vector;
|
|
Index : Index_Type) return Reference_Type
|
|
is
|
|
begin
|
|
if Checks and then Index > Container.Last then
|
|
raise Constraint_Error with "Index is out of range";
|
|
end if;
|
|
|
|
declare
|
|
TC : constant Tamper_Counts_Access :=
|
|
Container.TC'Unrestricted_Access;
|
|
begin
|
|
-- The following will raise Constraint_Error if Element is null
|
|
|
|
return R : constant Reference_Type :=
|
|
(Element => Container.Elements.EA (Index),
|
|
Control => (Controlled with TC))
|
|
do
|
|
Lock (TC.all);
|
|
end return;
|
|
end;
|
|
end Reference;
|
|
|
|
---------------------
|
|
-- Replace_Element --
|
|
---------------------
|
|
|
|
procedure Replace_Element
|
|
(Container : in out Vector;
|
|
Index : Index_Type;
|
|
New_Item : Element_Type)
|
|
is
|
|
begin
|
|
if Checks and then Index > Container.Last then
|
|
raise Constraint_Error with "Index is out of range";
|
|
end if;
|
|
|
|
TE_Check (Container.TC);
|
|
|
|
declare
|
|
X : Element_Access := Container.Elements.EA (Index);
|
|
|
|
-- The element allocator may need an accessibility check in the case
|
|
-- where the actual type is class-wide or has access discriminants
|
|
-- (see RM 4.8(10.1) and AI12-0035).
|
|
|
|
pragma Unsuppress (Accessibility_Check);
|
|
|
|
begin
|
|
Container.Elements.EA (Index) := new Element_Type'(New_Item);
|
|
Free (X);
|
|
end;
|
|
end Replace_Element;
|
|
|
|
procedure Replace_Element
|
|
(Container : in out Vector;
|
|
Position : Cursor;
|
|
New_Item : Element_Type)
|
|
is
|
|
begin
|
|
if Checks then
|
|
if Position.Container = null then
|
|
raise Constraint_Error with "Position cursor has no element";
|
|
end if;
|
|
|
|
if Position.Container /= Container'Unrestricted_Access then
|
|
raise Program_Error with "Position cursor denotes wrong container";
|
|
end if;
|
|
|
|
if Position.Index > Container.Last then
|
|
raise Constraint_Error with "Position cursor is out of range";
|
|
end if;
|
|
end if;
|
|
|
|
TE_Check (Container.TC);
|
|
|
|
declare
|
|
X : Element_Access := Container.Elements.EA (Position.Index);
|
|
|
|
-- The element allocator may need an accessibility check in the case
|
|
-- where the actual type is class-wide or has access discriminants
|
|
-- (see RM 4.8(10.1) and AI12-0035).
|
|
|
|
pragma Unsuppress (Accessibility_Check);
|
|
|
|
begin
|
|
Container.Elements.EA (Position.Index) := new Element_Type'(New_Item);
|
|
Free (X);
|
|
end;
|
|
end Replace_Element;
|
|
|
|
----------------------
|
|
-- Reserve_Capacity --
|
|
----------------------
|
|
|
|
procedure Reserve_Capacity
|
|
(Container : in out Vector;
|
|
Capacity : Count_Type)
|
|
is
|
|
N : constant Count_Type := Length (Container);
|
|
|
|
Index : Count_Type'Base;
|
|
Last : Index_Type'Base;
|
|
|
|
begin
|
|
-- Reserve_Capacity can be used to either expand the storage available
|
|
-- for elements (this would be its typical use, in anticipation of
|
|
-- future insertion), or to trim back storage. In the latter case,
|
|
-- storage can only be trimmed back to the limit of the container
|
|
-- length. Note that Reserve_Capacity neither deletes (active) elements
|
|
-- nor inserts elements; it only affects container capacity, never
|
|
-- container length.
|
|
|
|
if Capacity = 0 then
|
|
|
|
-- This is a request to trim back storage, to the minimum amount
|
|
-- possible given the current state of the container.
|
|
|
|
if N = 0 then
|
|
|
|
-- The container is empty, so in this unique case we can
|
|
-- deallocate the entire internal array. Note that an empty
|
|
-- container can never be busy, so there's no need to check the
|
|
-- tampering bits.
