This repository has been archived on 2024-12-16. You can view files and clone it, but cannot push or open issues or pull requests.
CodeBlocksPortable/MinGW/lib/gcc/mingw32/6.3.0/adainclude/a-rbtgbo.adb

1128 lines
33 KiB
Ada

------------------------------------------------------------------------------
-- --
-- GNAT LIBRARY COMPONENTS --
-- --
-- ADA.CONTAINERS.RED_BLACK_TREES.GENERIC_BOUNDED_OPERATIONS --
-- --
-- B o d y --
-- --
-- Copyright (C) 2004-2015, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- This unit was originally developed by Matthew J Heaney. --
------------------------------------------------------------------------------
-- The references in this file to "CLR" refer to the following book, from
-- which several of the algorithms here were adapted:
-- Introduction to Algorithms
-- by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest
-- Publisher: The MIT Press (June 18, 1990)
-- ISBN: 0262031418
with System; use type System.Address;
package body Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations is
pragma Warnings (Off, "variable ""Busy*"" is not referenced");
pragma Warnings (Off, "variable ""Lock*"" is not referenced");
-- See comment in Ada.Containers.Helpers
-----------------------
-- Local Subprograms --
-----------------------
procedure Delete_Fixup (Tree : in out Tree_Type'Class; Node : Count_Type);
procedure Delete_Swap (Tree : in out Tree_Type'Class; Z, Y : Count_Type);
procedure Left_Rotate (Tree : in out Tree_Type'Class; X : Count_Type);
procedure Right_Rotate (Tree : in out Tree_Type'Class; Y : Count_Type);
----------------
-- Clear_Tree --
----------------
procedure Clear_Tree (Tree : in out Tree_Type'Class) is
begin
TC_Check (Tree.TC);
Tree.First := 0;
Tree.Last := 0;
Tree.Root := 0;
Tree.Length := 0;
Tree.Free := -1;
end Clear_Tree;
------------------
-- Delete_Fixup --
------------------
procedure Delete_Fixup
(Tree : in out Tree_Type'Class;
Node : Count_Type)
is
-- CLR p. 274
X : Count_Type;
W : Count_Type;
N : Nodes_Type renames Tree.Nodes;
begin
X := Node;
while X /= Tree.Root and then Color (N (X)) = Black loop
if X = Left (N (Parent (N (X)))) then
W := Right (N (Parent (N (X))));
if Color (N (W)) = Red then
Set_Color (N (W), Black);
Set_Color (N (Parent (N (X))), Red);
Left_Rotate (Tree, Parent (N (X)));
W := Right (N (Parent (N (X))));
end if;
if (Left (N (W)) = 0 or else Color (N (Left (N (W)))) = Black)
and then
(Right (N (W)) = 0 or else Color (N (Right (N (W)))) = Black)
then
Set_Color (N (W), Red);
X := Parent (N (X));
else
if Right (N (W)) = 0
or else Color (N (Right (N (W)))) = Black
then
-- As a condition for setting the color of the left child to
-- black, the left child access value must be non-null. A
-- truth table analysis shows that if we arrive here, that
-- condition holds, so there's no need for an explicit test.
-- The assertion is here to document what we know is true.
pragma Assert (Left (N (W)) /= 0);
Set_Color (N (Left (N (W))), Black);
Set_Color (N (W), Red);
Right_Rotate (Tree, W);
W := Right (N (Parent (N (X))));
end if;
Set_Color (N (W), Color (N (Parent (N (X)))));
Set_Color (N (Parent (N (X))), Black);
Set_Color (N (Right (N (W))), Black);
Left_Rotate (Tree, Parent (N (X)));
X := Tree.Root;
end if;
else
pragma Assert (X = Right (N (Parent (N (X)))));
W := Left (N (Parent (N (X))));
if Color (N (W)) = Red then
Set_Color (N (W), Black);
Set_Color (N (Parent (N (X))), Red);
Right_Rotate (Tree, Parent (N (X)));
W := Left (N (Parent (N (X))));
end if;
if (Left (N (W)) = 0 or else Color (N (Left (N (W)))) = Black)
and then
(Right (N (W)) = 0 or else Color (N (Right (N (W)))) = Black)
then
Set_Color (N (W), Red);
X := Parent (N (X));
else
if Left (N (W)) = 0
or else Color (N (Left (N (W)))) = Black
then
-- As a condition for setting the color of the right child
-- to black, the right child access value must be non-null.
