505 lines
20 KiB
Plaintext
505 lines
20 KiB
Plaintext
V "GNAT Lib v6"
|
|
A -gnatwa
|
|
A -nostdinc
|
|
A -O2
|
|
A -Wextra
|
|
A -Wall
|
|
A -g
|
|
A -gnatp
|
|
A -gnatg
|
|
A -mtune=generic
|
|
A -march=i586
|
|
P ZX
|
|
|
|
RN
|
|
RV NO_EXCEPTIONS
|
|
RV NO_FLOATING_POINT
|
|
RV NO_DYNAMIC_SIZED_OBJECTS
|
|
RV NO_IMPLEMENTATION_PRAGMAS
|
|
RV SPARK_05
|
|
|
|
U system.generic_array_operations%b s-gearop.adb 5f1cea62 NE OL PK
|
|
W ada%s ada.ads ada.ali
|
|
W ada.numerics%s a-numeri.ads a-numeri.ali
|
|
W system%s system.ads system.ali
|
|
|
|
U system.generic_array_operations%s s-gearop.ads af91f97d BN NE OL PU PK
|
|
W system%s system.ads system.ali
|
|
|
|
D ada.ads 20070406091342 3ffc8e18 ada%s
|
|
D a-numeri.ads 20080324174807 bb51c45a ada.numerics%s
|
|
D a-unccon.ads 20070406091342 f9eb8f06 ada.unchecked_conversion%s
|
|
D system.ads 20151123113124 2da59038 system%s
|
|
D s-exctab.ads 20140225151139 54135002 system.exception_table%s
|
|
D s-gearop.ads 20111013105608 82346945 system.generic_array_operations%s
|
|
D s-gearop.adb 20121001092146 6679477d system.generic_array_operations%b
|
|
D s-stalib.ads 20151112104907 09bd3940 system.standard_library%s
|
|
X 1 ada.ads
|
|
16K9*Ada 19e8 7|32r6 32r24
|
|
X 2 a-numeri.ads
|
|
16K13*Numerics 32e17 7|32w10 32r28
|
|
19X4*Argument_Error 7|603r19
|
|
X 4 system.ads
|
|
37K9*System 200e11 6|32r9 500r5 7|34r14 926r5
|
|
X 6 s-gearop.ads
|
|
32K16*Generic_Array_Operations 4|37k9 6|33r14 500l12 500e36 7|34b21 926l12
|
|
. 926t36
|
|
40+12 Scalar 41r68 42r40 42r55 43r40 43r55 44r40 44r55 45r38 7|108r19 120r19
|
|
41A12 Matrix(40+12)<integer><integer> 46r45 7|99r45 105r26 117r26
|
|
42V22 "-"{40+12} 42>26 42>32 7|124s44
|
|
42*26 Left{40+12}
|
|
42*32 Right{40+12}
|
|
43V22 "*"{40+12} 43>26 43>32 7|124s53
|
|
43*26 Left{40+12}
|
|
43*32 Right{40+12}
|
|
44V22 "/"{40+12} 44>26 44>32 7|153s54 154s54
|
|
44*26 Left{40+12}
|
|
44*32 Right{40+12}
|
|
45V21 Is_Non_Zero{boolean} 45>34 7|137s16
|
|
45*34 X{40+12}
|
|
46u14*Back_Substitute 46=31 46=34 7|99b14 169l8 169t23
|
|
46*31 M{41A12} 7|99b31 100r22 102r22 130r28 135r36 136r45 137r29 149r34 153r43
|
|
. 153r56 154m31 154r43 154r56 161r40
|
|
46*34 N{41A12} 7|99b34 100r36 102r36 153m31
|
|
53+12 Scalar 54r50 55r68
|
|
54A12 Vector(53+12)<integer> 56r42 7|50r42 53r18
|
|
55A12 Matrix(53+12)<integer><integer> 56r27 7|50r27
|
|
56v13*Diagonal 56>23 7|50b13 58l8 58t16
|
|
56*23 A{55A12} 7|50b23 51r44 51r58 53r26 53r41 55r32 55r35 55r52
|
|
67+12 Scalar 69r68 70r36 71r40 71r55 72r40 72r55 73r40 73r55 74r14 75r14
|
|
. 79r17 7|178r17 194r19 200r18 218r19 233r18 257r40 264r40 265r26 323r36
|
|
. 330r40
|
|
68F12 Real 70r51 7|300r23 307r38
|
|
69A12 Matrix(67+12)<integer><integer> 77r20 78r20 7|176r20 177r20 191r26
|
|
. 198r25 204r25 215r26 231r25 253r25
|
|