|
|
|
|
declare
|
|
X : Elements_Access := Container.Elements;
|
|
|
|
begin
|
|
-- First we remove the internal array from the container, to
|
|
-- handle the case when the deallocation raises an exception
|
|
-- (although that's unlikely, since this is simply an array of
|
|
-- access values, all of which are null).
|
|
|
|
Container.Elements := null;
|
|
|
|
-- Container invariants have been restored, so it is now safe
|
|
-- to attempt to deallocate the internal array.
|
|
|
|
Free (X);
|
|
end;
|
|
|
|
elsif N < Container.Elements.EA'Length then
|
|
|
|
-- The container is not empty, and the current length is less than
|
|
-- the current capacity, so there's storage available to trim. In
|
|
-- this case, we allocate a new internal array having a length
|
|
-- that exactly matches the number of items in the
|
|
-- container. (Reserve_Capacity does not delete active elements,
|
|
-- so this is the best we can do with respect to minimizing
|
|
-- storage).
|
|
|
|
TC_Check (Container.TC);
|
|
|
|
declare
|
|
subtype Array_Index_Subtype is Index_Type'Base range
|
|
Index_Type'First .. Container.Last;
|
|
|
|
Src : Elements_Array renames
|
|
Container.Elements.EA (Array_Index_Subtype);
|
|
|
|
X : Elements_Access := Container.Elements;
|
|
|
|
begin
|
|
-- Although we have isolated the old internal array that we're
|
|
-- going to deallocate, we don't deallocate it until we have
|
|
-- successfully allocated a new one. If there is an exception
|
|
-- during allocation (because there is not enough storage), we
|
|
-- let it propagate without causing any side-effect.
|
|
|
|
Container.Elements := new Elements_Type'(Container.Last, Src);
|
|
|
|
-- We have successfully allocated a new internal array (with a
|
|
-- smaller length than the old one, and containing a copy of
|
|
-- just the active elements in the container), so we can
|
|
-- deallocate the old array.
|
|
|
|
Free (X);
|
|
end;
|
|
end if;
|
|
|
|
return;
|
|
end if;
|
|
|
|
-- Reserve_Capacity can be used to expand the storage available for
|
|
-- elements, but we do not let the capacity grow beyond the number of
|
|
-- values in Index_Type'Range. (Were it otherwise, there would be no way
|
|
-- to refer to the elements with index values greater than
|
|
-- Index_Type'Last, so that storage would be wasted.) Here we compute
|
|
-- the Last index value of the new internal array, in a way that avoids
|
|
-- any possibility of overflow.
|
|
|
|
if Index_Type'Base'Last >= Count_Type_Last then
|
|
|
|
-- We perform a two-part test. First we determine whether the
|
|
-- computed Last value lies in the base range of the type, and then
|
|
-- determine whether it lies in the range of the index (sub)type.
|
|
|
|
-- Last must satisfy this relation:
|
|
-- First + Length - 1 <= Last
|
|
-- We regroup terms:
|
|
-- First - 1 <= Last - Length
|
|
-- Which can rewrite as:
|
|
-- No_Index <= Last - Length
|
|
|
|
if Checks and then
|
|
Index_Type'Base'Last - Index_Type'Base (Capacity) < No_Index
|
|
then
|
|
raise Constraint_Error with "Capacity is out of range";
|
|
end if;
|
|
|
|
-- We now know that the computed value of Last is within the base
|
|
-- range of the type, so it is safe to compute its value:
|
|
|
|
Last := No_Index + Index_Type'Base (Capacity);
|
|
|
|
-- Finally we test whether the value is within the range of the
|
|
-- generic actual index subtype:
|
|
|
|
if Checks and then Last > Index_Type'Last then
|
|
raise Constraint_Error with "Capacity is out of range";
|
|
end if;
|
|
|
|
elsif Index_Type'First <= 0 then
|
|
|
|
-- Here we can compute Last directly, in the normal way. We know that
|
|
-- No_Index is less than 0, so there is no danger of overflow when
|
|
-- adding the (positive) value of Capacity.