-- A truth table analysis shows that if we arrive here, that
-- condition holds, so there's no need for an explicit test.
-- The assertion is here to document what we know is true.
pragma Assert (Right (N (W)) /= 0);
Set_Color (N (Right (N (W))), Black);
Set_Color (N (W), Red);
Left_Rotate (Tree, W);
W := Left (N (Parent (N (X))));
end if;
Set_Color (N (W), Color (N (Parent (N (X)))));
Set_Color (N (Parent (N (X))), Black);
Set_Color (N (Left (N (W))), Black);
Right_Rotate (Tree, Parent (N (X)));
X := Tree.Root;
end if;
end if;
end loop;
Set_Color (N (X), Black);
end Delete_Fixup;
---------------------------
-- Delete_Node_Sans_Free --
---------------------------
procedure Delete_Node_Sans_Free
(Tree : in out Tree_Type'Class;
Node : Count_Type)
is
-- CLR p. 273
X, Y : Count_Type;
Z : constant Count_Type := Node;
N : Nodes_Type renames Tree.Nodes;
begin
TC_Check (Tree.TC);
-- If node is not present, return (exception will be raised in caller)
if Z = 0 then
return;
end if;
pragma Assert (Tree.Length > 0);
pragma Assert (Tree.Root /= 0);
pragma Assert (Tree.First /= 0);
pragma Assert (Tree.Last /= 0);
pragma Assert (Parent (N (Tree.Root)) = 0);
pragma Assert ((Tree.Length > 1)
or else (Tree.First = Tree.Last
and then Tree.First = Tree.Root));
pragma Assert ((Left (N (Node)) = 0)
or else (Parent (N (Left (N (Node)))) = Node));
pragma Assert ((Right (N (Node)) = 0)
or else (Parent (N (Right (N (Node)))) = Node));
pragma Assert (((Parent (N (Node)) = 0) and then (Tree.Root = Node))
or else ((Parent (N (Node)) /= 0) and then
((Left (N (Parent (N (Node)))) = Node)
or else
(Right (N (Parent (N (Node)))) = Node))));
if Left (N (Z)) = 0 then
if Right (N (Z)) = 0 then
if Z = Tree.First then
Tree.First := Parent (N (Z));
end if;
if Z = Tree.Last then
Tree.Last := Parent (N (Z));
end if;
if Color (N (Z)) = Black then
Delete_Fixup (Tree, Z);
end if;
pragma Assert (Left (N (Z)) = 0);
pragma Assert (Right (N (Z)) = 0);
if Z = Tree.Root then
pragma Assert (Tree.Length = 1);
pragma Assert (Parent (N (Z)) = 0);
Tree.Root := 0;
elsif Z = Left (N (Parent (N (Z)))) then
Set_Left (N (Parent (N (Z))), 0);
else
pragma Assert (Z = Right (N (Parent (N (Z)))));
Set_Right (N (Parent (N (Z))), 0);
end if;
else
pragma Assert (Z /= Tree.Last);
X := Right (N (Z));
if Z = Tree.First then
Tree.First := Min (Tree, X);
end if;
if Z = Tree.Root then
Tree.Root := X;
elsif Z = Left (N (Parent (N (Z)))) then
Set_Left (N (Parent (N (Z))), X);
else
pragma Assert (Z = Right (N (Parent (N (Z)))));
Set_Right (N (Parent (N (Z))), X);
end if;
Set_Parent (N (X), Parent (N (Z)));
if Color (N (Z)) = Black then
Delete_Fixup (Tree, X);
end if;
end if;
elsif Right (N (Z)) = 0 then
pragma Assert (Z /= Tree.First);
X := Left (N (Z));
if Z = Tree.Last then
Tree.Last := Max (Tree, X);
end if;
if Z = Tree.Root then
Tree.Root := X;
elsif Z = Left (N (Parent (N (Z)))) then
Set_Left (N (Parent (N (Z))), X);
else
pragma Assert (Z = Right (N (Parent (N (Z)))));
Set_Right (N (Parent (N (Z))), X);
end if;
Set_Parent (N (X), Parent (N (Z)));
if Color (N (Z)) = Black then
Delete_Fixup (Tree, X);
end if;
else
pragma Assert (Z /= Tree.First);
pragma Assert (Z /= Tree.Last);
Y := Next (Tree, Z);
pragma Assert (Left (N (Y)) = 0);
