143 lines
6.3 KiB
Ada
143 lines
6.3 KiB
Ada
------------------------------------------------------------------------------
|
|
-- --
|
|
-- GNAT RUN-TIME COMPONENTS --
|
|
-- --
|
|
-- ADA.NUMERICS.GENERIC_REAL_ARRAYS --
|
|
-- --
|
|
-- S p e c --
|
|
-- --
|
|
-- Copyright (C) 2009-2012, Free Software Foundation, Inc. --
|
|
-- --
|
|
-- This specification is derived from the Ada Reference Manual for use with --
|
|
-- GNAT. The copyright notice above, and the license provisions that follow --
|
|
-- apply solely to the contents of the part following the private keyword. --
|
|
-- --
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. --
|
|
-- --
|
|
-- As a special exception under Section 7 of GPL version 3, you are granted --
|
|
-- additional permissions described in the GCC Runtime Library Exception, --
|
|
-- version 3.1, as published by the Free Software Foundation. --
|
|
-- --
|
|
-- You should have received a copy of the GNU General Public License and --
|
|
-- a copy of the GCC Runtime Library Exception along with this program; --
|
|
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
|
|
-- <http://www.gnu.org/licenses/>. --
|
|
-- --
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
|
-- --
|
|
------------------------------------------------------------------------------
|
|
|
|
generic
|
|
type Real is digits <>;
|
|
package Ada.Numerics.Generic_Real_Arrays is
|
|
pragma Pure (Generic_Real_Arrays);
|
|
|
|
-- Types
|
|
|
|
type Real_Vector is array (Integer range <>) of Real'Base;
|
|
type Real_Matrix is array (Integer range <>, Integer range <>) of Real'Base;
|
|
|
|
-- Subprograms for Real_Vector types
|
|
|
|
-- Real_Vector arithmetic operations
|
|
|
|
function "+" (Right : Real_Vector) return Real_Vector;
|
|
function "-" (Right : Real_Vector) return Real_Vector;
|
|
function "abs" (Right : Real_Vector) return Real_Vector;
|
|
|
|
function "+" (Left, Right : Real_Vector) return Real_Vector;
|
|
function "-" (Left, Right : Real_Vector) return Real_Vector;
|
|
|
|
function "*" (Left, Right : Real_Vector) return Real'Base;
|
|
|
|
function "abs" (Right : Real_Vector) return Real'Base;
|
|
|
|
-- Real_Vector scaling operations
|
|
|
|
function "*" (Left : Real'Base; Right : Real_Vector) return Real_Vector;
|
|
function "*" (Left : Real_Vector; Right : Real'Base) return Real_Vector;
|
|
function "/" (Left : Real_Vector; Right : Real'Base) return Real_Vector;
|
|
|
|
-- Other Real_Vector operations
|
|
|
|
function Unit_Vector
|
|
(Index : Integer;
|
|
Order : Positive;
|
|
First : Integer := 1) return Real_Vector;
|
|
|
|
-- Subprograms for Real_Matrix types
|
|
|
|
-- Real_Matrix arithmetic operations
|
|
|
|
function "+" (Right : Real_Matrix) return Real_Matrix;
|
|
function "-" (Right : Real_Matrix) return Real_Matrix;
|
|
function "abs" (Right : Real_Matrix) return Real_Matrix;
|
|
function Transpose (X : Real_Matrix) return Real_Matrix;
|
|
|
|
function "+" (Left, Right : Real_Matrix) return Real_Matrix;
|
|
function "-" (Left, Right : Real_Matrix) return Real_Matrix;
|
|
function "*" (Left, Right : Real_Matrix) return Real_Matrix;
|
|
|
|
function "*" (Left, Right : Real_Vector) return Real_Matrix;
|
|
|
|
function "*" (Left : Real_Vector; Right : Real_Matrix) return Real_Vector;
|
|
function "*" (Left : Real_Matrix; Right : Real_Vector) return Real_Vector;
|
|
|
|
-- Real_Matrix scaling operations
|
|
|
|
function "*" (Left : Real'Base; Right : Real_Matrix) return Real_Matrix;
|
|
function "*" (Left : Real_Matrix; Right : Real'Base) return Real_Matrix;
|
|
function "/" (Left : Real_Matrix; Right : Real'Base) return Real_Matrix;
|
|
|
|
-- Real_Matrix inversion and related operations
|
|
|
|
function Solve (A : Real_Matrix; X : Real_Vector) return Real_Vector;
|
|
function Solve (A, X : Real_Matrix) return Real_Matrix;
|
|
function Inverse (A : Real_Matrix) return Real_Matrix;
|
|
function Determinant (A : Real_Matrix) return Real'Base;
|
|
|
|
-- Eigenvalues and vectors of a real symmetric matrix
|
|
|
|
function Eigenvalues (A : Real_Matrix) return Real_Vector;
|
|
|
|
procedure Eigensystem
|
|
(A : Real_Matrix;
|
|
Values : out Real_Vector;
|
|
Vectors : out Real_Matrix);
|
|
|
|
-- Other Real_Matrix operations
|
|
|
|
function Unit_Matrix
|
|
(Order : Positive;
|
|
First_1 : Integer := 1;
|
|
First_2 : Integer := 1) return Real_Matrix;
|
|
|
|
private
|
|
-- The following operations are either relatively simple compared to the
|
|
-- expense of returning unconstrained arrays, or are just function wrappers
|
|
-- calling procedures implementing the actual operation. By having the
|
|
-- front end inline these, the expense of the unconstrained returns
|
|
-- can be avoided.
|
|
|
|
-- Note: We use an extended return statement in their implementation to
|
|
-- allow the frontend to inline these functions.
|
|
|
|
pragma Inline ("+");
|
|
pragma Inline ("-");
|
|
pragma Inline ("*");
|
|
pragma Inline ("/");
|
|
pragma Inline ("abs");
|
|
pragma Inline (Eigenvalues);
|
|
pragma Inline (Inverse);
|
|
pragma Inline (Solve);
|
|
pragma Inline (Transpose);
|
|
pragma Inline (Unit_Matrix);
|
|
pragma Inline (Unit_Vector);
|
|
end Ada.Numerics.Generic_Real_Arrays;
|