70V22 "abs" 70>28 7|307s51
|
|
70*28 Right{67+12}
|
|
71V22 "-"{67+12} 71>26 71>32 7|222s44 275s25
|
|
71*26 Left{67+12}
|
|
71*32 Right{67+12}
|
|
72V22 "*"{67+12} 72>26 72>32 7|222s53 236s21
|
|
72*26 Left{67+12}
|
|
72*32 Right{67+12}
|
|
73V22 "/"{67+12} 73>26 73>32 7|239s38 244s54
|
|
73*26 Left{67+12}
|
|
73*32 Right{67+12}
|
|
74*7 Zero{67+12} 7|275r20 344r23
|
|
75*7 One{67+12} 7|295r14
|
|
76u14*Forward_Eliminate 77=7 78=7 79<7 7|175b14 348l8 348t25
|
|
77*7 M{69A12} 7|176b7 180r22 182r22 290r24 297r16 305r29 307r55 317m28 323r46
|
|
. 325m31 328r36 330r50 333m31 337r33
|
|
78*7 N{69A12} 7|177b7 180r36 182r36 317m31 325m34 332m31
|
|
79*7 Det{67+12} 7|178b7 236m10 236r17 275m13 275r27 295m7 344m16
|
|
86+12 Scalar 87r68
|
|
87A12 Matrix(86+12)<integer><integer> 88r39 7|64r39
|
|
88v13*Square_Matrix_Length 88>35 7|64b13 71l8 71t28
|
|
88*35 A{87A12} 7|64b35 66r10 66r26 69r17
|
|
96+12 X_Scalar 98r52 100r36
|
|
97+12 Result_Scalar 99r57 100r53
|
|
98A12 X_Vector(96+12)<integer> 101r47 7|407r47
|
|
99A12 Result_Vector(97+12)<integer> 101r64 7|407r64 409r18
|
|
100V21 Operation{97+12} 100>32 7|411s22
|
|
100*32 X{96+12}
|
|
101v13*Vector_Elementwise_Operation 101>43 7|407b13 414l8 414t36
|
|
101*43 X{98A12} 7|407b43 409r33 411r33
|
|
108+12 X_Scalar 110r70 113r36
|
|
109+12 Result_Scalar 112r12 113r53
|
|
110A12 X_Matrix(108+12)<integer><integer> 114r47 7|392r47
|
|
111A12 Result_Matrix(109+12)<integer><integer> 114r64 7|392r64 394r18
|
|
113V21 Operation{109+12} 113>32 7|397s28
|
|
113*32 X{108+12}
|
|
114v13*Matrix_Elementwise_Operation 114>43 7|392b13 401l8 401t36
|
|
114*43 X{110A12} 7|392b43 394r33 394r46 397r39
|
|
121+12 Left_Scalar 124r55 128r23
|
|
122+12 Right_Scalar 125r56 129r23
|
|
123+12 Result_Scalar 126r57 129r44
|
|
124A12 Left_Vector(121+12)<integer> 131r15 7|484r15
|
|
125A12 Right_Vector(122+12)<integer> 132r15 7|485r15
|
|
126A12 Result_Vector(123+12)<integer> 132r36 7|485r36 488r18
|
|
127V21 Operation{123+12} 128>15 129>15 7|495s22
|
|
128*15 Left{121+12}
|
|
129*15 Right{122+12}
|
|
130v13*Vector_Vector_Elementwise_Operation 131>7 132>7 7|483b13 498l8 498t43
|
|
131*7 Left{124A12} 7|484b7 488r33 489r13 495r33
|
|
132*7 Right{125A12} 7|485b7 489r28 495r43 495r64
|
|
139+12 X_Scalar 143r52 147r19
|
|
140+12 Y_Scalar 144r52 148r19
|
|
141+12 Z_Scalar 149r19 153r11 7|507r11
|
|
142+12 Result_Scalar 145r57 149r36
|
|
143A12 X_Vector(139+12)<integer> 151r11 7|505r11
|
|
144A12 Y_Vector(140+12)<integer> 152r11 7|506r11
|
|
145A12 Result_Vector(142+12)<integer> 153r28 7|507r28 509r18
|
|
146V21 Operation{142+12} 147>15 148>15 149>15 7|516s22
|
|
147*15 X{139+12}
|
|
148*15 Y{140+12}
|
|
149*15 Z{141+12}
|
|
150v13*Vector_Vector_Scalar_Elementwise_Operation 151>7 152>7 153>7 7|504b13
|
|
. 519l8 519t50
|
|
151*7 X{143A12} 7|505b7 509r33 510r13 516r33 516r47