X := Right (N (Y));
if X = 0 then
if Y = Left (N (Parent (N (Y)))) then
pragma Assert (Parent (N (Y)) /= Z);
Delete_Swap (Tree, Z, Y);
Set_Left (N (Parent (N (Z))), Z);
else
pragma Assert (Y = Right (N (Parent (N (Y)))));
pragma Assert (Parent (N (Y)) = Z);
Set_Parent (N (Y), Parent (N (Z)));
if Z = Tree.Root then
Tree.Root := Y;
elsif Z = Left (N (Parent (N (Z)))) then
Set_Left (N (Parent (N (Z))), Y);
else
pragma Assert (Z = Right (N (Parent (N (Z)))));
Set_Right (N (Parent (N (Z))), Y);
end if;
Set_Left (N (Y), Left (N (Z)));
Set_Parent (N (Left (N (Y))), Y);
Set_Right (N (Y), Z);
Set_Parent (N (Z), Y);
Set_Left (N (Z), 0);
Set_Right (N (Z), 0);
declare
Y_Color : constant Color_Type := Color (N (Y));
begin
Set_Color (N (Y), Color (N (Z)));
Set_Color (N (Z), Y_Color);
end;
end if;
if Color (N (Z)) = Black then
Delete_Fixup (Tree, Z);
end if;
pragma Assert (Left (N (Z)) = 0);
pragma Assert (Right (N (Z)) = 0);
if Z = Right (N (Parent (N (Z)))) then
Set_Right (N (Parent (N (Z))), 0);
else
pragma Assert (Z = Left (N (Parent (N (Z)))));
Set_Left (N (Parent (N (Z))), 0);
end if;
else
if Y = Left (N (Parent (N (Y)))) then
pragma Assert (Parent (N (Y)) /= Z);
Delete_Swap (Tree, Z, Y);
Set_Left (N (Parent (N (Z))), X);
Set_Parent (N (X), Parent (N (Z)));
else
pragma Assert (Y = Right (N (Parent (N (Y)))));
pragma Assert (Parent (N (Y)) = Z);
Set_Parent (N (Y), Parent (N (Z)));
if Z = Tree.Root then
Tree.Root := Y;
elsif Z = Left (N (Parent (N (Z)))) then
Set_Left (N (Parent (N (Z))), Y);
else
pragma Assert (Z = Right (N (Parent (N (Z)))));
Set_Right (N (Parent (N (Z))), Y);
end if;
Set_Left (N (Y), Left (N (Z)));
Set_Parent (N (Left (N (Y))), Y);
declare
Y_Color : constant Color_Type := Color (N (Y));
begin
Set_Color (N (Y), Color (N (Z)));
Set_Color (N (Z), Y_Color);
end;
end if;
if Color (N (Z)) = Black then
Delete_Fixup (Tree, X);
end if;
end if;
end if;
Tree.Length := Tree.Length - 1;
end Delete_Node_Sans_Free;
-----------------
-- Delete_Swap --
-----------------
procedure Delete_Swap
(Tree : in out Tree_Type'Class;
Z, Y : Count_Type)
is
N : Nodes_Type renames Tree.Nodes;
pragma Assert (Z /= Y);
pragma Assert (Parent (N (Y)) /= Z);
Y_Parent : constant Count_Type := Parent (N (Y));
Y_Color : constant Color_Type := Color (N (Y));
begin
Set_Parent (N (Y), Parent (N (Z)));
Set_Left (N (Y), Left (N (Z)));
Set_Right (N (Y), Right (N (Z)));
Set_Color (N (Y), Color (N (Z)));
if Tree.Root = Z then
Tree.Root := Y;
elsif Right (N (Parent (N (Y)))) = Z then
Set_Right (N (Parent (N (Y))), Y);
else
pragma Assert (Left (N (Parent (N (Y)))) = Z);
Set_Left (N (Parent (N (Y))), Y);
end if;
if Right (N (Y)) /= 0 then
Set_Parent (N (Right (N (Y))), Y);
end if;
if Left (N (Y)) /= 0 then
Set_Parent (N (Left (N (Y))), Y);
end if;
Set_Parent (N (Z), Y_Parent);
Set_Color (N (Z), Y_Color);
Set_Left (N (Z), 0);
Set_Right (N (Z), 0);
end Delete_Swap;
----------
-- Free --
----------
procedure Free (Tree : in out Tree_Type'Class; X : Count_Type) is
pragma Assert (X > 0);
pragma Assert (X <= Tree.Capacity);
N : Nodes_Type renames Tree.Nodes;
-- pragma Assert (N (X).Prev >= 0); -- node is active
-- Find a way to mark a node as active vs. inactive; we could
-- use a special value in Color_Type for this. ???