|
|
|
|
Index := Count_Type'Base (No_Index) + Capacity; -- Last
|
|
|
|
if Checks and then Index > Count_Type'Base (Index_Type'Last) then
|
|
raise Constraint_Error with "Capacity is out of range";
|
|
end if;
|
|
|
|
-- We know that the computed value (having type Count_Type) of Last
|
|
-- is within the range of the generic actual index subtype, so it is
|
|
-- safe to convert to Index_Type:
|
|
|
|
Last := Index_Type'Base (Index);
|
|
|
|
else
|
|
-- Here Index_Type'First (and Index_Type'Last) is positive, so we
|
|
-- must test the length indirectly (by working backwards from the
|
|
-- largest possible value of Last), in order to prevent overflow.
|
|
|
|
Index := Count_Type'Base (Index_Type'Last) - Capacity; -- No_Index
|
|
|
|
if Checks and then Index < Count_Type'Base (No_Index) then
|
|
raise Constraint_Error with "Capacity is out of range";
|
|
end if;
|
|
|
|
-- We have determined that the value of Capacity would not create a
|
|
-- Last index value outside of the range of Index_Type, so we can now
|
|
-- safely compute its value.
|
|
|
|
Last := Index_Type'Base (Count_Type'Base (No_Index) + Capacity);
|
|
end if;
|
|
|
|
-- The requested capacity is non-zero, but we don't know yet whether
|
|
-- this is a request for expansion or contraction of storage.
|
|
|
|
if Container.Elements = null then
|
|
|
|
-- The container is empty (it doesn't even have an internal array),
|
|
-- so this represents a request to allocate storage having the given
|
|
-- capacity.
|
|
|
|
Container.Elements := new Elements_Type (Last);
|
|
return;
|
|
end if;
|
|
|
|
if Capacity <= N then
|
|
|
|
-- This is a request to trim back storage, but only to the limit of
|
|
-- what's already in the container. (Reserve_Capacity never deletes
|
|
-- active elements, it only reclaims excess storage.)
|
|
|
|
if N < Container.Elements.EA'Length then
|
|
|
|
-- The container is not empty (because the requested capacity is
|
|
-- positive, and less than or equal to the container length), and
|
|
-- the current length is less than the current capacity, so there
|
|
-- is storage available to trim. In this case, we allocate a new
|
|
-- internal array having a length that exactly matches the number
|
|
-- of items in the container.
|
|
|
|
TC_Check (Container.TC);
|
|
|
|
declare
|
|
subtype Array_Index_Subtype is Index_Type'Base range
|
|
Index_Type'First .. Container.Last;
|
|
|
|
Src : Elements_Array renames
|
|
Container.Elements.EA (Array_Index_Subtype);
|
|
|
|
X : Elements_Access := Container.Elements;
|
|
|
|
begin
|
|
-- Although we have isolated the old internal array that we're
|
|
-- going to deallocate, we don't deallocate it until we have
|
|
-- successfully allocated a new one. If there is an exception
|
|
-- during allocation (because there is not enough storage), we
|
|
-- let it propagate without causing any side-effect.
|
|
|
|
Container.Elements := new Elements_Type'(Container.Last, Src);
|
|
|
|
-- We have successfully allocated a new internal array (with a
|
|
-- smaller length than the old one, and containing a copy of
|
|
-- just the active elements in the container), so it is now
|
|
-- safe to deallocate the old array.
|
|
|
|
Free (X);
|
|
end;
|
|
end if;
|
|
|
|
return;
|
|
end if;
|
|
|
|
-- The requested capacity is larger than the container length (the
|
|
-- number of active elements). Whether this represents a request for
|
|
-- expansion or contraction of the current capacity depends on what the
|
|
-- current capacity is.
|
|
|
|
if Capacity = Container.Elements.EA'Length then
|
|
|
|
-- The requested capacity matches the existing capacity, so there's
|
|
-- nothing to do here. We treat this case as a no-op, and simply
|
|
-- return without checking the busy bit.
|
|
|
|
return;
|
|
end if;
|
|
|
|
-- There is a change in the capacity of a non-empty container, so a new
|
|
-- internal array will be allocated. (The length of the new internal
|
|
-- array could be less or greater than the old internal array. We know
|
|
-- only that the length of the new internal array is greater than the
|
|
-- number of active elements in the container.) We must check whether
|
|
-- the container is busy before doing anything else.