|
|
152*7 Y{144A12} 7|506b7 510r25 516r40 516r57
|
|
153*7 Z{141+12} 7|507b7 516r67
|
|
160+12 Left_Scalar 164r12 170r23
|
|
161+12 Right_Scalar 166r12 171r23
|
|
162+12 Result_Scalar 168r12 171r44
|
|
163A12 Left_Matrix(160+12)<integer><integer> 173r15 7|421r15
|
|
165A12 Right_Matrix(161+12)<integer><integer> 174r15 7|422r15
|
|
167A12 Result_Matrix(162+12)<integer><integer> 174r36 7|422r36 425r18
|
|
169V21 Operation{162+12} 170>15 171>15 7|437s18
|
|
170*15 Left{160+12}
|
|
171*15 Right{161+12}
|
|
172v13*Matrix_Matrix_Elementwise_Operation 173>7 174>7 7|420b13 445l8 445t43
|
|
173*7 Left{163A12} 7|421b7 425r33 425r49 426r13 428r13 438r21
|
|
174*7 Right{165A12} 7|422b7 426r32 428r32 439r21 440r42 441r42
|
|
181+12 X_Scalar 185r70 190r19
|
|
182+12 Y_Scalar 186r70 191r19
|
|
183+12 Z_Scalar 192r19 196r11 7|454r11
|
|
184+12 Result_Scalar 188r12 192r36
|
|
185A12 X_Matrix(181+12)<integer><integer> 194r11 7|452r11
|
|
186A12 Y_Matrix(182+12)<integer><integer> 195r11 7|453r11
|
|
187A12 Result_Matrix(184+12)<integer><integer> 196r28 7|454r28 457r18
|
|
189V21 Operation{184+12} 190>15 191>15 192>15 7|469s18
|
|
190*15 X{181+12}
|
|
191*15 Y{182+12}
|
|
192*15 Z{183+12}
|
|
193v13*Matrix_Matrix_Scalar_Elementwise_Operation 194>7 195>7 196>7 7|451b13
|
|
. 477l8 477t50
|
|
194*7 X{185A12} 7|452b7 457r33 457r46 458r13 460r13 470r21
|
|
195*7 Y{186A12} 7|453b7 458r29 460r29 471r21 471r42 472r42
|
|
196*7 Z{183+12} 7|454b7 473r21
|
|
203+12 Left_Scalar 206r55 209r23
|
|
204+12 Right_Scalar 210r23 213r15 7|545r15
|
|
205+12 Result_Scalar 207r57 210r44
|
|
206A12 Left_Vector(203+12)<integer> 212r15 7|544r15
|
|
207A12 Result_Vector(205+12)<integer> 213r36 7|545r36 548r18
|
|
208V21 Operation{205+12} 209>15 210>15 7|550s22
|
|
209*15 Left{203+12}
|
|
210*15 Right{204+12}
|
|
211v13*Vector_Scalar_Elementwise_Operation 212>7 213>7 7|543b13 553l8 553t43
|
|
212*7 Left{206A12} 7|544b7 548r33 550r33
|
|
213*7 Right{204+12} 7|545b7 550r43
|
|
220+12 Left_Scalar 224r12 228r23
|
|
221+12 Right_Scalar 229r23 232r15 7|527r15
|
|
222+12 Result_Scalar 226r12 229r44
|
|
223A12 Left_Matrix(220+12)<integer><integer> 231r15 7|526r15
|
|
225A12 Result_Matrix(222+12)<integer><integer> 232r36 7|527r36 530r18
|
|
227V21 Operation{222+12} 228>15 229>15 7|533s28
|
|
228*15 Left{220+12}
|
|
229*15 Right{221+12}
|
|
230v13*Matrix_Scalar_Elementwise_Operation 231>7 232>7 7|525b13 537l8 537t43
|
|
231*7 Left{223A12} 7|526b7 530r33 530r49 533r39
|
|
232*7 Right{221+12} 7|527b7 533r52
|
|
239+12 Left_Scalar 245r23 248r15 7|578r15
|
|
240+12 Right_Scalar 242r56 246r23
|
|
241+12 Result_Scalar 243r57 246r44
|
|
242A12 Right_Vector(240+12)<integer> 249r15 7|579r15
|
|
243A12 Result_Vector(241+12)<integer> 249r36 7|579r36 582r18
|
|
244V21 Operation{241+12} 245>15 246>15 7|584s22