begin
-- The set container actually contains two data structures: a list for
-- the "active" nodes that contain elements that have been inserted
-- onto the tree, and another for the "inactive" nodes of the free
-- store.
--
-- We desire that merely declaring an object should have only minimal
-- cost; specially, we want to avoid having to initialize the free
-- store (to fill in the links), especially if the capacity is large.
--
-- The head of the free list is indicated by Container.Free. If its
-- value is non-negative, then the free store has been initialized
-- in the "normal" way: Container.Free points to the head of the list
-- of free (inactive) nodes, and the value 0 means the free list is
-- empty. Each node on the free list has been initialized to point
-- to the next free node (via its Parent component), and the value 0
-- means that this is the last free node.
--
-- If Container.Free is negative, then the links on the free store
-- have not been initialized. In this case the link values are
-- implied: the free store comprises the components of the node array
-- started with the absolute value of Container.Free, and continuing
-- until the end of the array (Nodes'Last).
--
-- ???
-- It might be possible to perform an optimization here. Suppose that
-- the free store can be represented as having two parts: one
-- comprising the non-contiguous inactive nodes linked together
-- in the normal way, and the other comprising the contiguous
-- inactive nodes (that are not linked together, at the end of the
-- nodes array). This would allow us to never have to initialize
-- the free store, except in a lazy way as nodes become inactive.
-- When an element is deleted from the list container, its node
-- becomes inactive, and so we set its Prev component to a negative
-- value, to indicate that it is now inactive. This provides a useful
-- way to detect a dangling cursor reference.
-- The comment above is incorrect; we need some other way to
-- indicate a node is inactive, for example by using a special
-- Color_Type value. ???
-- N (X).Prev := -1; -- Node is deallocated (not on active list)
if Tree.Free >= 0 then
-- The free store has previously been initialized. All we need to
-- do here is link the newly-free'd node onto the free list.
Set_Parent (N (X), Tree.Free);
Tree.Free := X;
elsif X + 1 = abs Tree.Free then
-- The free store has not been initialized, and the node becoming
-- inactive immediately precedes the start of the free store. All
-- we need to do is move the start of the free store back by one.
Tree.Free := Tree.Free + 1;
else
-- The free store has not been initialized, and the node becoming
-- inactive does not immediately precede the free store. Here we
-- first initialize the free store (meaning the links are given
-- values in the traditional way), and then link the newly-free'd
-- node onto the head of the free store.
-- ???
-- See the comments above for an optimization opportunity. If the
-- next link for a node on the free store is negative, then this
-- means the remaining nodes on the free store are physically
-- contiguous, starting as the absolute value of that index value.
Tree.Free := abs Tree.Free;
if Tree.Free > Tree.Capacity then
Tree.Free := 0;
else
for I in Tree.Free .. Tree.Capacity - 1 loop
Set_Parent (N (I), I + 1);
end loop;
Set_Parent (N (Tree.Capacity), 0);
end if;
Set_Parent (N (X), Tree.Free);
Tree.Free := X;
end if;
end Free;
-----------------------
-- Generic_Allocate --
-----------------------
procedure Generic_Allocate
(Tree : in out Tree_Type'Class;
Node : out Count_Type)
is
N : Nodes_Type renames Tree.Nodes;
begin
if Tree.Free >= 0 then
Node := Tree.Free;
-- We always perform the assignment first, before we
-- change container state, in order to defend against
-- exceptions duration assignment.