|
|
|
|
TC_Check (Container.TC);
|
|
|
|
-- We now allocate a new internal array, having a length different from
|
|
-- its current value.
|
|
|
|
declare
|
|
X : Elements_Access := Container.Elements;
|
|
|
|
subtype Index_Subtype is Index_Type'Base range
|
|
Index_Type'First .. Container.Last;
|
|
|
|
begin
|
|
-- We now allocate a new internal array, having a length different
|
|
-- from its current value.
|
|
|
|
Container.Elements := new Elements_Type (Last);
|
|
|
|
-- We have successfully allocated the new internal array, so now we
|
|
-- move the existing elements from the existing the old internal
|
|
-- array onto the new one. Note that we're just copying access
|
|
-- values, to this should not raise any exceptions.
|
|
|
|
Container.Elements.EA (Index_Subtype) := X.EA (Index_Subtype);
|
|
|
|
-- We have moved the elements from the old internal array, so now we
|
|
-- can deallocate it.
|
|
|
|
Free (X);
|
|
end;
|
|
end Reserve_Capacity;
|
|
|
|
----------------------
|
|
-- Reverse_Elements --
|
|
----------------------
|
|
|
|
procedure Reverse_Elements (Container : in out Vector) is
|
|
begin
|
|
if Container.Length <= 1 then
|
|
return;
|
|
end if;
|
|
|
|
-- The exception behavior for the vector container must match that for
|
|
-- the list container, so we check for cursor tampering here (which will
|
|
-- catch more things) instead of for element tampering (which will catch
|
|
-- fewer things). It's true that the elements of this vector container
|
|
-- could be safely moved around while (say) an iteration is taking place
|
|
-- (iteration only increments the busy counter), and so technically all
|
|
-- we would need here is a test for element tampering (indicated by the
|
|
-- lock counter), that's simply an artifact of our array-based
|
|
-- implementation. Logically Reverse_Elements requires a check for
|
|
-- cursor tampering.
|
|
|
|
TC_Check (Container.TC);
|
|
|
|
declare
|
|
I : Index_Type;
|
|
J : Index_Type;
|
|
E : Elements_Array renames Container.Elements.EA;
|
|
|
|
begin
|
|
I := Index_Type'First;
|
|
J := Container.Last;
|
|
while I < J loop
|
|
declare
|
|
EI : constant Element_Access := E (I);
|
|
|
|
begin
|
|
E (I) := E (J);
|
|
E (J) := EI;
|
|
end;
|
|
|
|
I := I + 1;
|
|
J := J - 1;
|
|
end loop;
|
|
end;
|
|
end Reverse_Elements;
|
|
|
|
------------------
|
|
-- Reverse_Find --
|
|
------------------
|
|
|
|
function Reverse_Find
|
|
(Container : Vector;
|
|
Item : Element_Type;
|
|
Position : Cursor := No_Element) return Cursor
|
|
is
|
|
Last : Index_Type'Base;
|
|
|
|
begin
|
|
if Checks and then Position.Container /= null
|
|
and then Position.Container /= Container'Unrestricted_Access
|
|
then
|
|
raise Program_Error with "Position cursor denotes wrong container";
|
|
end if;
|
|
|
|
Last :=
|
|
(if Position.Container = null or else Position.Index > Container.Last
|
|
then Container.Last
|
|
else Position.Index);
|
|
|
|
-- Per AI05-0022, the container implementation is required to detect
|
|
-- element tampering by a generic actual subprogram.
|
|
|
|
declare
|
|
Lock : With_Lock (Container.TC'Unrestricted_Access);
|
|
begin
|
|
for Indx in reverse Index_Type'First .. Last loop
|
|
if Container.Elements.EA (Indx) /= null
|
|
and then Container.Elements.EA (Indx).all = Item
|
|
then
|
|
return Cursor'(Container'Unrestricted_Access, Indx);
|
|
end if;
|
|
end loop;
|
|
|
|
return No_Element;
|
|
end;
|
|
end Reverse_Find;
|
|
|
|
------------------------
|
|
-- Reverse_Find_Index --
|
|
------------------------
|
|
|
|
function Reverse_Find_Index
|
|
(Container : Vector;
|
|
Item : Element_Type;
|
|
Index : Index_Type := Index_Type'Last) return Extended_Index
|
|
is
|
|
-- Per AI05-0022, the container implementation is required to detect
|
|
-- element tampering by a generic actual subprogram.
|
|
|
|
Lock : With_Lock (Container.TC'Unrestricted_Access);
|
|
|
|
Last : constant Index_Type'Base :=
|
|
Index_Type'Min (Container.Last, Index);
|
|
|
|
begin
|
|
for Indx in reverse Index_Type'First .. Last loop
|
|
if Container.Elements.EA (Indx) /= null
|
|
and then Container.Elements.EA (Indx).all = Item
|
|
then
|
|
return Indx;
|
|
end if;
|
|
end loop;
|
|
|
|
return No_Index;
|
|
end Reverse_Find_Index;
|
|
|
|
---------------------
|
|
-- Reverse_Iterate --
|
|
---------------------
|
|
|
|
procedure Reverse_Iterate
|
|
(Container : Vector;
|
|
Process : not null access procedure (Position : Cursor))
|
|
is
|
|
Busy : With_Busy (Container.TC'Unrestricted_Access);
|
|
begin
|
|
for Indx in reverse Index_Type'First .. Container.Last loop
|
|
Process (Cursor'(Container'Unrestricted_Access, Indx));
|
|
end loop;
|
|
end Reverse_Iterate;
|
|
|
|
----------------
|
|
-- Set_Length --
|
|
----------------
|
|
|
|
procedure Set_Length (Container : in out Vector; Length : Count_Type) is
|
|
Count : constant Count_Type'Base := Container.Length - Length;
|
|
|
|
begin
|
|
-- Set_Length allows the user to set the length explicitly, instead of
|
|
-- implicitly as a side-effect of deletion or insertion. If the
|
|
-- requested length is less than the current length, this is equivalent
|
|
-- to deleting items from the back end of the vector. If the requested
|
|
-- length is greater than the current length, then this is equivalent to
|
|
-- inserting "space" (nonce items) at the end.
|
|
|
|
if Count >= 0 then
|
|
Container.Delete_Last (Count);
|
|
|
|
elsif Checks and then Container.Last >= Index_Type'Last then
|
|
raise Constraint_Error with "vector is already at its maximum length";
|
|
|
|
else
|
|
Container.Insert_Space (Container.Last + 1, -Count);
|
|
end if;
|
|
end Set_Length;
|
|
|
|
----------
|
|
-- Swap --
|
|
----------
|
|
|
|
procedure Swap (Container : in out Vector; I, J : Index_Type) is
|
|
begin
|
|
if Checks then
|
|
if I > Container.Last then
|
|
raise Constraint_Error with "I index is out of range";
|
|
end if;
|
|
|
|
if J > Container.Last then
|
|
raise Constraint_Error with "J index is out of range";
|
|
end if;
|
|
end if;
|
|
|
|
if I = J then
|
|
return;
|
|
end if;
|
|
|
|
TE_Check (Container.TC);
|
|
|
|
declare
|
|
EI : Element_Access renames Container.Elements.EA (I);
|
|
EJ : Element_Access renames Container.Elements.EA (J);
|
|
|
|
EI_Copy : constant Element_Access := EI;
|
|
|
|
begin
|
|
EI := EJ;
|
|
EJ := EI_Copy;
|
|
end;
|
|
end Swap;
|
|
|
|
procedure Swap
|
|
(Container : in out Vector;
|
|
I, J : Cursor)
|
|
is
|
|
begin
|
|
if Checks then
|
|
if I.Container = null then
|
|
raise Constraint_Error with "I cursor has no element";
|
|
end if;
|
|
|
|
if J.Container = null then
|
|
raise Constraint_Error with "J cursor has no element";
|
|
end if;
|
|
|
|
if I.Container /= Container'Unrestricted_Access then
|
|
raise Program_Error with "I cursor denotes wrong container";
|
|
end if;
|
|
|
|
if J.Container /= Container'Unrestricted_Access then
|
|
raise Program_Error with "J cursor denotes wrong container";
|
|
end if;
|
|
end if;
|
|
|
|
Swap (Container, I.Index, J.Index);
|
|
end Swap;
|
|
|
|
---------------
|
|
-- To_Cursor --
|
|
---------------
|
|
|
|
function To_Cursor
|
|
(Container : Vector;
|
|
Index : Extended_Index) return Cursor
|
|
is
|
|
begin
|
|
if Index not in Index_Type'First .. Container.Last then
|
|
return No_Element;
|
|
end if;
|
|
|
|