|
|
245*15 Left{239+12}
|
|
246*15 Right{240+12}
|
|
247v13*Scalar_Vector_Elementwise_Operation 248>7 249>7 7|577b13 587l8 587t43
|
|
248*7 Left{239+12} 7|578b7 584r33
|
|
249*7 Right{242A12} 7|579b7 582r33 584r39
|
|
256+12 Left_Scalar 264r23 267r15 7|560r15
|
|
257+12 Right_Scalar 260r12 265r23
|
|
258+12 Result_Scalar 262r12 265r44
|
|
259A12 Right_Matrix(257+12)<integer><integer> 268r15 7|561r15
|
|
261A12 Result_Matrix(258+12)<integer><integer> 268r36 7|561r36 564r18
|
|
263V21 Operation{258+12} 264>15 265>15 7|567s28
|
|
264*15 Left{256+12}
|
|
265*15 Right{257+12}
|
|
266v13*Scalar_Matrix_Elementwise_Operation 267>7 268>7 7|559b13 571l8 571t43
|
|
267*7 Left{256+12} 7|560b7 567r39
|
|
268*7 Right{259A12} 7|561b7 564r33 564r50 567r45
|
|
275+12 Left_Scalar 278r55 282r23
|
|
276+12 Right_Scalar 279r56 283r23
|
|
277+12 Result_Scalar 280r14 283r44 285r23 286r23 286r45 289r36 7|356r37 358r11
|
|
278A12 Left_Vector(275+12)<integer> 288r15 7|355r15
|
|
279A12 Right_Vector(276+12)<integer> 289r15 7|356r15
|
|
280*7 Zero{277+12} 7|358r28
|
|
281V22 "*"{277+12} 282>15 283>15 7|367s28
|
|
282*15 Left{275+12}
|
|
283*15 Right{276+12}
|
|
284V22 "+"{277+12} 285>15 286>15 7|367s17
|
|
285*15 Left{277+12}
|
|
286*15 Right{277+12}
|
|
287v13*Inner_Product 288>7 289>7 7|354b13 371l8 371t21
|
|
288*7 Left{278A12} 7|355b7 361r10 366r16 367r19 367r41
|
|
289*7 Right{279A12} 7|356b7 361r25 367r30 367r54
|
|
296+12 X_Scalar 298r52 299r36
|
|
297F12 Result_Real 299r53 300r31 300r56 301r43 7|377r43 378r13 382r23
|
|
298A12 X_Vector(296+12)<integer> 301r26 7|377r26
|
|
299V22 "abs"{297F12} 299>28 7|382s41
|
|
299*28 Right{296+12}
|
|
300V21 Sqrt 300>27 7|385s14
|
|
300*27 X
|
|
301v13*L2_Norm 301>22 7|377b13 386l8 386t15
|
|
301*22 X{298A12} 7|377b22 381r16 382r45
|
|
308+12 Left_Scalar 311r55 316r23
|
|
309+12 Right_Scalar 312r56 317r23
|
|
310+12 Result_Scalar 314r12 317r44
|
|
311A12 Left_Vector(308+12)<integer> 319r15 7|779r15
|
|
312A12 Right_Vector(309+12)<integer> 320r15 7|780r15
|
|
313A12 Matrix(310+12)<integer><integer> 320r36 7|780r36 783r18
|
|
315V22 "*"{310+12} 316>15 317>15 7|786s37
|
|
316*15 Left{308+12}
|
|
317*15 Right{309+12}
|
|
318v13*Outer_Product 319>7 320>7 7|778b13 790l8 790t21
|
|
319*7 Left{311A12} 7|779b7 783r26 786r28
|
|
320*7 Right{312A12} 7|780b7 783r38 786r39
|
|
327+12 Left_Scalar 331r12 336r23
|
|
328+12 Right_Scalar 332r56 337r23
|
|
329+12 Result_Scalar 333r57 334r14 337r44 339r23 340r23 340r45 7|760r20
|
|
330A12 Matrix(327+12)<integer><integer> 342r15 7|748r15
|
|
332A12 Right_Vector(328+12)<integer> 343r15 7|749r15
|
|
333A12 Result_Vector(329+12)<integer> 343r36 7|749r36 752r18
|
|
334*7 Zero{329+12} 7|760r37
|
|
335V22 "*"{329+12} 336>15 337>15 7|765s26
|
|
336*15 Left{327+12}
|
|
337*15 Right{328+12}
|
|
338V22 "+"{329+12} 339>15 340>15 7|764s26
|
|
339*15 Left{329+12}
|
|
340*15 Right{329+12}
|
|
341v13*Matrix_Vector_Product 342>7 343>7 7|747b13 772l8 772t29
|
|
342*7 Left{330A12} 7|748b7 752r33 753r13 758r19 763r25 764r28 765r39
|
|
343*7 Right{332A12} 7|749b7 753r32 765r28 765r56
|
|
350+12 Left_Scalar 353r55 359r23
|
|
351+12 Right_Scalar 355r12 360r23
|
|
352+12 Result_Scalar 356r57 357r14 360r44 362r23 363r23 363r45 7|912r20
|
|
353A12 Left_Vector(350+12)<integer> 365r15 7|900r15
|
|
354A12 Matrix(351+12)<integer><integer> 366r15 7|901r15
|
|
356A12 Result_Vector(352+12)<integer> 366r30 7|901r30 904r18
|
|
357*7 Zero{352+12} 7|912r37
|
|
358V22 "*"{352+12} 359>15 360>15 7|917s50
|
|
359*15 Left{350+12}
|
|
360*15 Right{351+12}
|
|
361V22 "+"{352+12} 362>15 363>15 7|916s26
|
|
362*15 Left{352+12}
|
|
363*15 Right{352+12}
|
|
364v13*Vector_Matrix_Product 365>7 366>7 7|899b13 924l8 924t29
|
|
365*7 Left{353A12} 7|900b7 905r13 916r28 917r38
|
|
366*7 Right{354A12} 7|901b7 904r33 905r28 910r19 915r25 916r38 917r52
|
|
373+12 Left_Scalar 377r12 384r23
|
|
374+12 Right_Scalar 379r12 385r23
|
|
375+12 Result_Scalar 381r12 382r14 385r44 387r23 388r23 388r45 7|658r23
|
|
376A12 Left_Matrix(373+12)<integer><integer> 390r15 7|645r15
|
|
378A12 Right_Matrix(374+12)<integer><integer> 391r15 7|646r15
|
|
380A12 Result_Matrix(375+12)<integer><integer> 391r36 7|646r36 649r18
|
|
382*7 Zero{375+12} 7|658r40
|
|
383V22 "*"{375+12} 384>15 385>15 7|662s43
|
|
384*15 Left{373+12}
|
|
385*15 Right{374+12}
|
|
386V22 "+"{375+12} 387>15 388>15 7|662s29
|
|
387*15 Left{375+12}
|
|
388*15 Right{375+12}
|
|
389v13*Matrix_Matrix_Product 390>7 391>7 7|644b13 672l9 672t30
|
|
390*7 Left{376A12} 7|645b7 649r33 650r13 661r28 662r31 664r40
|
|
391*7 Right{378A12} 7|646b7 649r49 650r32 663r33 664r57
|
|
398+12 Scalar 399r50 400r68 405r25 7|683r13
|
|
399A12 Vector(398+12)<integer> 406r53 406r68 7|678r53 678r68 682r13
|
|
400A12 Matrix(398+12)<integer><integer> 401r53 403r28 404r28 406r41 7|678r41
|
|
. 680r13 681r13
|
|
401U22 Back_Substitute 401=39 401=42 7|699s7
|
|
401*39 M{400A12}
|
|
401*42 N{400A12}
|
|
402U22 Forward_Eliminate 403=15 404=15 405<15 7|698s7
|
|
403*15 M{400A12}
|
|
404*15 N{400A12}
|
|
405*15 Det{398+12}
|
|
406v13*Matrix_Vector_Solution 406>37 406>49 7|678b13 706l8 706t30
|
|
406*37 A{400A12} 7|678b37 679r33 680r23 681r21 682r21 686r10
|
|
406*49 X{399A12} 7|678b49 690r10 695r38 695r41
|
|
413+12 Scalar 414r68 419r25 7|716r13
|
|
414A12 Matrix(413+12)<integer><integer> 415r53 417r28 418r28 420r41 420r53
|
|
. 420r68 7|712r44 712r59 714r13 715r13
|
|
415U22 Back_Substitute 415=39 415=42 7|738s7
|
|
415*39 M{414A12}
|
|
415*42 N{414A12}
|
|
416U22 Forward_Eliminate 417=15 418=15 419<15 7|737s7
|
|
417*15 M{414A12}
|
|
418*15 N{414A12}
|
|
419*15 Det{413+12}
|