Set_Element (N (Node));
Tree.Free := Parent (N (Node));
else
-- A negative free store value means that the links of the nodes
-- in the free store have not been initialized. In this case, the
-- nodes are physically contiguous in the array, starting at the
-- index that is the absolute value of the Container.Free, and
-- continuing until the end of the array (Nodes'Last).
Node := abs Tree.Free;
-- As above, we perform this assignment first, before modifying
-- any container state.
Set_Element (N (Node));
Tree.Free := Tree.Free - 1;
end if;
-- When a node is allocated from the free store, its pointer components
-- (the links to other nodes in the tree) must also be initialized (to
-- 0, the equivalent of null). This simplifies the post-allocation
-- handling of nodes inserted into terminal positions.
Set_Parent (N (Node), Parent => 0);
Set_Left (N (Node), Left => 0);
Set_Right (N (Node), Right => 0);
end Generic_Allocate;
-------------------
-- Generic_Equal --
-------------------
function Generic_Equal (Left, Right : Tree_Type'Class) return Boolean is
-- Per AI05-0022, the container implementation is required to detect
-- element tampering by a generic actual subprogram.
Lock_Left : With_Lock (Left.TC'Unrestricted_Access);
Lock_Right : With_Lock (Right.TC'Unrestricted_Access);
L_Node : Count_Type;
R_Node : Count_Type;
begin
if Left'Address = Right'Address then
return True;
end if;
if Left.Length /= Right.Length then
return False;
end if;
-- If the containers are empty, return a result immediately, so as to
-- not manipulate the tamper bits unnecessarily.
if Left.Length = 0 then
return True;
end if;
L_Node := Left.First;
R_Node := Right.First;
while L_Node /= 0 loop
if not Is_Equal (Left.Nodes (L_Node), Right.Nodes (R_Node)) then
return False;
end if;
L_Node := Next (Left, L_Node);
R_Node := Next (Right, R_Node);
end loop;
return True;
end Generic_Equal;
-----------------------
-- Generic_Iteration --
-----------------------
procedure Generic_Iteration (Tree : Tree_Type'Class) is
procedure Iterate (P : Count_Type);
-------------
-- Iterate --
-------------
procedure Iterate (P : Count_Type) is
X : Count_Type := P;
begin
while X /= 0 loop
Iterate (Left (Tree.Nodes (X)));
Process (X);
X := Right (Tree.Nodes (X));
end loop;
end Iterate;
-- Start of processing for Generic_Iteration
begin
Iterate (Tree.Root);
end Generic_Iteration;
------------------
-- Generic_Read --
------------------
procedure Generic_Read
(Stream : not null access Root_Stream_Type'Class;
Tree : in out Tree_Type'Class)
is
Len : Count_Type'Base;
Node, Last_Node : Count_Type;
N : Nodes_Type renames Tree.Nodes;
begin
Clear_Tree (Tree);
Count_Type'Base'Read (Stream, Len);
if Checks and then Len < 0 then
raise Program_Error with "bad container length (corrupt stream)";
end if;
if Len = 0 then
return;
end if;
if Checks and then Len > Tree.Capacity then
raise Constraint_Error with "length exceeds capacity";
end if;
-- Use Unconditional_Insert_With_Hint here instead ???