return Cursor'(Container'Unrestricted_Access, Index);
|
|
end To_Cursor;
|
|
|
|
--------------
|
|
-- To_Index --
|
|
--------------
|
|
|
|
function To_Index (Position : Cursor) return Extended_Index is
|
|
begin
|
|
if Position.Container = null then
|
|
return No_Index;
|
|
elsif Position.Index <= Position.Container.Last then
|
|
return Position.Index;
|
|
else
|
|
return No_Index;
|
|
end if;
|
|
end To_Index;
|
|
|
|
---------------
|
|
-- To_Vector --
|
|
---------------
|
|
|
|
function To_Vector (Length : Count_Type) return Vector is
|
|
Index : Count_Type'Base;
|
|
Last : Index_Type'Base;
|
|
Elements : Elements_Access;
|
|
|
|
begin
|
|
if Length = 0 then
|
|
return Empty_Vector;
|
|
end if;
|
|
|
|
-- We create a vector object with a capacity that matches the specified
|
|
-- Length, but we do not allow the vector capacity (the length of the
|
|
-- internal array) to exceed the number of values in Index_Type'Range
|
|
-- (otherwise, there would be no way to refer to those components via an
|
|
-- index). We must therefore check whether the specified Length would
|
|
-- create a Last index value greater than Index_Type'Last.
|
|
|
|
if Index_Type'Base'Last >= Count_Type_Last then
|
|
|
|
-- We perform a two-part test. First we determine whether the
|
|
-- computed Last value lies in the base range of the type, and then
|
|
-- determine whether it lies in the range of the index (sub)type.
|
|
|
|
-- Last must satisfy this relation:
|
|
-- First + Length - 1 <= Last
|
|
-- We regroup terms:
|
|
-- First - 1 <= Last - Length
|
|
-- Which can rewrite as:
|
|
-- No_Index <= Last - Length
|
|
|
|
if Checks and then
|
|
Index_Type'Base'Last - Index_Type'Base (Length) < No_Index
|
|
then
|
|
raise Constraint_Error with "Length is out of range";
|
|
end if;
|
|
|
|
-- We now know that the computed value of Last is within the base
|
|
-- range of the type, so it is safe to compute its value:
|
|
|
|
Last := No_Index + Index_Type'Base (Length);
|
|
|
|
-- Finally we test whether the value is within the range of the
|
|
-- generic actual index subtype:
|
|
|
|
if Checks and then Last > Index_Type'Last then
|
|
raise Constraint_Error with "Length is out of range";
|
|
end if;
|
|
|
|
elsif Index_Type'First <= 0 then
|
|
|
|
-- Here we can compute Last directly, in the normal way. We know that
|
|
-- No_Index is less than 0, so there is no danger of overflow when
|
|
-- adding the (positive) value of Length.
|
|
|
|
Index := Count_Type'Base (No_Index) + Length; -- Last
|
|
|
|
if Checks and then Index > Count_Type'Base (Index_Type'Last) then
|
|
raise Constraint_Error with "Length is out of range";
|
|
end if;
|
|
|
|
-- We know that the computed value (having type Count_Type) of Last
|
|
-- is within the range of the generic actual index subtype, so it is
|
|
-- safe to convert to Index_Type:
|
|
|
|
Last := Index_Type'Base (Index);
|
|
|
|
else
|
|
-- Here Index_Type'First (and Index_Type'Last) is positive, so we
|
|
-- must test the length indirectly (by working backwards from the
|
|
-- largest possible value of Last), in order to prevent overflow.
|
|
|
|
Index := Count_Type'Base (Index_Type'Last) - Length; -- No_Index
|
|
|
|
if Checks and then Index < Count_Type'Base (No_Index) then
|
|
raise Constraint_Error with "Length is out of range";
|
|
end if;
|
|
|
|
-- We have determined that the value of Length would not create a
|
|
-- Last index value outside of the range of Index_Type, so we can now
|
|
-- safely compute its value.
|
|
|
|
Last := Index_Type'Base (Count_Type'Base (No_Index) + Length);
|
|
end if;
|
|
|
|
Elements := new Elements_Type (Last);
|
|
|
|
return Vector'(Controlled with Elements, Last, TC => <>);
|
|
end To_Vector;
|
|
|
|
function To_Vector
|
|
(New_Item : Element_Type;
|
|
Length : Count_Type) return Vector
|
|
is
|
|
Index : Count_Type'Base;
|
|
Last : Index_Type'Base;
|
|
Elements : Elements_Access;
|
|
|
|
begin
|
|
if Length = 0 then
|
|
return Empty_Vector;
|
|
end if;
|
|
|
|
-- We create a vector object with a capacity that matches the specified
|
|
-- Length, but we do not allow the vector capacity (the length of the
|
|
-- internal array) to exceed the number of values in Index_Type'Range
|
|
-- (otherwise, there would be no way to refer to those components via an
|
|
-- index). We must therefore check whether the specified Length would
|
|
-- create a Last index value greater than Index_Type'Last.
|
|
|
|
if Index_Type'Base'Last >= Count_Type_Last then
|
|
|
|
-- We perform a two-part test. First we determine whether the
|
|
-- computed Last value lies in the base range of the type, and then
|
|
-- determine whether it lies in the range of the index (sub)type.
|
|
|
|
-- Last must satisfy this relation:
|
|
-- First + Length - 1 <= Last
|
|
-- We regroup terms:
|
|
-- First - 1 <= Last - Length
|
|
-- Which can rewrite as:
|
|
-- No_Index <= Last - Length
|
|
|
|
if Checks and then
|
|
Index_Type'Base'Last - Index_Type'Base (Length) < No_Index
|
|
then
|
|
raise Constraint_Error with "Length is out of range";
|
|
end if;
|
|
|
|
-- We now know that the computed value of Last is within the base
|
|
-- range of the type, so it is safe to compute its value:
|
|
|
|
Last := No_Index + Index_Type'Base (Length);
|
|
|
|
-- Finally we test whether the value is within the range of the
|
|
-- generic actual index subtype:
|
|
|
|
if Checks and then Last > Index_Type'Last then
|
|
raise Constraint_Error with "Length is out of range";
|
|
end if;
|
|
|
|
elsif Index_Type'First <= 0 then
|
|
|
|
-- Here we can compute Last directly, in the normal way. We know that
|
|
-- No_Index is less than 0, so there is no danger of overflow when
|
|
-- adding the (positive) value of Length.
|
|
|
|
Index := Count_Type'Base (No_Index) + Length; -- Last
|
|
|
|
if Checks and then Index > Count_Type'Base (Index_Type'Last) then
|
|
raise Constraint_Error with "Length is out of range";
|
|
end if;
|
|
|
|
-- We know that the computed value (having type Count_Type) of Last
|
|
-- is within the range of the generic actual index subtype, so it is
|
|
-- safe to convert to Index_Type:
|
|
|
|
Last := Index_Type'Base (Index);
|
|
|
|
else
|
|
-- Here Index_Type'First (and Index_Type'Last) is positive, so we
|
|
-- must test the length indirectly (by working backwards from the
|
|
-- largest possible value of Last), in order to prevent overflow.
|
|
|
|
Index := Count_Type'Base (Index_Type'Last) - Length; -- No_Index
|
|
|
|
if Checks and then Index < Count_Type'Base (No_Index) then
|
|
raise Constraint_Error with "Length is out of range";
|
|
end if;
|
|
|
|
-- We have determined that the value of Length would not create a
|
|
-- Last index value outside of the range of Index_Type, so we can now
|
|
-- safely compute its value.
|
|
|
|
Last := Index_Type'Base (Count_Type'Base (No_Index) + Length);
|
|
end if;
|
|
|
|
Elements := new Elements_Type (Last);
|
|
|
|
-- We use Last as the index of the loop used to populate the internal
|
|
-- array with items. In general, we prefer to initialize the loop index
|
|
-- immediately prior to entering the loop. However, Last is also used in
|
|
-- the exception handler (to reclaim elements that have been allocated,
|
|
-- before propagating the exception), and the initialization of Last
|
|
-- after entering the block containing the handler confuses some static
|
|
-- analysis tools, with respect to whether Last has been properly
|
|
-- initialized when the handler executes. So here we initialize our loop
|
|
-- variable earlier than we prefer, before entering the block, so there
|
|
-- is no ambiguity.
|
|
|
|
Last := Index_Type'First;
|
|
|
|
declare
|
|
-- The element allocator may need an accessibility check in the case
|
|
-- where the actual type is class-wide or has access discriminants
|
|
-- (see RM 4.8(10.1) and AI12-0035).
|
|
|
|
pragma Unsuppress (Accessibility_Check);
|
|
|
|
begin
|
|
loop
|
|
Elements.EA (Last) := new Element_Type'(New_Item);
|
|
exit when Last = Elements.Last;
|
|
Last := Last + 1;
|
|
end loop;
|
|
|
|
exception
|
|
when others =>
|
|
for J in Index_Type'First .. Last - 1 loop
|
|
Free (Elements.EA (J));
|
|
end loop;
|
|
|
|
Free (Elements);
|
|
raise;
|
|
end;
|
|
|
|
return (Controlled with Elements, Last, TC => <>);
|
|
end To_Vector;
|
|
|
|
--------------------
|
|
-- Update_Element --
|
|
--------------------
|
|
|
|
procedure Update_Element
|
|
(Container : in out Vector;
|
|
Index : Index_Type;
|
|
Process : not null access procedure (Element : in out Element_Type))
|
|
is
|
|
Lock : With_Lock (Container.TC'Unchecked_Access);
|
|
begin
|
|
if Checks and then Index > Container.Last then
|
|
raise Constraint_Error with "Index is out of range";
|
|
end if;
|
|
|
|
if Checks and then Container.Elements.EA (Index) = null then
|
|
raise Constraint_Error with "element is null";
|
|
end if;
|
|
|
|
Process (Container.Elements.EA (Index).all);
|
|
end Update_Element;
|
|
|
|
procedure Update_Element
|
|
(Container : in out Vector;
|
|
Position : Cursor;
|
|
Process : not null access procedure (Element : in out Element_Type))
|
|
is
|
|
begin
|
|
if Checks then
|
|
if Position.Container = null then
|
|
raise Constraint_Error with "Position cursor has no element";
|
|
elsif Position.Container /= Container'Unrestricted_Access then
|
|
raise Program_Error with "Position cursor denotes wrong container";
|
|
end if;
|
|
end if;
|
|
|
|
Update_Element (Container, Position.Index, Process);
|
|
end Update_Element;
|
|
|
|
-----------
|
|
-- Write --
|
|
-----------
|
|
|
|
procedure Write
|
|
(Stream : not null access Root_Stream_Type'Class;
|
|
Container : Vector)
|
|
is
|
|
N : constant Count_Type := Length (Container);
|
|
|
|
begin
|
|
Count_Type'Base'Write (Stream, N);
|
|
|
|
if N = 0 then
|
|
return;
|
|
end if;
|
|
|
|
declare
|
|
E : Elements_Array renames Container.Elements.EA;
|
|
|
|
begin
|
|
for Indx in Index_Type'First .. Container.Last loop
|
|
if E (Indx) = null then
|
|
Boolean'Write (Stream, False);
|
|
else
|
|
Boolean'Write (Stream, True);
|
|
Element_Type'Output (Stream, E (Indx).all);
|
|
end if;
|
|
end loop;
|
|
end;
|
|
end Write;
|
|
|
|
procedure Write
|
|
(Stream : not null access Root_Stream_Type'Class;
|
|
Position : Cursor)
|
|
is
|
|
begin
|
|
raise Program_Error with "attempt to stream vector cursor";
|
|
end Write;
|
|
|
|
procedure Write
|
|
(Stream : not null access Root_Stream_Type'Class;
|
|
Item : Reference_Type)
|
|
is
|
|
begin
|
|
raise Program_Error with "attempt to stream reference";
|
|
end Write;
|
|
|
|
procedure Write
|
|
(Stream : not null access Root_Stream_Type'Class;
|
|
Item : Constant_Reference_Type)
|
|
is
|
|
begin
|
|
raise Program_Error with "attempt to stream reference";
|
|
end Write;
|
|
|
|
end Ada.Containers.Indefinite_Vectors;
|