|
420v13*Matrix_Matrix_Solution 420>37 420>49 7|712b13 741l8 741t30
|
|
420*37 A{414A12} 7|712b37 713r33 714r21 714r34 715r21 719r10 727r21 729r41
|
|
. 729r44
|
|
420*49 X{414A12} 7|712b40 715r34 723r10 733r41 733r44
|
|
427F12 Real 428r23 428r41 7|593r23 593r41 594r20 606r17 623r15 623r26 623r50
|
|
428v13*Sqrt 428>19 7|593b13 638l8 638t12
|
|
428*19 X 7|593b19 599r15 600r13 601r20 606r13 610r17 623r65 632r26
|
|
435+12 Scalar 436r68 7|797r14
|
|
436A12 Matrix(435+12)<integer><integer> 437r38 7|796r38
|
|
437u14*Swap_Column 437=27 437>46 437>52 7|796b14 804l8 804t19
|
|
437*27 A{436A12} 7|796b27 799r16 800r18 801m10 801r25 802m10
|
|
437i46 Left{integer} 7|796b46 800r24 801r16
|
|
437i52 Right{integer} 7|796b52 801r31 802r16
|
|
444+12 Scalar 445r68
|
|
445A12 Matrix(444+12)<integer><integer> 446r29 446r45 7|810r29 810r45
|
|
446u14*Transpose 446>25 446<37 7|810b14 818l8 818t17
|
|
446*25 A{445A12} 7|810b25 814r25 814r46 815r46
|
|
446*37 R{445A12} 7|810b37 812r16 813r19 814m13 814r32 815r32
|
|
453+12 X_Scalar 455r52 457r41
|
|
454+12 Y_Scalar 456r52 457r55
|
|
455A12 X_Vector(453+12)<integer> 458r52 7|846r52
|
|
456A12 Y_Vector(454+12)<integer> 458r66 7|846r66
|
|
457U22 Update 457=30 457>51 7|854s10
|
|
457*30 X{453+12}
|
|
457*51 Y{454+12}
|
|
458u14*Update_Vector_With_Vector 458=41 458>62 7|846b14 856l8 856t33
|
|
458*41 X{455A12} 7|846b41 848r10 853r16 854m18 854r18 854r32
|
|
458*62 Y{456A12} 7|846b62 848r22 854r25 854r42
|
|
465+12 X_Scalar 467r70 469r41
|
|
466+12 Y_Scalar 468r70 469r55
|
|
467A12 X_Matrix(465+12)<integer><integer> 470r52 7|824r52
|
|
468A12 Y_Matrix(466+12)<integer><integer> 470r66 7|824r66
|
|
469U22 Update 469=30 469>51 7|836s13
|
|
469*30 X{465+12}
|
|
469*51 Y{466+12}
|
|
470u14*Update_Matrix_With_Matrix 470=41 470>62 7|824b14 840l8 840t33
|
|
470*41 X{467A12} 7|824b41 826r10 828r10 834r16 835r19 836m21 836r21 836r38
|
|
. 837r38
|
|
470*62 Y{468A12} 7|824b62 826r26 828r26 836r31 836r52 837r52
|
|
477+12 Scalar 478r68 479r14 480r14
|
|
478A12 Matrix(477+12)<integer><integer> 484r38 7|865r38 868r18
|
|
479*7 Zero{477+12} 7|871r37
|
|
480*7 One{477+12} 7|874r45
|
|
481v13*Unit_Matrix 482>7 483>7 484>7 7|862b13 877l8 877t19
|
|
482i7 Order{positive} 7|863b7 868r63 869r63 873r24
|
|
483i7 First_1{integer} 7|864b7 868r26 868r54 868r70 874r16
|
|
484i7 First_2{integer} 7|865b7 869r26 869r54 869r70 874r29
|
|
491+12 Scalar 492r50 493r14 494r14
|
|
492A12 Vector(491+12)<integer> 498r36 7|886r36 889r18
|
|
493*7 Zero{491+12} 7|890r26
|
|
494*7 One{491+12} 7|891r23
|
|
495v13*Unit_Vector 496>7 497>7 498>7 7|883b13 893l8 893t19
|
|
496i7 Index{integer} 7|884b7 889r52 891r13
|
|
497i7 Order{positive} 7|885b7 889r59
|
|
498i7 First{integer} 7|886b7 889r26 889r66
|
|
X 7 s-gearop.adb
|
|
36V13 Check_Unit_Last{integer} 37>7 38>7 39>7 40r26 77b13 93l8 93t23 868s37
|
|
. 869s37 889s35
|
|
37i7 Index{integer} 78b8 85r10 87r17
|
|
38i7 Order{positive} 79b8 86r40 87r34 92r23
|
|
39i7 First{integer} 80b8 85r18 86r17 87r25 92r14
|
|
51i7 N{natural} 53r55 54r24
|
|
53*14 R{6|54A12} 55m13 55r16
|
|
54i14 J{integer} 55r26 55r49 55r66
|
|
104U17 Sub_Row 105=10 106>10 107>10 108>10 116b17 126l11 126t18 153s22 154s22
|
|
105*10 M{6|41A12} 117b10 123r19 124m13 124r30 124r55
|
|
106i10 Target{integer} 118b10 124r16 124r33
|
|
107i10 Source{integer} 119b10 124r58
|
|
108*10 Factor{6|40+12} 120b10 124r46
|
|
123i14 J{integer} 124r24 124r41 124r66
|
|
130i7 Max_Col{integer} 136r60 163m16
|
|
135l7 Do_Rows 161r21 168l16 168e23
|
|
135i21 Row{integer} 137r32 152r29 153r37 153r59 154r37 154r59
|
|
136l10 Find_Non_Zero 165r21 167l19 167e32
|
|
136i30 Col{integer} 137r37 153r49 153r64 154r49 154r64 161r34 163r27
|
|
149i19 J{integer} 152r25 153r34 153r46 154r34 154r46 155m22 155r27
|
|
190U17 Sub_Row 191=10 192>10 193>10 194>10 214b17 224l11 224t18 332s22 333s22
|
|
191*10 M{6|69A12} 215b10 221r19 222m13 222r30 222r55
|
|
192i10 Target{integer} 216b10 222r16 222r33
|
|
193i10 Source{integer} 217b10 222r58
|
|
194*10 Factor{6|67+12} 218b10 222r46
|
|
197U17 Divide_Row 198=10 198=13 199>10 200>10 230b17 246l11 246t21 325s19
|
|
198*10 M{6|69A12} 231b10 238r19 239m13 239r27 243r22 244r24
|
|
198*13 N{6|69A12} 231b13 242r19 243m13 243r36 244r15 244r38
|
|
199i10 Row{integer} 232b10 239r16 239r30 243r16 244r18
|
|
200*10 Scale{6|67+12} 233b10 236r23 239r40 244r56
|
|
203U17 Switch_Row 204=10 204=13 205>10 206>10 252b17 286l11 286t21 317s16
|
|
204*10 M{6|69A12} 253b10 277r22 278m22 278r22 278m36 278r36 282r33 283r33
|
|
204*13 N{6|69A12} 253b13 281r22 282m22 282r22 282r47 283m22 283r22 283r47
|
|
205i10 Row_1{integer} 254b10 274r13 278r25 282r25
|
|
206i10 Row_2{integer} 255b10 274r22 278r39 283r25
|
|
221i14 J{integer} 222r24 222r41 222r66
|
|
238i14 J{integer} 239r21 239r35
|
|
242i14 J{integer} 243r49 244r51
|
|
257U20 Swap 257=26 257=29 264b20 269l14 269t18 278s16 282s16
|
|
257*26 X{6|67+12} 264b26 265r36 267m13
|
|
257*29 Y{6|67+12} 264b29 267r18 268m13
|
|
265*13 T{6|67+12} 268r18
|
|
277i17 J{integer} 278r32 278r46
|
|
281i17 J{integer} 282r60 283r60
|
|
290i7 Row{integer} 299r34 305r22 317r34 323r49 325r37 328r25 332r37 333r37
|
|
. 337r26 339m16 339r23
|
|
297i11 J{integer} 307r61 323r54 330r56
|
|
299i13 Max_Row{integer} 311m22 317r39
|
|
300*13 Max_Abs 309r22 310m22 316r16
|
|
305i17 K{integer} 307r58 311r33
|
|
307*19 New_Abs 309r32 310r33
|
|
323*19 Scale{6|67+12} 325r42
|
|
328i20 U{integer} 330r53 332r34 333r34
|
|
330*22 Factor{6|67+12} 332r42 333r42
|
|
358*7 R{6|277+12} 367m10 367r15 370r14
|
|
366i11 J{integer} 367r25 367r37
|
|
378*7 Sum 382m10 382r17 385r20
|
|
381i11 J{integer} 382r48
|
|
394*14 R{6|111A12} 395r19 396r22 397m16
|
|
395i14 J{integer} 397r19 397r42
|
|
396i17 K{integer} 397r22 397r45
|
|
409*14 R{6|99A12} 410r19 411m13
|
|
410i14 J{integer} 411r16 411r36
|
|
425*14 R{6|167A12} 434r19 435r22 436m16 440r28 441r28
|
|
434i14 J{integer} 436r19 438r27 440r24
|
|
435i17 K{integer} 436r22 438r30 441r24
|
|
457*14 R{6|187A12} 466r19 467r22 468m16 471r28 472r28
|
|
466i14 J{integer} 468r19 470r24 471r24
|
|
467i17 K{integer} 468r22 470r27 472r24
|
|
488*14 R{6|126A12} 494r19 495m13 495r54
|
|
494i14 J{integer} 495r16 495r39 495r50
|
|
509*14 R{6|145A12} 515r19 516m13
|
|
515i14 J{integer} 516r16 516r36 516r43
|
|
530*14 R{6|225A12} 531r19 532r22 533m16
|
|
531i14 J{integer} 533r19 533r45
|
|
532i17 K{integer} 533r22 533r48
|
|
548*14 R{6|207A12} 549r19 550m13
|
|
549i14 J{integer} 550r16 550r39
|
|
564*14 R{6|261A12} 565r19 566r22 567m16
|
|
565i14 J{integer} 567r19 567r52
|
|
566i17 K{integer} 567r22 567r55
|
|
582*14 R{6|243A12} 583r19 584m13
|
|
583i14 J{integer} 584r16 584r46
|
|
594*7 Root 623m7 632r19 632r30 633r20 634m10 637r14
|
|
594*13 Next 632m10 633r27 634r18
|
|
631i11 J{integer}
|
|
649*14 R{6|380A12} 655r19 656r22 667m19
|
|
655i14 J{integer} 662r37 667r22
|
|
656i17 K{integer} 664r74 667r25
|
|
658*19 S{6|375+12} 662m22 662r27 667r31
|
|
661i23 M{integer} 662r40 664r36
|
|
679i7 N{natural} 686r26 690r22
|
|
680*7 MA{6|400A12} 698m26 698r26 699m24 699r24
|
|
681*7 MX{6|400A12} 694r21 695m10 695r14 698m30 698r30 699m28 699r28 702r29
|
|
. 702r33
|
|
682*7 R{6|399A12} 701r21 702m10 702r13 705r14
|
|
683*7 Det{6|398+12} 698m34
|
|
694i11 J{integer} 695r29 695r51
|
|
701i11 J{integer} 702r23 702r48
|
|
713i7 N{natural} 719r26 723r26
|
|
714*7 MA{6|414A12} 728r19 729m13 729r17 737m26 737r26 738m24 738r24
|
|
715*7 MB{6|414A12} 732r19 733m13 733r17 737m30 737r30 738m28 738r28 740r14
|
|
716*7 Det{6|413+12} 737m34
|
|
727i11 J{integer} 729r32 729r58 733r32 733r58
|
|
728i14 K{integer} 729r35 729r61
|
|
732i14 K{integer} 733r35 733r61
|
|
752*14 R{6|333A12} 768m16
|
|
758i14 J{integer} 764r34 768r19
|
|
760*16 S{6|329+12} 764m19 764r24 768r25
|
|
763i20 K{integer} 764r37 765r35
|
|
783*14 R{6|313A12} 784r19 785r22 786m16
|
|
784i14 J{integer} 786r19 786r34
|
|
785i17 K{integer} 786r22 786r46
|
|
797*7 Temp{6|435+12} 800m10 802r26
|
|
799i11 J{integer} 800r21 801r13 801r28 802r13
|
|
812i11 J{integer} 814r16 815r28
|
|
813i14 K{integer} 814r19 814r28
|
|
834i11 J{integer} 836r24 836r34
|
|
835i14 K{integer} 836r27 837r34
|
|
853i11 J{integer} 854r21 854r28
|
|
868*14 R{6|478A12} 871m10 874m13
|
|
873i14 J{integer} 874r26 874r39
|
|
889*14 R{6|492A12} 890m10 891m10
|
|
904*14 R{6|356A12} 920m16
|
|
910i14 J{integer} 917r62 920r19
|
|
912*16 S{6|352+12} 916m19 916r24 920r25
|
|
915i20 K{integer} 916r34 917r59
|
|
|