Allocate (Tree, Node);
pragma Assert (Node /= 0);
Set_Color (N (Node), Black);
Tree.Root := Node;
Tree.First := Node;
Tree.Last := Node;
Tree.Length := 1;
for J in Count_Type range 2 .. Len loop
Last_Node := Node;
pragma Assert (Last_Node = Tree.Last);
Allocate (Tree, Node);
pragma Assert (Node /= 0);
Set_Color (N (Node), Red);
Set_Right (N (Last_Node), Right => Node);
Tree.Last := Node;
Set_Parent (N (Node), Parent => Last_Node);
Rebalance_For_Insert (Tree, Node);
Tree.Length := Tree.Length + 1;
end loop;
end Generic_Read;
-------------------------------
-- Generic_Reverse_Iteration --
-------------------------------
procedure Generic_Reverse_Iteration (Tree : Tree_Type'Class) is
procedure Iterate (P : Count_Type);
-------------
-- Iterate --
-------------
procedure Iterate (P : Count_Type) is
X : Count_Type := P;
begin
while X /= 0 loop
Iterate (Right (Tree.Nodes (X)));
Process (X);
X := Left (Tree.Nodes (X));
end loop;
end Iterate;
-- Start of processing for Generic_Reverse_Iteration
begin
Iterate (Tree.Root);
end Generic_Reverse_Iteration;
-------------------
-- Generic_Write --
-------------------
procedure Generic_Write
(Stream : not null access Root_Stream_Type'Class;
Tree : Tree_Type'Class)
is
procedure Process (Node : Count_Type);
pragma Inline (Process);
procedure Iterate is new Generic_Iteration (Process);
-------------
-- Process --
-------------
procedure Process (Node : Count_Type) is
begin
Write_Node (Stream, Tree.Nodes (Node));
end Process;
-- Start of processing for Generic_Write
begin
Count_Type'Base'Write (Stream, Tree.Length);
Iterate (Tree);
end Generic_Write;
-----------------
-- Left_Rotate --
-----------------
procedure Left_Rotate (Tree : in out Tree_Type'Class; X : Count_Type) is
-- CLR p. 266
N : Nodes_Type renames Tree.Nodes;
Y : constant Count_Type := Right (N (X));
pragma Assert (Y /= 0);
begin
Set_Right (N (X), Left (N (Y)));
if Left (N (Y)) /= 0 then
Set_Parent (N (Left (N (Y))), X);
end if;
Set_Parent (N (Y), Parent (N (X)));
if X = Tree.Root then
Tree.Root := Y;
elsif X = Left (N (Parent (N (X)))) then
Set_Left (N (Parent (N (X))), Y);
else
pragma Assert (X = Right (N (Parent (N (X)))));
Set_Right (N (Parent (N (X))), Y);
end if;
Set_Left (N (Y), X);
Set_Parent (N (X), Y);
end Left_Rotate;
---------
-- Max --
---------
function Max
(Tree : Tree_Type'Class;
Node : Count_Type) return Count_Type
is
-- CLR p. 248
X : Count_Type := Node;
Y : Count_Type;
begin
loop
Y := Right (Tree.Nodes (X));
if Y = 0 then
return X;
end if;
X := Y;
end loop;
end Max;
---------
-- Min --
---------
function Min
(Tree : Tree_Type'Class;
Node : Count_Type) return Count_Type
is
-- CLR p. 248
X : Count_Type := Node;
Y : Count_Type;
begin
loop
Y := Left (Tree.Nodes (X));
if Y = 0 then
return X;
end if;
X := Y;
end loop;
end Min;
----------
-- Next --
----------
function Next
(Tree : Tree_Type'Class;
Node : Count_Type) return Count_Type
is
begin
-- CLR p. 249
if Node = 0 then
return 0;
end if;
if Right (Tree.Nodes (Node)) /= 0 then
return Min (Tree, Right (Tree.Nodes (Node)));
end if;
declare
X : Count_Type := Node;
Y : Count_Type := Parent (Tree.Nodes (Node));
begin
while Y /= 0 and then X = Right (Tree.Nodes (Y)) loop
X := Y;
Y := Parent (Tree.Nodes (Y));
end loop;
return Y;
end;
end Next;
--------------
-- Previous --
--------------
function Previous
(Tree : Tree_Type'Class;
Node : Count_Type) return Count_Type
is
begin
if Node = 0 then
return 0;
end if;
if Left (Tree.Nodes (Node)) /= 0 then
return Max (Tree, Left (Tree.Nodes (Node)));
end if;
declare
X : Count_Type := Node;
Y : Count_Type := Parent (Tree.Nodes (Node));
begin
while Y /= 0 and then X = Left (Tree.Nodes (Y)) loop
X := Y;
Y := Parent (Tree.Nodes (Y));
end loop;
return Y;
end;
end Previous;
--------------------------
-- Rebalance_For_Insert --
--------------------------
procedure Rebalance_For_Insert
(Tree : in out Tree_Type'Class;
Node : Count_Type)
is
-- CLR p. 268
N : Nodes_Type renames Tree.Nodes;
X : Count_Type := Node;
pragma Assert (X /= 0);
pragma Assert (Color (N (X)) = Red);
Y : Count_Type;
begin
while X /= Tree.Root and then Color (N (Parent (N (X)))) = Red loop
if Parent (N (X)) = Left (N (Parent (N (Parent (N (X)))))) then
Y := Right (N (Parent (N (Parent (N (X))))));
if Y /= 0 and then Color (N (Y)) = Red then
Set_Color (N (Parent (N (X))), Black);
Set_Color (N (Y), Black);
Set_Color (N (Parent (N (Parent (N (X))))), Red);
X := Parent (N (Parent (N (X))));
else
if X = Right (N (Parent (N (X)))) then
X := Parent (N (X));
Left_Rotate (Tree, X);
end if;
Set_Color (N (Parent (N (X))), Black);
Set_Color (N (Parent (N (Parent (N (X))))), Red);
Right_Rotate (Tree, Parent (N (Parent (N (X)))));
end if;
else
pragma Assert (Parent (N (X)) =
Right (N (Parent (N (Parent (N (X)))))));
Y := Left (N (Parent (N (Parent (N (X))))));
if Y /= 0 and then Color (N (Y)) = Red then
Set_Color (N (Parent (N (X))), Black);
Set_Color (N (Y), Black);
Set_Color (N (Parent (N (Parent (N (X))))), Red);
X := Parent (N (Parent (N (X))));
else
if X = Left (N (Parent (N (X)))) then
X := Parent (N (X));
Right_Rotate (Tree, X);
end if;
Set_Color (N (Parent (N (X))), Black);
Set_Color (N (Parent (N (Parent (N (X))))), Red);
Left_Rotate (Tree, Parent (N (Parent (N (X)))));
end if;
end if;
end loop;
Set_Color (N (Tree.Root), Black);
end Rebalance_For_Insert;
------------------
-- Right_Rotate --
------------------
procedure Right_Rotate (Tree : in out Tree_Type'Class; Y : Count_Type) is
N : Nodes_Type renames Tree.Nodes;
X : constant Count_Type := Left (N (Y));
pragma Assert (X /= 0);
begin
Set_Left (N (Y), Right (N (X)));
if Right (N (X)) /= 0 then
Set_Parent (N (Right (N (X))), Y);
end if;
Set_Parent (N (X), Parent (N (Y)));
if Y = Tree.Root then
Tree.Root := X;
elsif Y = Left (N (Parent (N (Y)))) then
Set_Left (N (Parent (N (Y))), X);
else
pragma Assert (Y = Right (N (Parent (N (Y)))));
Set_Right (N (Parent (N (Y))), X);
end if;
Set_Right (N (X), Y);
Set_Parent (N (Y), X);
end Right_Rotate;
---------
-- Vet --
---------
function Vet (Tree : Tree_Type'Class; Index : Count_Type) return Boolean is
Nodes : Nodes_Type renames Tree.Nodes;
Node : Node_Type renames Nodes (Index);
begin
if Parent (Node) = Index
or else Left (Node) = Index
or else Right (Node) = Index
then
return False;
end if;
if Tree.Length = 0
or else Tree.Root = 0
or else Tree.First = 0
or else Tree.Last = 0
then
return False;
end if;
if Parent (Nodes (Tree.Root)) /= 0 then
return False;
end if;
if Left (Nodes (Tree.First)) /= 0 then
return False;
end if;
if Right (Nodes (Tree.Last)) /= 0 then
return False;
end if;
if Tree.Length = 1 then
if Tree.First /= Tree.Last
or else Tree.First /= Tree.Root
then
return False;
end if;
if Index /= Tree.First then
return False;
end if;
if Parent (Node) /= 0
or else Left (Node) /= 0
or else Right (Node) /= 0
then
return False;
end if;
return True;
end if;
if Tree.First = Tree.Last then
return False;
end if;
if Tree.Length = 2 then
if Tree.First /= Tree.Root and then Tree.Last /= Tree.Root then
return False;
end if;
if Tree.First /= Index and then Tree.Last /= Index then
return False;
end if;
end if;
if Left (Node) /= 0 and then Parent (Nodes (Left (Node))) /= Index then
return False;
end if;
if Right (Node) /= 0 and then Parent (Nodes (Right (Node))) /= Index then
return False;
end if;
if Parent (Node) = 0 then
if Tree.Root /= Index then
return False;
end if;
elsif Left (Nodes (Parent (Node))) /= Index
and then Right (Nodes (Parent (Node))) /= Index
then
return False;
end if;
return True;
end Vet;
end Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations;