6453 lines
193 KiB
Ada
6453 lines
193 KiB
Ada
------------------------------------------------------------------------------
|
|
-- --
|
|
-- GNAT LIBRARY COMPONENTS --
|
|
-- --
|
|
-- G N A T . S P I T B O L . P A T T E R N S --
|
|
-- --
|
|
-- B o d y --
|
|
-- --
|
|
-- Copyright (C) 1998-2013, AdaCore --
|
|
-- --
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. --
|
|
-- --
|
|
-- As a special exception under Section 7 of GPL version 3, you are granted --
|
|
-- additional permissions described in the GCC Runtime Library Exception, --
|
|
-- version 3.1, as published by the Free Software Foundation. --
|
|
-- --
|
|
-- You should have received a copy of the GNU General Public License and --
|
|
-- a copy of the GCC Runtime Library Exception along with this program; --
|
|
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
|
|
-- <http://www.gnu.org/licenses/>. --
|
|
-- --
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
|
-- --
|
|
------------------------------------------------------------------------------
|
|
|
|
-- Note: the data structures and general approach used in this implementation
|
|
-- are derived from the original MINIMAL sources for SPITBOL. The code is not
|
|
-- a direct translation, but the approach is followed closely. In particular,
|
|
-- we use the one stack approach developed in the SPITBOL implementation.
|
|
|
|
with Ada.Strings.Unbounded.Aux; use Ada.Strings.Unbounded.Aux;
|
|
|
|
with GNAT.Debug_Utilities; use GNAT.Debug_Utilities;
|
|
|
|
with System; use System;
|
|
|
|
with Ada.Unchecked_Conversion;
|
|
with Ada.Unchecked_Deallocation;
|
|
|
|
package body GNAT.Spitbol.Patterns is
|
|
|
|
------------------------
|
|
-- Internal Debugging --
|
|
------------------------
|
|
|
|
Internal_Debug : constant Boolean := False;
|
|
-- Set this flag to True to activate some built-in debugging traceback
|
|
-- These are all lines output with PutD and Put_LineD.
|
|
|
|
procedure New_LineD;
|
|
pragma Inline (New_LineD);
|
|
-- Output new blank line with New_Line if Internal_Debug is True
|
|
|
|
procedure PutD (Str : String);
|
|
pragma Inline (PutD);
|
|
-- Output string with Put if Internal_Debug is True
|
|
|
|
procedure Put_LineD (Str : String);
|
|
pragma Inline (Put_LineD);
|
|
-- Output string with Put_Line if Internal_Debug is True
|
|
|
|
-----------------------------
|
|
-- Local Type Declarations --
|
|
-----------------------------
|
|
|
|
subtype String_Ptr is Ada.Strings.Unbounded.String_Access;
|
|
subtype File_Ptr is Ada.Text_IO.File_Access;
|
|
|
|
function To_Address is new Ada.Unchecked_Conversion (PE_Ptr, Address);
|
|
-- Used only for debugging output purposes
|
|
|
|
subtype AFC is Ada.Finalization.Controlled;
|
|
|
|
N : constant PE_Ptr := null;
|
|
-- Shorthand used to initialize Copy fields to null
|
|
|
|
type Natural_Ptr is access all Natural;
|
|
type Pattern_Ptr is access all Pattern;
|
|
|
|
--------------------------------------------------
|
|
-- Description of Algorithm and Data Structures --
|
|
--------------------------------------------------
|
|
|
|
-- A pattern structure is represented as a linked graph of nodes
|
|
-- with the following structure:
|
|
|
|
-- +------------------------------------+
|
|
-- I Pcode I
|
|
-- +------------------------------------+
|
|
-- I Index I
|
|
-- +------------------------------------+
|
|
-- I Pthen I
|
|
-- +------------------------------------+
|
|
-- I parameter(s) I
|
|
-- +------------------------------------+
|
|
|
|
-- Pcode is a code value indicating the type of the pattern node. This
|
|
-- code is used both as the discriminant value for the record, and as
|
|
-- the case index in the main match routine that branches to the proper
|
|
-- match code for the given element.
|
|
|
|
-- Index is a serial index number. The use of these serial index
|
|
-- numbers is described in a separate section.
|
|
|
|
-- Pthen is a pointer to the successor node, i.e the node to be matched
|
|
-- if the attempt to match the node succeeds. If this is the last node
|
|
-- of the pattern to be matched, then Pthen points to a dummy node
|
|
-- of kind PC_EOP (end of pattern), which initializes pattern exit.
|
|
|
|
-- The parameter or parameters are present for certain node types,
|
|
-- and the type varies with the pattern code.
|
|
|
|
type Pattern_Code is (
|
|
PC_Arb_Y,
|
|
PC_Assign,
|
|
PC_Bal,
|
|
PC_BreakX_X,
|
|
PC_Cancel,
|
|
PC_EOP,
|
|
PC_Fail,
|
|
PC_Fence,
|
|
PC_Fence_X,
|
|
PC_Fence_Y,
|
|
PC_R_Enter,
|
|
PC_R_Remove,
|
|
PC_R_Restore,
|
|
PC_Rest,
|
|
PC_Succeed,
|
|
PC_Unanchored,
|
|
|
|
PC_Alt,
|
|
PC_Arb_X,
|
|
PC_Arbno_S,
|
|
PC_Arbno_X,
|
|
|
|
PC_Rpat,
|
|
|
|
PC_Pred_Func,
|
|
|
|
PC_Assign_Imm,
|
|
PC_Assign_OnM,
|
|
PC_Any_VP,
|
|
PC_Break_VP,
|
|
PC_BreakX_VP,
|
|
PC_NotAny_VP,
|
|
PC_NSpan_VP,
|
|
PC_Span_VP,
|
|
PC_String_VP,
|
|
|
|
PC_Write_Imm,
|
|
PC_Write_OnM,
|
|
|
|
PC_Null,
|
|
PC_String,
|
|
|
|
PC_String_2,
|
|
PC_String_3,
|
|
PC_String_4,
|
|
PC_String_5,
|
|
PC_String_6,
|
|
|
|
PC_Setcur,
|
|
|
|
PC_Any_CH,
|
|
PC_Break_CH,
|
|
PC_BreakX_CH,
|
|
PC_Char,
|
|
PC_NotAny_CH,
|
|
PC_NSpan_CH,
|
|
PC_Span_CH,
|
|
|
|
PC_Any_CS,
|
|
PC_Break_CS,
|
|
PC_BreakX_CS,
|
|
PC_NotAny_CS,
|
|
PC_NSpan_CS,
|
|
PC_Span_CS,
|
|
|
|
PC_Arbno_Y,
|
|
PC_Len_Nat,
|
|
PC_Pos_Nat,
|
|
PC_RPos_Nat,
|
|
PC_RTab_Nat,
|
|
PC_Tab_Nat,
|
|
|
|
PC_Pos_NF,
|
|
PC_Len_NF,
|
|
PC_RPos_NF,
|
|
PC_RTab_NF,
|
|
PC_Tab_NF,
|
|
|
|
PC_Pos_NP,
|
|
PC_Len_NP,
|
|
PC_RPos_NP,
|
|
PC_RTab_NP,
|
|
PC_Tab_NP,
|
|
|
|
PC_Any_VF,
|
|
PC_Break_VF,
|
|
PC_BreakX_VF,
|
|
PC_NotAny_VF,
|
|
PC_NSpan_VF,
|
|
PC_Span_VF,
|
|
PC_String_VF);
|
|
|
|
type IndexT is range 0 .. +(2 **15 - 1);
|
|
|
|
type PE (Pcode : Pattern_Code) is record
|
|
|
|
Index : IndexT;
|
|
-- Serial index number of pattern element within pattern
|
|
|
|
Pthen : PE_Ptr;
|
|
-- Successor element, to be matched after this one
|
|
|
|
case Pcode is
|
|
|
|
when PC_Arb_Y |
|
|
PC_Assign |
|
|
PC_Bal |
|
|
PC_BreakX_X |
|
|
PC_Cancel |
|
|
PC_EOP |
|
|
PC_Fail |
|
|
PC_Fence |
|
|
PC_Fence_X |
|
|
PC_Fence_Y |
|
|
PC_Null |
|
|
PC_R_Enter |
|
|
PC_R_Remove |
|
|
PC_R_Restore |
|
|
PC_Rest |
|
|
PC_Succeed |
|
|
PC_Unanchored => null;
|
|
|
|
when PC_Alt |
|
|
PC_Arb_X |
|
|
PC_Arbno_S |
|
|
PC_Arbno_X => Alt : PE_Ptr;
|
|
|
|
when PC_Rpat => PP : Pattern_Ptr;
|
|
|
|
when PC_Pred_Func => BF : Boolean_Func;
|
|
|
|
when PC_Assign_Imm |
|
|
PC_Assign_OnM |
|
|
PC_Any_VP |
|
|
PC_Break_VP |
|
|
PC_BreakX_VP |
|
|
PC_NotAny_VP |
|
|
PC_NSpan_VP |
|
|
PC_Span_VP |
|
|
PC_String_VP => VP : VString_Ptr;
|
|
|
|
when PC_Write_Imm |
|
|
PC_Write_OnM => FP : File_Ptr;
|
|
|
|
when PC_String => Str : String_Ptr;
|
|
|
|
when PC_String_2 => Str2 : String (1 .. 2);
|
|
|
|
when PC_String_3 => Str3 : String (1 .. 3);
|
|
|
|
when PC_String_4 => Str4 : String (1 .. 4);
|
|
|
|
when PC_String_5 => Str5 : String (1 .. 5);
|
|
|
|
when PC_String_6 => Str6 : String (1 .. 6);
|
|
|
|
when PC_Setcur => Var : Natural_Ptr;
|
|
|
|
when PC_Any_CH |
|
|
PC_Break_CH |
|
|
PC_BreakX_CH |
|
|
PC_Char |
|
|
PC_NotAny_CH |
|
|
PC_NSpan_CH |
|
|
PC_Span_CH => Char : Character;
|
|
|
|
when PC_Any_CS |
|
|
PC_Break_CS |
|
|
PC_BreakX_CS |
|
|
PC_NotAny_CS |
|
|
PC_NSpan_CS |
|
|
PC_Span_CS => CS : Character_Set;
|
|
|
|
when PC_Arbno_Y |
|
|
PC_Len_Nat |
|
|
PC_Pos_Nat |
|
|
PC_RPos_Nat |
|
|
PC_RTab_Nat |
|
|
PC_Tab_Nat => Nat : Natural;
|
|
|
|
when PC_Pos_NF |
|
|
PC_Len_NF |
|
|
PC_RPos_NF |
|
|
PC_RTab_NF |
|
|
PC_Tab_NF => NF : Natural_Func;
|
|
|
|
when PC_Pos_NP |
|
|
PC_Len_NP |
|
|
PC_RPos_NP |
|
|
PC_RTab_NP |
|
|
PC_Tab_NP => NP : Natural_Ptr;
|
|
|
|
when PC_Any_VF |
|
|
PC_Break_VF |
|
|
PC_BreakX_VF |
|
|
PC_NotAny_VF |
|
|
PC_NSpan_VF |
|
|
PC_Span_VF |
|
|
PC_String_VF => VF : VString_Func;
|
|
|
|
end case;
|
|
end record;
|
|
|
|
subtype PC_Has_Alt is Pattern_Code range PC_Alt .. PC_Arbno_X;
|
|
-- Range of pattern codes that has an Alt field. This is used in the
|
|
-- recursive traversals, since these links must be followed.
|
|
|
|
EOP_Element : aliased constant PE := (PC_EOP, 0, N);
|
|
-- This is the end of pattern element, and is thus the representation of
|
|
-- a null pattern. It has a zero index element since it is never placed
|
|
-- inside a pattern. Furthermore it does not need a successor, since it
|
|
-- marks the end of the pattern, so that no more successors are needed.
|
|
|
|
EOP : constant PE_Ptr := EOP_Element'Unrestricted_Access;
|
|
-- This is the end of pattern pointer, that is used in the Pthen pointer
|
|
-- of other nodes to signal end of pattern.
|
|
|
|
-- The following array is used to determine if a pattern used as an
|
|
-- argument for Arbno is eligible for treatment using the simple Arbno
|
|
-- structure (i.e. it is a pattern that is guaranteed to match at least
|
|
-- one character on success, and not to make any entries on the stack.
|
|
|
|
OK_For_Simple_Arbno : constant array (Pattern_Code) of Boolean :=
|
|
(PC_Any_CS |
|
|
PC_Any_CH |
|
|
PC_Any_VF |
|
|
PC_Any_VP |
|
|
PC_Char |
|
|
PC_Len_Nat |
|
|
PC_NotAny_CS |
|
|
PC_NotAny_CH |
|
|
PC_NotAny_VF |
|
|
PC_NotAny_VP |
|
|
PC_Span_CS |
|
|
PC_Span_CH |
|
|
PC_Span_VF |
|
|
PC_Span_VP |
|
|
PC_String |
|
|
PC_String_2 |
|
|
PC_String_3 |
|
|
PC_String_4 |
|
|
PC_String_5 |
|
|
PC_String_6 => True,
|
|
others => False);
|
|
|
|
-------------------------------
|
|
-- The Pattern History Stack --
|
|
-------------------------------
|
|
|
|
-- The pattern history stack is used for controlling backtracking when
|
|
-- a match fails. The idea is to stack entries that give a cursor value
|
|
-- to be restored, and a node to be reestablished as the current node to
|
|
-- attempt an appropriate rematch operation. The processing for a pattern
|
|
-- element that has rematch alternatives pushes an appropriate entry or
|
|
-- entry on to the stack, and the proceeds. If a match fails at any point,
|
|
-- the top element of the stack is popped off, resetting the cursor and
|
|
-- the match continues by accessing the node stored with this entry.
|
|
|
|
type Stack_Entry is record
|
|
|
|
Cursor : Integer;
|
|
-- Saved cursor value that is restored when this entry is popped
|
|
-- from the stack if a match attempt fails. Occasionally, this
|
|
-- field is used to store a history stack pointer instead of a
|
|
-- cursor. Such cases are noted in the documentation and the value
|
|
-- stored is negative since stack pointer values are always negative.
|
|
|
|
Node : PE_Ptr;
|
|
-- This pattern element reference is reestablished as the current
|
|
-- Node to be matched (which will attempt an appropriate rematch).
|
|
|
|
end record;
|
|
|
|
subtype Stack_Range is Integer range -Stack_Size .. -1;
|
|
|
|
type Stack_Type is array (Stack_Range) of Stack_Entry;
|
|
-- The type used for a history stack. The actual instance of the stack
|
|
-- is declared as a local variable in the Match routine, to properly
|
|
-- handle recursive calls to Match. All stack pointer values are negative
|
|
-- to distinguish them from normal cursor values.
|
|
|
|
-- Note: the pattern matching stack is used only to handle backtracking.
|
|
-- If no backtracking occurs, its entries are never accessed, and never
|
|
-- popped off, and in particular it is normal for a successful match
|
|
-- to terminate with entries on the stack that are simply discarded.
|
|
|
|
-- Note: in subsequent diagrams of the stack, we always place element
|
|
-- zero (the deepest element) at the top of the page, then build the
|
|
-- stack down on the page with the most recent (top of stack) element
|
|
-- being the bottom-most entry on the page.
|
|
|
|
-- Stack checking is handled by labeling every pattern with the maximum
|
|
-- number of stack entries that are required, so a single check at the
|
|
-- start of matching the pattern suffices. There are two exceptions.
|
|
|
|
-- First, the count does not include entries for recursive pattern
|
|
-- references. Such recursions must therefore perform a specific
|
|
-- stack check with respect to the number of stack entries required
|
|
-- by the recursive pattern that is accessed and the amount of stack
|
|
-- that remains unused.
|
|
|
|
-- Second, the count includes only one iteration of an Arbno pattern,
|
|
-- so a specific check must be made on subsequent iterations that there
|
|
-- is still enough stack space left. The Arbno node has a field that
|
|
-- records the number of stack entries required by its argument for
|
|
-- this purpose.
|
|
|
|
---------------------------------------------------
|
|
-- Use of Serial Index Field in Pattern Elements --
|
|
---------------------------------------------------
|
|
|
|
-- The serial index numbers for the pattern elements are assigned as
|
|
-- a pattern is constructed from its constituent elements. Note that there
|
|
-- is never any sharing of pattern elements between patterns (copies are
|
|
-- always made), so the serial index numbers are unique to a particular
|
|
-- pattern as referenced from the P field of a value of type Pattern.
|
|
|
|
-- The index numbers meet three separate invariants, which are used for
|
|
-- various purposes as described in this section.
|
|
|
|
-- First, the numbers uniquely identify the pattern elements within a
|
|
-- pattern. If Num is the number of elements in a given pattern, then
|
|
-- the serial index numbers for the elements of this pattern will range
|
|
-- from 1 .. Num, so that each element has a separate value.
|
|
|
|
-- The purpose of this assignment is to provide a convenient auxiliary
|
|
-- data structure mechanism during operations which must traverse a
|
|
-- pattern (e.g. copy and finalization processing). Once constructed
|
|
-- patterns are strictly read only. This is necessary to allow sharing
|
|
-- of patterns between tasks. This means that we cannot go marking the
|
|
-- pattern (e.g. with a visited bit). Instead we construct a separate
|
|
-- vector that contains the necessary information indexed by the Index
|
|
-- values in the pattern elements. For this purpose the only requirement
|
|
-- is that they be uniquely assigned.
|
|
|
|
-- Second, the pattern element referenced directly, i.e. the leading
|
|
-- pattern element, is always the maximum numbered element and therefore
|
|
-- indicates the total number of elements in the pattern. More precisely,
|
|
-- the element referenced by the P field of a pattern value, or the
|
|
-- element returned by any of the internal pattern construction routines
|
|
-- in the body (that return a value of type PE_Ptr) always is this
|
|
-- maximum element,
|
|
|
|
-- The purpose of this requirement is to allow an immediate determination
|
|
-- of the number of pattern elements within a pattern. This is used to
|
|
-- properly size the vectors used to contain auxiliary information for
|
|
-- traversal as described above.
|
|
|
|
-- Third, as compound pattern structures are constructed, the way in which
|
|
-- constituent parts of the pattern are constructed is stylized. This is
|
|
-- an automatic consequence of the way that these compound structures
|
|
-- are constructed, and basically what we are doing is simply documenting
|
|
-- and specifying the natural result of the pattern construction. The
|
|
-- section describing compound pattern structures gives details of the
|
|
-- numbering of each compound pattern structure.
|
|
|
|
-- The purpose of specifying the stylized numbering structures for the
|
|
-- compound patterns is to help simplify the processing in the Image
|
|
-- function, since it eases the task of retrieving the original recursive
|
|
-- structure of the pattern from the flat graph structure of elements.
|
|
-- This use in the Image function is the only point at which the code
|
|
-- makes use of the stylized structures.
|
|
|
|
type Ref_Array is array (IndexT range <>) of PE_Ptr;
|
|
-- This type is used to build an array whose N'th entry references the
|
|
-- element in a pattern whose Index value is N. See Build_Ref_Array.
|
|
|
|
procedure Build_Ref_Array (E : PE_Ptr; RA : out Ref_Array);
|
|
-- Given a pattern element which is the leading element of a pattern
|
|
-- structure, and a Ref_Array with bounds 1 .. E.Index, fills in the
|
|
-- Ref_Array so that its N'th entry references the element of the
|
|
-- referenced pattern whose Index value is N.
|
|
|
|
-------------------------------
|
|
-- Recursive Pattern Matches --
|
|
-------------------------------
|
|
|
|
-- The pattern primitive (+P) where P is a Pattern_Ptr or Pattern_Func
|
|
-- causes a recursive pattern match. This cannot be handled by an actual
|
|
-- recursive call to the outer level Match routine, since this would not
|
|
-- allow for possible backtracking into the region matched by the inner
|
|
-- pattern. Indeed this is the classical clash between recursion and
|
|
-- backtracking, and a simple recursive stack structure does not suffice.
|
|
|
|
-- This section describes how this recursion and the possible associated
|
|
-- backtracking is handled. We still use a single stack, but we establish
|
|
-- the concept of nested regions on this stack, each of which has a stack
|
|
-- base value pointing to the deepest stack entry of the region. The base
|
|
-- value for the outer level is zero.
|
|
|
|
-- When a recursive match is established, two special stack entries are
|
|
-- made. The first entry is used to save the original node that starts
|
|
-- the recursive match. This is saved so that the successor field of
|
|
-- this node is accessible at the end of the match, but it is never
|
|
-- popped and executed.
|
|
|
|
-- The second entry corresponds to a standard new region action. A
|
|
-- PC_R_Remove node is stacked, whose cursor field is used to store
|
|
-- the outer stack base, and the stack base is reset to point to
|
|
-- this PC_R_Remove node. Then the recursive pattern is matched and
|
|
-- it can make history stack entries in the normal matter, so now
|
|
-- the stack looks like:
|
|
|
|
-- (stack entries made by outer level)
|
|
|
|
-- (Special entry, node is (+P) successor
|
|
-- cursor entry is not used)
|
|
|
|
-- (PC_R_Remove entry, "cursor" value is (negative) <-- Stack base
|
|
-- saved base value for the enclosing region)
|
|
|
|
-- (stack entries made by inner level)
|
|
|
|
-- If a subsequent failure occurs and pops the PC_R_Remove node, it
|
|
-- removes itself and the special entry immediately underneath it,
|
|
-- restores the stack base value for the enclosing region, and then
|
|
-- again signals failure to look for alternatives that were stacked
|
|
-- before the recursion was initiated.
|
|
|
|
-- Now we need to consider what happens if the inner pattern succeeds, as
|
|
-- signalled by accessing the special PC_EOP pattern primitive. First we
|
|
-- recognize the nested case by looking at the Base value. If this Base
|
|
-- value is Stack'First, then the entire match has succeeded, but if the
|
|
-- base value is greater than Stack'First, then we have successfully
|
|
-- matched an inner pattern, and processing continues at the outer level.
|
|
|
|
-- There are two cases. The simple case is when the inner pattern has made
|
|
-- no stack entries, as recognized by the fact that the current stack
|
|
-- pointer is equal to the current base value. In this case it is fine to
|
|
-- remove all trace of the recursion by restoring the outer base value and
|
|
-- using the special entry to find the appropriate successor node.
|
|
|
|
-- The more complex case arises when the inner match does make stack
|
|
-- entries. In this case, the PC_EOP processing stacks a special entry
|
|
-- whose cursor value saves the saved inner base value (the one that
|
|
-- references the corresponding PC_R_Remove value), and whose node
|
|
-- pointer references a PC_R_Restore node, so the stack looks like:
|
|
|
|
-- (stack entries made by outer level)
|
|
|
|
-- (Special entry, node is (+P) successor,
|
|
-- cursor entry is not used)
|
|
|
|
-- (PC_R_Remove entry, "cursor" value is (negative)
|
|
-- saved base value for the enclosing region)
|
|
|
|
-- (stack entries made by inner level)
|
|
|
|
-- (PC_Region_Replace entry, "cursor" value is (negative)
|
|
-- stack pointer value referencing the PC_R_Remove entry).
|
|
|
|
-- If the entire match succeeds, then these stack entries are, as usual,
|
|
-- ignored and abandoned. If on the other hand a subsequent failure
|
|
-- causes the PC_Region_Replace entry to be popped, it restores the
|
|
-- inner base value from its saved "cursor" value and then fails again.
|
|
-- Note that it is OK that the cursor is temporarily clobbered by this
|
|
-- pop, since the second failure will reestablish a proper cursor value.
|
|
|
|
---------------------------------
|
|
-- Compound Pattern Structures --
|
|
---------------------------------
|
|
|
|
-- This section discusses the compound structures used to represent
|
|
-- constructed patterns. It shows the graph structures of pattern
|
|
-- elements that are constructed, and in the case of patterns that
|
|
-- provide backtracking possibilities, describes how the history
|
|
-- stack is used to control the backtracking. Finally, it notes the
|
|
-- way in which the Index numbers are assigned to the structure.
|
|
|
|
-- In all diagrams, solid lines (built with minus signs or vertical
|
|
-- bars, represent successor pointers (Pthen fields) with > or V used
|
|
-- to indicate the direction of the pointer. The initial node of the
|
|
-- structure is in the upper left of the diagram. A dotted line is an
|
|
-- alternative pointer from the element above it to the element below
|
|
-- it. See individual sections for details on how alternatives are used.
|
|
|
|
-------------------
|
|
-- Concatenation --
|
|
-------------------
|
|
|
|
-- In the pattern structures listed in this section, a line that looks
|
|
-- like ----> with nothing to the right indicates an end of pattern
|
|
-- (EOP) pointer that represents the end of the match.
|
|
|
|
-- When a pattern concatenation (L & R) occurs, the resulting structure
|
|
-- is obtained by finding all such EOP pointers in L, and replacing
|
|
-- them to point to R. This is the most important flattening that
|
|
-- occurs in constructing a pattern, and it means that the pattern
|
|
-- matching circuitry does not have to keep track of the structure
|
|
-- of a pattern with respect to concatenation, since the appropriate
|
|
-- successor is always at hand.
|
|
|
|
-- Concatenation itself generates no additional possibilities for
|
|
-- backtracking, but the constituent patterns of the concatenated
|
|
-- structure will make stack entries as usual. The maximum amount
|
|
-- of stack required by the structure is thus simply the sum of the
|
|
-- maximums required by L and R.
|
|
|
|
-- The index numbering of a concatenation structure works by leaving
|
|
-- the numbering of the right hand pattern, R, unchanged and adjusting
|
|
-- the numbers in the left hand pattern, L up by the count of elements
|
|
-- in R. This ensures that the maximum numbered element is the leading
|
|
-- element as required (given that it was the leading element in L).
|
|
|
|
-----------------
|
|
-- Alternation --
|
|
-----------------
|
|
|
|
-- A pattern (L or R) constructs the structure:
|
|
|
|
-- +---+ +---+
|
|
-- | A |---->| L |---->
|
|
-- +---+ +---+
|
|
-- .
|
|
-- .
|
|
-- +---+
|
|
-- | R |---->
|
|
-- +---+
|
|
|
|
-- The A element here is a PC_Alt node, and the dotted line represents
|
|
-- the contents of the Alt field. When the PC_Alt element is matched,
|
|
-- it stacks a pointer to the leading element of R on the history stack
|
|
-- so that on subsequent failure, a match of R is attempted.
|
|
|
|
-- The A node is the highest numbered element in the pattern. The
|
|
-- original index numbers of R are unchanged, but the index numbers
|
|
-- of the L pattern are adjusted up by the count of elements in R.
|
|
|
|
-- Note that the difference between the index of the L leading element
|
|
-- the index of the R leading element (after building the alt structure)
|
|
-- indicates the number of nodes in L, and this is true even after the
|
|
-- structure is incorporated into some larger structure. For example,
|
|
-- if the A node has index 16, and L has index 15 and R has index
|
|
-- 5, then we know that L has 10 (15-5) elements in it.
|
|
|
|
-- Suppose that we now concatenate this structure to another pattern
|
|
-- with 9 elements in it. We will now have the A node with an index
|
|
-- of 25, L with an index of 24 and R with an index of 14. We still
|
|
-- know that L has 10 (24-14) elements in it, numbered 15-24, and
|
|
-- consequently the successor of the alternation structure has an
|
|
-- index with a value less than 15. This is used in Image to figure
|
|
-- out the original recursive structure of a pattern.
|
|
|
|
-- To clarify the interaction of the alternation and concatenation
|
|
-- structures, here is a more complex example of the structure built
|
|
-- for the pattern:
|
|
|
|
-- (V or W or X) (Y or Z)
|
|
|
|
-- where A,B,C,D,E are all single element patterns:
|
|
|
|
-- +---+ +---+ +---+ +---+
|
|
-- I A I---->I V I---+-->I A I---->I Y I---->
|
|
-- +---+ +---+ I +---+ +---+
|
|
-- . I .
|
|
-- . I .
|
|
-- +---+ +---+ I +---+
|
|
-- I A I---->I W I-->I I Z I---->
|
|
-- +---+ +---+ I +---+
|
|
-- . I
|
|
-- . I
|
|
-- +---+ I
|
|
-- I X I------------>+
|
|
-- +---+
|
|
|
|
-- The numbering of the nodes would be as follows:
|
|
|
|
-- +---+ +---+ +---+ +---+
|
|
-- I 8 I---->I 7 I---+-->I 3 I---->I 2 I---->
|
|
-- +---+ +---+ I +---+ +---+
|
|
-- . I .
|
|
-- . I .
|
|
-- +---+ +---+ I +---+
|
|
-- I 6 I---->I 5 I-->I I 1 I---->
|
|
-- +---+ +---+ I +---+
|
|
-- . I
|
|
-- . I
|
|
-- +---+ I
|
|
-- I 4 I------------>+
|
|
-- +---+
|
|
|
|
-- Note: The above structure actually corresponds to
|
|
|
|
-- (A or (B or C)) (D or E)
|
|
|
|
-- rather than
|
|
|
|
-- ((A or B) or C) (D or E)
|
|
|
|
-- which is the more natural interpretation, but in fact alternation
|
|
-- is associative, and the construction of an alternative changes the
|
|
-- left grouped pattern to the right grouped pattern in any case, so
|
|
-- that the Image function produces a more natural looking output.
|
|
|
|
---------
|
|
-- Arb --
|
|
---------
|
|
|
|
-- An Arb pattern builds the structure
|
|
|
|
-- +---+
|
|
-- | X |---->
|
|
-- +---+
|
|
-- .
|
|
-- .
|
|
-- +---+
|
|
-- | Y |---->
|
|
-- +---+
|
|
|
|
-- The X node is a PC_Arb_X node, which matches null, and stacks a
|
|
-- pointer to Y node, which is the PC_Arb_Y node that matches one
|
|
-- extra character and restacks itself.
|
|
|
|
-- The PC_Arb_X node is numbered 2, and the PC_Arb_Y node is 1
|
|
|
|
-------------------------
|
|
-- Arbno (simple case) --
|
|
-------------------------
|
|
|
|
-- The simple form of Arbno can be used where the pattern always
|
|
-- matches at least one character if it succeeds, and it is known
|
|
-- not to make any history stack entries. In this case, Arbno (P)
|
|
-- can construct the following structure:
|
|
|
|
-- +-------------+
|
|
-- | ^
|
|
-- V |
|
|
-- +---+ |
|
|
-- | S |----> |
|
|
-- +---+ |
|
|
-- . |
|
|
-- . |
|
|
-- +---+ |
|
|
-- | P |---------->+
|
|
-- +---+
|
|
|
|
-- The S (PC_Arbno_S) node matches null stacking a pointer to the
|
|
-- pattern P. If a subsequent failure causes P to be matched and
|
|
-- this match succeeds, then node A gets restacked to try another
|
|
-- instance if needed by a subsequent failure.
|
|
|
|
-- The node numbering of the constituent pattern P is not affected.
|
|
-- The S node has a node number of P.Index + 1.
|
|
|
|
--------------------------
|
|
-- Arbno (complex case) --
|
|
--------------------------
|
|
|
|
-- A call to Arbno (P), where P can match null (or at least is not
|
|
-- known to require a non-null string) and/or P requires pattern stack
|
|
-- entries, constructs the following structure:
|
|
|
|
-- +--------------------------+
|
|
-- | ^
|
|
-- V |
|
|
-- +---+ |
|
|
-- | X |----> |
|
|
-- +---+ |
|
|
-- . |
|
|
-- . |
|
|
-- +---+ +---+ +---+ |
|
|
-- | E |---->| P |---->| Y |--->+
|
|
-- +---+ +---+ +---+
|
|
|
|
-- The node X (PC_Arbno_X) matches null, stacking a pointer to the
|
|
-- E-P-X structure used to match one Arbno instance.
|
|
|
|
-- Here E is the PC_R_Enter node which matches null and creates two
|
|
-- stack entries. The first is a special entry whose node field is
|
|
-- not used at all, and whose cursor field has the initial cursor.
|
|
|
|
-- The second entry corresponds to a standard new region action. A
|
|
-- PC_R_Remove node is stacked, whose cursor field is used to store
|
|
-- the outer stack base, and the stack base is reset to point to
|
|
-- this PC_R_Remove node. Then the pattern P is matched, and it can
|
|
-- make history stack entries in the normal manner, so now the stack
|
|
-- looks like:
|
|
|
|
-- (stack entries made before assign pattern)
|
|
|
|
-- (Special entry, node field not used,
|
|
-- used only to save initial cursor)
|
|
|
|
-- (PC_R_Remove entry, "cursor" value is (negative) <-- Stack Base
|
|
-- saved base value for the enclosing region)
|
|
|
|
-- (stack entries made by matching P)
|
|
|
|
-- If the match of P fails, then the PC_R_Remove entry is popped and
|
|
-- it removes both itself and the special entry underneath it,
|
|
-- restores the outer stack base, and signals failure.
|
|
|
|
-- If the match of P succeeds, then node Y, the PC_Arbno_Y node, pops
|
|
-- the inner region. There are two possibilities. If matching P left
|
|
-- no stack entries, then all traces of the inner region can be removed.
|
|
-- If there are stack entries, then we push an PC_Region_Replace stack
|
|
-- entry whose "cursor" value is the inner stack base value, and then
|
|
-- restore the outer stack base value, so the stack looks like:
|
|
|
|
-- (stack entries made before assign pattern)
|
|
|
|
-- (Special entry, node field not used,
|
|
-- used only to save initial cursor)
|
|
|
|
-- (PC_R_Remove entry, "cursor" value is (negative)
|
|
-- saved base value for the enclosing region)
|
|
|
|
-- (stack entries made by matching P)
|
|
|
|
-- (PC_Region_Replace entry, "cursor" value is (negative)
|
|
-- stack pointer value referencing the PC_R_Remove entry).
|
|
|
|
-- Now that we have matched another instance of the Arbno pattern,
|
|
-- we need to move to the successor. There are two cases. If the
|
|
-- Arbno pattern matched null, then there is no point in seeking
|
|
-- alternatives, since we would just match a whole bunch of nulls.
|
|
-- In this case we look through the alternative node, and move
|
|
-- directly to its successor (i.e. the successor of the Arbno
|
|
-- pattern). If on the other hand a non-null string was matched,
|
|
-- we simply follow the successor to the alternative node, which
|
|
-- sets up for another possible match of the Arbno pattern.
|
|
|
|
-- As noted in the section on stack checking, the stack count (and
|
|
-- hence the stack check) for a pattern includes only one iteration
|
|
-- of the Arbno pattern. To make sure that multiple iterations do not
|
|
-- overflow the stack, the Arbno node saves the stack count required
|
|
-- by a single iteration, and the Concat function increments this to
|
|
-- include stack entries required by any successor. The PC_Arbno_Y
|
|
-- node uses this count to ensure that sufficient stack remains
|
|
-- before proceeding after matching each new instance.
|
|
|
|
-- The node numbering of the constituent pattern P is not affected.
|
|
-- Where N is the number of nodes in P, the Y node is numbered N + 1,
|
|
-- the E node is N + 2, and the X node is N + 3.
|
|
|
|
----------------------
|
|
-- Assign Immediate --
|
|
----------------------
|
|
|
|
-- Immediate assignment (P * V) constructs the following structure
|
|
|
|
-- +---+ +---+ +---+
|
|
-- | E |---->| P |---->| A |---->
|
|
-- +---+ +---+ +---+
|
|
|
|
-- Here E is the PC_R_Enter node which matches null and creates two
|
|
-- stack entries. The first is a special entry whose node field is
|
|
-- not used at all, and whose cursor field has the initial cursor.
|
|
|
|
-- The second entry corresponds to a standard new region action. A
|
|
-- PC_R_Remove node is stacked, whose cursor field is used to store
|
|
-- the outer stack base, and the stack base is reset to point to
|
|
-- this PC_R_Remove node. Then the pattern P is matched, and it can
|
|
-- make history stack entries in the normal manner, so now the stack
|
|
-- looks like:
|
|
|
|
-- (stack entries made before assign pattern)
|
|
|
|
-- (Special entry, node field not used,
|
|
-- used only to save initial cursor)
|
|
|
|
-- (PC_R_Remove entry, "cursor" value is (negative) <-- Stack Base
|
|
-- saved base value for the enclosing region)
|
|
|
|
-- (stack entries made by matching P)
|
|
|
|
-- If the match of P fails, then the PC_R_Remove entry is popped
|
|
-- and it removes both itself and the special entry underneath it,
|
|
-- restores the outer stack base, and signals failure.
|
|
|
|
-- If the match of P succeeds, then node A, which is the actual
|
|
-- PC_Assign_Imm node, executes the assignment (using the stack
|
|
-- base to locate the entry with the saved starting cursor value),
|
|
-- and the pops the inner region. There are two possibilities, if
|
|
-- matching P left no stack entries, then all traces of the inner
|
|
-- region can be removed. If there are stack entries, then we push
|
|
-- an PC_Region_Replace stack entry whose "cursor" value is the
|
|
-- inner stack base value, and then restore the outer stack base
|
|
-- value, so the stack looks like:
|
|
|
|
-- (stack entries made before assign pattern)
|
|
|
|
-- (Special entry, node field not used,
|
|
-- used only to save initial cursor)
|
|
|
|
-- (PC_R_Remove entry, "cursor" value is (negative)
|
|
-- saved base value for the enclosing region)
|
|
|
|
-- (stack entries made by matching P)
|
|
|
|
-- (PC_Region_Replace entry, "cursor" value is the (negative)
|
|
-- stack pointer value referencing the PC_R_Remove entry).
|
|
|
|
-- If a subsequent failure occurs, the PC_Region_Replace node restores
|
|
-- the inner stack base value and signals failure to explore rematches
|
|
-- of the pattern P.
|
|
|
|
-- The node numbering of the constituent pattern P is not affected.
|
|
-- Where N is the number of nodes in P, the A node is numbered N + 1,
|
|
-- and the E node is N + 2.
|
|
|
|
---------------------
|
|
-- Assign On Match --
|
|
---------------------
|
|
|
|
-- The assign on match (**) pattern is quite similar to the assign
|
|
-- immediate pattern, except that the actual assignment has to be
|
|
-- delayed. The following structure is constructed:
|
|
|
|
-- +---+ +---+ +---+
|
|
-- | E |---->| P |---->| A |---->
|
|
-- +---+ +---+ +---+
|
|
|
|
-- The operation of this pattern is identical to that described above
|
|
-- for deferred assignment, up to the point where P has been matched.
|
|
|
|
-- The A node, which is the PC_Assign_OnM node first pushes a
|
|
-- PC_Assign node onto the history stack. This node saves the ending
|
|
-- cursor and acts as a flag for the final assignment, as further
|
|
-- described below.
|
|
|
|
-- It then stores a pointer to itself in the special entry node field.
|
|
-- This was otherwise unused, and is now used to retrieve the address
|
|
-- of the variable to be assigned at the end of the pattern.
|
|
|
|
-- After that the inner region is terminated in the usual manner,
|
|
-- by stacking a PC_R_Restore entry as described for the assign
|
|
-- immediate case. Note that the optimization of completely
|
|
-- removing the inner region does not happen in this case, since
|
|
-- we have at least one stack entry (the PC_Assign one we just made).
|
|
-- The stack now looks like:
|
|
|
|
-- (stack entries made before assign pattern)
|
|
|
|
-- (Special entry, node points to copy of
|
|
-- the PC_Assign_OnM node, and the
|
|
-- cursor field saves the initial cursor).
|
|
|
|
-- (PC_R_Remove entry, "cursor" value is (negative)
|
|
-- saved base value for the enclosing region)
|
|
|
|
-- (stack entries made by matching P)
|
|
|
|
-- (PC_Assign entry, saves final cursor)
|
|
|
|
-- (PC_Region_Replace entry, "cursor" value is (negative)
|
|
-- stack pointer value referencing the PC_R_Remove entry).
|
|
|
|
-- If a subsequent failure causes the PC_Assign node to execute it
|
|
-- simply removes itself and propagates the failure.
|
|
|
|
-- If the match succeeds, then the history stack is scanned for
|
|
-- PC_Assign nodes, and the assignments are executed (examination
|
|
-- of the above diagram will show that all the necessary data is
|
|
-- at hand for the assignment).
|
|
|
|
-- To optimize the common case where no assign-on-match operations
|
|
-- are present, a global flag Assign_OnM is maintained which is
|
|
-- initialize to False, and gets set True as part of the execution
|
|
-- of the PC_Assign_OnM node. The scan of the history stack for
|
|
-- PC_Assign entries is done only if this flag is set.
|
|
|
|
-- The node numbering of the constituent pattern P is not affected.
|
|
-- Where N is the number of nodes in P, the A node is numbered N + 1,
|
|
-- and the E node is N + 2.
|
|
|
|
---------
|
|
-- Bal --
|
|
---------
|
|
|
|
-- Bal builds a single node:
|
|
|
|
-- +---+
|
|
-- | B |---->
|
|
-- +---+
|
|
|
|
-- The node B is the PC_Bal node which matches a parentheses balanced
|
|
-- string, starting at the current cursor position. It then updates
|
|
-- the cursor past this matched string, and stacks a pointer to itself
|
|
-- with this updated cursor value on the history stack, to extend the
|
|
-- matched string on a subsequent failure.
|
|
|
|
-- Since this is a single node it is numbered 1 (the reason we include
|
|
-- it in the compound patterns section is that it backtracks).
|
|
|
|
------------
|
|
-- BreakX --
|
|
------------
|
|
|
|
-- BreakX builds the structure
|
|
|
|
-- +---+ +---+
|
|
-- | B |---->| A |---->
|
|
-- +---+ +---+
|
|
-- ^ .
|
|
-- | .
|
|
-- | +---+
|
|
-- +<------| X |
|
|
-- +---+
|
|
|
|
-- Here the B node is the BreakX_xx node that performs a normal Break
|
|
-- function. The A node is an alternative (PC_Alt) node that matches
|
|
-- null, but stacks a pointer to node X (the PC_BreakX_X node) which
|
|
-- extends the match one character (to eat up the previously detected
|
|
-- break character), and then rematches the break.
|
|
|
|
-- The B node is numbered 3, the alternative node is 1, and the X
|
|
-- node is 2.
|
|
|
|
-----------
|
|
-- Fence --
|
|
-----------
|
|
|
|
-- Fence builds a single node:
|
|
|
|
-- +---+
|
|
-- | F |---->
|
|
-- +---+
|
|
|
|
-- The element F, PC_Fence, matches null, and stacks a pointer to a
|
|
-- PC_Cancel element which will abort the match on a subsequent failure.
|
|
|
|
-- Since this is a single element it is numbered 1 (the reason we
|
|
-- include it in the compound patterns section is that it backtracks).
|
|
|
|
--------------------
|
|
-- Fence Function --
|
|
--------------------
|
|
|
|
-- A call to the Fence function builds the structure:
|
|
|
|
-- +---+ +---+ +---+
|
|
-- | E |---->| P |---->| X |---->
|
|
-- +---+ +---+ +---+
|
|
|
|
-- Here E is the PC_R_Enter node which matches null and creates two
|
|
-- stack entries. The first is a special entry which is not used at
|
|
-- all in the fence case (it is present merely for uniformity with
|
|
-- other cases of region enter operations).
|
|
|
|
-- The second entry corresponds to a standard new region action. A
|
|
-- PC_R_Remove node is stacked, whose cursor field is used to store
|
|
-- the outer stack base, and the stack base is reset to point to
|
|
-- this PC_R_Remove node. Then the pattern P is matched, and it can
|
|
-- make history stack entries in the normal manner, so now the stack
|
|
-- looks like:
|
|
|
|
-- (stack entries made before fence pattern)
|
|
|
|
-- (Special entry, not used at all)
|
|
|
|
-- (PC_R_Remove entry, "cursor" value is (negative) <-- Stack Base
|
|
-- saved base value for the enclosing region)
|
|
|
|
-- (stack entries made by matching P)
|
|
|
|
-- If the match of P fails, then the PC_R_Remove entry is popped
|
|
-- and it removes both itself and the special entry underneath it,
|
|
-- restores the outer stack base, and signals failure.
|
|
|
|
-- If the match of P succeeds, then node X, the PC_Fence_X node, gets
|
|
-- control. One might be tempted to think that at this point, the
|
|
-- history stack entries made by matching P can just be removed since
|
|
-- they certainly are not going to be used for rematching (that is
|
|
-- whole point of Fence after all). However, this is wrong, because
|
|
-- it would result in the loss of possible assign-on-match entries
|
|
-- for deferred pattern assignments.
|
|
|
|
-- Instead what we do is to make a special entry whose node references
|
|
-- PC_Fence_Y, and whose cursor saves the inner stack base value, i.e.
|
|
-- the pointer to the PC_R_Remove entry. Then the outer stack base
|
|
-- pointer is restored, so the stack looks like:
|
|
|
|
-- (stack entries made before assign pattern)
|
|
|
|
-- (Special entry, not used at all)
|
|
|
|
-- (PC_R_Remove entry, "cursor" value is (negative)
|
|
-- saved base value for the enclosing region)
|
|
|
|
-- (stack entries made by matching P)
|
|
|
|
-- (PC_Fence_Y entry, "cursor" value is (negative) stack
|
|
-- pointer value referencing the PC_R_Remove entry).
|
|
|
|
-- If a subsequent failure occurs, then the PC_Fence_Y entry removes
|
|
-- the entire inner region, including all entries made by matching P,
|
|
-- and alternatives prior to the Fence pattern are sought.
|
|
|
|
-- The node numbering of the constituent pattern P is not affected.
|
|
-- Where N is the number of nodes in P, the X node is numbered N + 1,
|
|
-- and the E node is N + 2.
|
|
|
|
-------------
|
|
-- Succeed --
|
|
-------------
|
|
|
|
-- Succeed builds a single node:
|
|
|
|
-- +---+
|
|
-- | S |---->
|
|
-- +---+
|
|
|
|
-- The node S is the PC_Succeed node which matches null, and stacks
|
|
-- a pointer to itself on the history stack, so that a subsequent
|
|
-- failure repeats the same match.
|
|
|
|
-- Since this is a single node it is numbered 1 (the reason we include
|
|
-- it in the compound patterns section is that it backtracks).
|
|
|
|
---------------------
|
|
-- Write Immediate --
|
|
---------------------
|
|
|
|
-- The structure built for a write immediate operation (P * F, where
|
|
-- F is a file access value) is:
|
|
|
|
-- +---+ +---+ +---+
|
|
-- | E |---->| P |---->| W |---->
|
|
-- +---+ +---+ +---+
|
|
|
|
-- Here E is the PC_R_Enter node and W is the PC_Write_Imm node. The
|
|
-- handling is identical to that described above for Assign Immediate,
|
|
-- except that at the point where a successful match occurs, the matched
|
|
-- substring is written to the referenced file.
|
|
|
|
-- The node numbering of the constituent pattern P is not affected.
|
|
-- Where N is the number of nodes in P, the W node is numbered N + 1,
|
|
-- and the E node is N + 2.
|
|
|
|
--------------------
|
|
-- Write On Match --
|
|
--------------------
|
|
|
|
-- The structure built for a write on match operation (P ** F, where
|
|
-- F is a file access value) is:
|
|
|
|
-- +---+ +---+ +---+
|
|
-- | E |---->| P |---->| W |---->
|
|
-- +---+ +---+ +---+
|
|
|
|
-- Here E is the PC_R_Enter node and W is the PC_Write_OnM node. The
|
|
-- handling is identical to that described above for Assign On Match,
|
|
-- except that at the point where a successful match has completed,
|
|
-- the matched substring is written to the referenced file.
|
|
|
|
-- The node numbering of the constituent pattern P is not affected.
|
|
-- Where N is the number of nodes in P, the W node is numbered N + 1,
|
|
-- and the E node is N + 2.
|
|
-----------------------
|
|
-- Constant Patterns --
|
|
-----------------------
|
|
|
|
-- The following pattern elements are referenced only from the pattern
|
|
-- history stack. In each case the processing for the pattern element
|
|
-- results in pattern match abort, or further failure, so there is no
|
|
-- need for a successor and no need for a node number
|
|
|
|
CP_Assign : aliased PE := (PC_Assign, 0, N);
|
|
CP_Cancel : aliased PE := (PC_Cancel, 0, N);
|
|
CP_Fence_Y : aliased PE := (PC_Fence_Y, 0, N);
|
|
CP_R_Remove : aliased PE := (PC_R_Remove, 0, N);
|
|
CP_R_Restore : aliased PE := (PC_R_Restore, 0, N);
|
|
|
|
-----------------------
|
|
-- Local Subprograms --
|
|
-----------------------
|
|
|
|
function Alternate (L, R : PE_Ptr) return PE_Ptr;
|
|
function "or" (L, R : PE_Ptr) return PE_Ptr renames Alternate;
|
|
-- Build pattern structure corresponding to the alternation of L, R.
|
|
-- (i.e. try to match L, and if that fails, try to match R).
|
|
|
|
function Arbno_Simple (P : PE_Ptr) return PE_Ptr;
|
|
-- Build simple Arbno pattern, P is a pattern that is guaranteed to
|
|
-- match at least one character if it succeeds and to require no
|
|
-- stack entries under all circumstances. The result returned is
|
|
-- a simple Arbno structure as previously described.
|
|
|
|
function Bracket (E, P, A : PE_Ptr) return PE_Ptr;
|
|
-- Given two single node pattern elements E and A, and a (possible
|
|
-- complex) pattern P, construct the concatenation E-->P-->A and
|
|
-- return a pointer to E. The concatenation does not affect the
|
|
-- node numbering in P. A has a number one higher than the maximum
|
|
-- number in P, and E has a number two higher than the maximum
|
|
-- number in P (see for example the Assign_Immediate structure to
|
|
-- understand a typical use of this function).
|
|
|
|
function BreakX_Make (B : PE_Ptr) return Pattern;
|
|
-- Given a pattern element for a Break pattern, returns the
|
|
-- corresponding BreakX compound pattern structure.
|
|
|
|
function Concat (L, R : PE_Ptr; Incr : Natural) return PE_Ptr;
|
|
-- Creates a pattern element that represents a concatenation of the
|
|
-- two given pattern elements (i.e. the pattern L followed by R).
|
|
-- The result returned is always the same as L, but the pattern
|
|
-- referenced by L is modified to have R as a successor. This
|
|
-- procedure does not copy L or R, so if a copy is required, it
|
|
-- is the responsibility of the caller. The Incr parameter is an
|
|
-- amount to be added to the Nat field of any P_Arbno_Y node that is
|
|
-- in the left operand, it represents the additional stack space
|
|
-- required by the right operand.
|
|
|
|
function C_To_PE (C : PChar) return PE_Ptr;
|
|
-- Given a character, constructs a pattern element that matches
|
|
-- the single character.
|
|
|
|
function Copy (P : PE_Ptr) return PE_Ptr;
|
|
-- Creates a copy of the pattern element referenced by the given
|
|
-- pattern element reference. This is a deep copy, which means that
|
|
-- it follows the Next and Alt pointers.
|
|
|
|
function Image (P : PE_Ptr) return String;
|
|
-- Returns the image of the address of the referenced pattern element.
|
|
-- This is equivalent to Image (To_Address (P));
|
|
|
|
function Is_In (C : Character; Str : String) return Boolean;
|
|
pragma Inline (Is_In);
|
|
-- Determines if the character C is in string Str
|
|
|
|
procedure Logic_Error;
|
|
-- Called to raise Program_Error with an appropriate message if an
|
|
-- internal logic error is detected.
|
|
|
|
function Str_BF (A : Boolean_Func) return String;
|
|
function Str_FP (A : File_Ptr) return String;
|
|
function Str_NF (A : Natural_Func) return String;
|
|
function Str_NP (A : Natural_Ptr) return String;
|
|
function Str_PP (A : Pattern_Ptr) return String;
|
|
function Str_VF (A : VString_Func) return String;
|
|
function Str_VP (A : VString_Ptr) return String;
|
|
-- These are debugging routines, which return a representation of the
|
|
-- given access value (they are called only by Image and Dump)
|
|
|
|
procedure Set_Successor (Pat : PE_Ptr; Succ : PE_Ptr);
|
|
-- Adjusts all EOP pointers in Pat to point to Succ. No other changes
|
|
-- are made. In particular, Succ is unchanged, and no index numbers
|
|
-- are modified. Note that Pat may not be equal to EOP on entry.
|
|
|
|
function S_To_PE (Str : PString) return PE_Ptr;
|
|
-- Given a string, constructs a pattern element that matches the string
|
|
|
|
procedure Uninitialized_Pattern;
|
|
pragma No_Return (Uninitialized_Pattern);
|
|
-- Called to raise Program_Error with an appropriate error message if
|
|
-- an uninitialized pattern is used in any pattern construction or
|
|
-- pattern matching operation.
|
|
|
|
procedure XMatch
|
|
(Subject : String;
|
|
Pat_P : PE_Ptr;
|
|
Pat_S : Natural;
|
|
Start : out Natural;
|
|
Stop : out Natural);
|
|
-- This is the common pattern match routine. It is passed a string and
|
|
-- a pattern, and it indicates success or failure, and on success the
|
|
-- section of the string matched. It does not perform any assignments
|
|
-- to the subject string, so pattern replacement is for the caller.
|
|
--
|
|
-- Subject The subject string. The lower bound is always one. In the
|
|
-- Match procedures, it is fine to use strings whose lower bound
|
|
-- is not one, but we perform a one time conversion before the
|
|
-- call to XMatch, so that XMatch does not have to be bothered
|
|
-- with strange lower bounds.
|
|
--
|
|
-- Pat_P Points to initial pattern element of pattern to be matched
|
|
--
|
|
-- Pat_S Maximum required stack entries for pattern to be matched
|
|
--
|
|
-- Start If match is successful, starting index of matched section.
|
|
-- This value is always non-zero. A value of zero is used to
|
|
-- indicate a failed match.
|
|
--
|
|
-- Stop If match is successful, ending index of matched section.
|
|
-- This can be zero if we match the null string at the start,
|
|
-- in which case Start is set to zero, and Stop to one. If the
|
|
-- Match fails, then the contents of Stop is undefined.
|
|
|
|
procedure XMatchD
|
|
(Subject : String;
|
|
Pat_P : PE_Ptr;
|
|
Pat_S : Natural;
|
|
Start : out Natural;
|
|
Stop : out Natural);
|
|
-- Identical in all respects to XMatch, except that trace information is
|
|
-- output on Standard_Output during execution of the match. This is the
|
|
-- version that is called if the original Match call has Debug => True.
|
|
|
|
---------
|
|
-- "&" --
|
|
---------
|
|
|
|
function "&" (L : PString; R : Pattern) return Pattern is
|
|
begin
|
|
return (AFC with R.Stk, Concat (S_To_PE (L), Copy (R.P), R.Stk));
|
|
end "&";
|
|
|
|
function "&" (L : Pattern; R : PString) return Pattern is
|
|
begin
|
|
return (AFC with L.Stk, Concat (Copy (L.P), S_To_PE (R), 0));
|
|
end "&";
|
|
|
|
function "&" (L : PChar; R : Pattern) return Pattern is
|
|
begin
|
|
return (AFC with R.Stk, Concat (C_To_PE (L), Copy (R.P), R.Stk));
|
|
end "&";
|
|
|
|
function "&" (L : Pattern; R : PChar) return Pattern is
|
|
begin
|
|
return (AFC with L.Stk, Concat (Copy (L.P), C_To_PE (R), 0));
|
|
end "&";
|
|
|
|
function "&" (L : Pattern; R : Pattern) return Pattern is
|
|
begin
|
|
return (AFC with L.Stk + R.Stk, Concat (Copy (L.P), Copy (R.P), R.Stk));
|
|
end "&";
|
|
|
|
---------
|
|
-- "*" --
|
|
---------
|
|
|
|
-- Assign immediate
|
|
|
|
-- +---+ +---+ +---+
|
|
-- | E |---->| P |---->| A |---->
|
|
-- +---+ +---+ +---+
|
|
|
|
-- The node numbering of the constituent pattern P is not affected.
|
|
-- Where N is the number of nodes in P, the A node is numbered N + 1,
|
|
-- and the E node is N + 2.
|
|
|
|
function "*" (P : Pattern; Var : VString_Var) return Pattern is
|
|
Pat : constant PE_Ptr := Copy (P.P);
|
|
E : constant PE_Ptr := new PE'(PC_R_Enter, 0, EOP);
|
|
A : constant PE_Ptr :=
|
|
new PE'(PC_Assign_Imm, 0, EOP, Var'Unrestricted_Access);
|
|
begin
|
|
return (AFC with P.Stk + 3, Bracket (E, Pat, A));
|
|
end "*";
|
|
|
|
function "*" (P : PString; Var : VString_Var) return Pattern is
|
|
Pat : constant PE_Ptr := S_To_PE (P);
|
|
E : constant PE_Ptr := new PE'(PC_R_Enter, 0, EOP);
|
|
A : constant PE_Ptr :=
|
|
new PE'(PC_Assign_Imm, 0, EOP, Var'Unrestricted_Access);
|
|
begin
|
|
return (AFC with 3, Bracket (E, Pat, A));
|
|
end "*";
|
|
|
|
function "*" (P : PChar; Var : VString_Var) return Pattern is
|
|
Pat : constant PE_Ptr := C_To_PE (P);
|
|
E : constant PE_Ptr := new PE'(PC_R_Enter, 0, EOP);
|
|
A : constant PE_Ptr :=
|
|
new PE'(PC_Assign_Imm, 0, EOP, Var'Unrestricted_Access);
|
|
begin
|
|
return (AFC with 3, Bracket (E, Pat, A));
|
|
end "*";
|
|
|
|
-- Write immediate
|
|
|
|
-- +---+ +---+ +---+
|
|
-- | E |---->| P |---->| W |---->
|
|
-- +---+ +---+ +---+
|
|
|
|
-- The node numbering of the constituent pattern P is not affected.
|
|
-- Where N is the number of nodes in P, the W node is numbered N + 1,
|
|
-- and the E node is N + 2.
|
|
|
|
function "*" (P : Pattern; Fil : File_Access) return Pattern is
|
|
Pat : constant PE_Ptr := Copy (P.P);
|
|
E : constant PE_Ptr := new PE'(PC_R_Enter, 0, EOP);
|
|
W : constant PE_Ptr := new PE'(PC_Write_Imm, 0, EOP, Fil);
|
|
begin
|
|
return (AFC with 3, Bracket (E, Pat, W));
|
|
end "*";
|
|
|
|
function "*" (P : PString; Fil : File_Access) return Pattern is
|
|
Pat : constant PE_Ptr := S_To_PE (P);
|
|
E : constant PE_Ptr := new PE'(PC_R_Enter, 0, EOP);
|
|
W : constant PE_Ptr := new PE'(PC_Write_Imm, 0, EOP, Fil);
|
|
begin
|
|
return (AFC with 3, Bracket (E, Pat, W));
|
|
end "*";
|
|
|
|
function "*" (P : PChar; Fil : File_Access) return Pattern is
|
|
Pat : constant PE_Ptr := C_To_PE (P);
|
|
E : constant PE_Ptr := new PE'(PC_R_Enter, 0, EOP);
|
|
W : constant PE_Ptr := new PE'(PC_Write_Imm, 0, EOP, Fil);
|
|
begin
|
|
return (AFC with 3, Bracket (E, Pat, W));
|
|
end "*";
|
|
|
|
----------
|
|
-- "**" --
|
|
----------
|
|
|
|
-- Assign on match
|
|
|
|
-- +---+ +---+ +---+
|
|
-- | E |---->| P |---->| A |---->
|
|
-- +---+ +---+ +---+
|
|
|
|
-- The node numbering of the constituent pattern P is not affected.
|
|
-- Where N is the number of nodes in P, the A node is numbered N + 1,
|
|
-- and the E node is N + 2.
|
|
|
|
function "**" (P : Pattern; Var : VString_Var) return Pattern is
|
|
Pat : constant PE_Ptr := Copy (P.P);
|
|
E : constant PE_Ptr := new PE'(PC_R_Enter, 0, EOP);
|
|
A : constant PE_Ptr :=
|
|
new PE'(PC_Assign_OnM, 0, EOP, Var'Unrestricted_Access);
|
|
begin
|
|
return (AFC with P.Stk + 3, Bracket (E, Pat, A));
|
|
end "**";
|
|
|
|
function "**" (P : PString; Var : VString_Var) return Pattern is
|
|
Pat : constant PE_Ptr := S_To_PE (P);
|
|
E : constant PE_Ptr := new PE'(PC_R_Enter, 0, EOP);
|
|
A : constant PE_Ptr :=
|
|
new PE'(PC_Assign_OnM, 0, EOP, Var'Unrestricted_Access);
|
|
begin
|
|
return (AFC with 3, Bracket (E, Pat, A));
|
|
end "**";
|
|
|
|
function "**" (P : PChar; Var : VString_Var) return Pattern is
|
|
Pat : constant PE_Ptr := C_To_PE (P);
|
|
E : constant PE_Ptr := new PE'(PC_R_Enter, 0, EOP);
|
|
A : constant PE_Ptr :=
|
|
new PE'(PC_Assign_OnM, 0, EOP, Var'Unrestricted_Access);
|
|
begin
|
|
return (AFC with 3, Bracket (E, Pat, A));
|
|
end "**";
|
|
|
|
-- Write on match
|
|
|
|
-- +---+ +---+ +---+
|
|
-- | E |---->| P |---->| W |---->
|
|
-- +---+ +---+ +---+
|
|
|
|
-- The node numbering of the constituent pattern P is not affected.
|
|
-- Where N is the number of nodes in P, the W node is numbered N + 1,
|
|
-- and the E node is N + 2.
|
|
|
|
function "**" (P : Pattern; Fil : File_Access) return Pattern is
|
|
Pat : constant PE_Ptr := Copy (P.P);
|
|
E : constant PE_Ptr := new PE'(PC_R_Enter, 0, EOP);
|
|
W : constant PE_Ptr := new PE'(PC_Write_OnM, 0, EOP, Fil);
|
|
begin
|
|
return (AFC with P.Stk + 3, Bracket (E, Pat, W));
|
|
end "**";
|
|
|
|
function "**" (P : PString; Fil : File_Access) return Pattern is
|
|
Pat : constant PE_Ptr := S_To_PE (P);
|
|
E : constant PE_Ptr := new PE'(PC_R_Enter, 0, EOP);
|
|
W : constant PE_Ptr := new PE'(PC_Write_OnM, 0, EOP, Fil);
|
|
begin
|
|
return (AFC with 3, Bracket (E, Pat, W));
|
|
end "**";
|
|
|
|
function "**" (P : PChar; Fil : File_Access) return Pattern is
|
|
Pat : constant PE_Ptr := C_To_PE (P);
|
|
E : constant PE_Ptr := new PE'(PC_R_Enter, 0, EOP);
|
|
W : constant PE_Ptr := new PE'(PC_Write_OnM, 0, EOP, Fil);
|
|
begin
|
|
return (AFC with 3, Bracket (E, Pat, W));
|
|
end "**";
|
|
|
|
---------
|
|
-- "+" --
|
|
---------
|
|
|
|
function "+" (Str : VString_Var) return Pattern is
|
|
begin
|
|
return
|
|
(AFC with 0,
|
|
new PE'(PC_String_VP, 1, EOP, Str'Unrestricted_Access));
|
|
end "+";
|
|
|
|
function "+" (Str : VString_Func) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_String_VF, 1, EOP, Str));
|
|
end "+";
|
|
|
|
function "+" (P : Pattern_Var) return Pattern is
|
|
begin
|
|
return
|
|
(AFC with 3,
|
|
new PE'(PC_Rpat, 1, EOP, P'Unrestricted_Access));
|
|
end "+";
|
|
|
|
function "+" (P : Boolean_Func) return Pattern is
|
|
begin
|
|
return (AFC with 3, new PE'(PC_Pred_Func, 1, EOP, P));
|
|
end "+";
|
|
|
|
----------
|
|
-- "or" --
|
|
----------
|
|
|
|
function "or" (L : PString; R : Pattern) return Pattern is
|
|
begin
|
|
return (AFC with R.Stk + 1, S_To_PE (L) or Copy (R.P));
|
|
end "or";
|
|
|
|
function "or" (L : Pattern; R : PString) return Pattern is
|
|
begin
|
|
return (AFC with L.Stk + 1, Copy (L.P) or S_To_PE (R));
|
|
end "or";
|
|
|
|
function "or" (L : PString; R : PString) return Pattern is
|
|
begin
|
|
return (AFC with 1, S_To_PE (L) or S_To_PE (R));
|
|
end "or";
|
|
|
|
function "or" (L : Pattern; R : Pattern) return Pattern is
|
|
begin
|
|
return (AFC with
|
|
Natural'Max (L.Stk, R.Stk) + 1, Copy (L.P) or Copy (R.P));
|
|
end "or";
|
|
|
|
function "or" (L : PChar; R : Pattern) return Pattern is
|
|
begin
|
|
return (AFC with 1, C_To_PE (L) or Copy (R.P));
|
|
end "or";
|
|
|
|
function "or" (L : Pattern; R : PChar) return Pattern is
|
|
begin
|
|
return (AFC with 1, Copy (L.P) or C_To_PE (R));
|
|
end "or";
|
|
|
|
function "or" (L : PChar; R : PChar) return Pattern is
|
|
begin
|
|
return (AFC with 1, C_To_PE (L) or C_To_PE (R));
|
|
end "or";
|
|
|
|
function "or" (L : PString; R : PChar) return Pattern is
|
|
begin
|
|
return (AFC with 1, S_To_PE (L) or C_To_PE (R));
|
|
end "or";
|
|
|
|
function "or" (L : PChar; R : PString) return Pattern is
|
|
begin
|
|
return (AFC with 1, C_To_PE (L) or S_To_PE (R));
|
|
end "or";
|
|
|
|
------------
|
|
-- Adjust --
|
|
------------
|
|
|
|
-- No two patterns share the same pattern elements, so the adjust
|
|
-- procedure for a Pattern assignment must do a deep copy of the
|
|
-- pattern element structure.
|
|
|
|
procedure Adjust (Object : in out Pattern) is
|
|
begin
|
|
Object.P := Copy (Object.P);
|
|
end Adjust;
|
|
|
|
---------------
|
|
-- Alternate --
|
|
---------------
|
|
|
|
function Alternate (L, R : PE_Ptr) return PE_Ptr is
|
|
begin
|
|
-- If the left pattern is null, then we just add the alternation
|
|
-- node with an index one greater than the right hand pattern.
|
|
|
|
if L = EOP then
|
|
return new PE'(PC_Alt, R.Index + 1, EOP, R);
|
|
|
|
-- If the left pattern is non-null, then build a reference vector
|
|
-- for its elements, and adjust their index values to accommodate
|
|
-- the right hand elements. Then add the alternation node.
|
|
|
|
else
|
|
declare
|
|
Refs : Ref_Array (1 .. L.Index);
|
|
|
|
begin
|
|
Build_Ref_Array (L, Refs);
|
|
|
|
for J in Refs'Range loop
|
|
Refs (J).Index := Refs (J).Index + R.Index;
|
|
end loop;
|
|
end;
|
|
|
|
return new PE'(PC_Alt, L.Index + 1, L, R);
|
|
end if;
|
|
end Alternate;
|
|
|
|
---------
|
|
-- Any --
|
|
---------
|
|
|
|
function Any (Str : String) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_Any_CS, 1, EOP, To_Set (Str)));
|
|
end Any;
|
|
|
|
function Any (Str : VString) return Pattern is
|
|
begin
|
|
return Any (S (Str));
|
|
end Any;
|
|
|
|
function Any (Str : Character) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_Any_CH, 1, EOP, Str));
|
|
end Any;
|
|
|
|
function Any (Str : Character_Set) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_Any_CS, 1, EOP, Str));
|
|
end Any;
|
|
|
|
function Any (Str : not null access VString) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_Any_VP, 1, EOP, VString_Ptr (Str)));
|
|
end Any;
|
|
|
|
function Any (Str : VString_Func) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_Any_VF, 1, EOP, Str));
|
|
end Any;
|
|
|
|
---------
|
|
-- Arb --
|
|
---------
|
|
|
|
-- +---+
|
|
-- | X |---->
|
|
-- +---+
|
|
-- .
|
|
-- .
|
|
-- +---+
|
|
-- | Y |---->
|
|
-- +---+
|
|
|
|
-- The PC_Arb_X element is numbered 2, and the PC_Arb_Y element is 1
|
|
|
|
function Arb return Pattern is
|
|
Y : constant PE_Ptr := new PE'(PC_Arb_Y, 1, EOP);
|
|
X : constant PE_Ptr := new PE'(PC_Arb_X, 2, EOP, Y);
|
|
begin
|
|
return (AFC with 1, X);
|
|
end Arb;
|
|
|
|
-----------
|
|
-- Arbno --
|
|
-----------
|
|
|
|
function Arbno (P : PString) return Pattern is
|
|
begin
|
|
if P'Length = 0 then
|
|
return (AFC with 0, EOP);
|
|
else
|
|
return (AFC with 0, Arbno_Simple (S_To_PE (P)));
|
|
end if;
|
|
end Arbno;
|
|
|
|
function Arbno (P : PChar) return Pattern is
|
|
begin
|
|
return (AFC with 0, Arbno_Simple (C_To_PE (P)));
|
|
end Arbno;
|
|
|
|
function Arbno (P : Pattern) return Pattern is
|
|
Pat : constant PE_Ptr := Copy (P.P);
|
|
|
|
begin
|
|
if P.Stk = 0
|
|
and then OK_For_Simple_Arbno (Pat.Pcode)
|
|
then
|
|
return (AFC with 0, Arbno_Simple (Pat));
|
|
end if;
|
|
|
|
-- This is the complex case, either the pattern makes stack entries
|
|
-- or it is possible for the pattern to match the null string (more
|
|
-- accurately, we don't know that this is not the case).
|
|
|
|
-- +--------------------------+
|
|
-- | ^
|
|
-- V |
|
|
-- +---+ |
|
|
-- | X |----> |
|
|
-- +---+ |
|
|
-- . |
|
|
-- . |
|
|
-- +---+ +---+ +---+ |
|
|
-- | E |---->| P |---->| Y |--->+
|
|
-- +---+ +---+ +---+
|
|
|
|
-- The node numbering of the constituent pattern P is not affected.
|
|
-- Where N is the number of nodes in P, the Y node is numbered N + 1,
|
|
-- the E node is N + 2, and the X node is N + 3.
|
|
|
|
declare
|
|
E : constant PE_Ptr := new PE'(PC_R_Enter, 0, EOP);
|
|
X : constant PE_Ptr := new PE'(PC_Arbno_X, 0, EOP, E);
|
|
Y : constant PE_Ptr := new PE'(PC_Arbno_Y, 0, X, P.Stk + 3);
|
|
EPY : constant PE_Ptr := Bracket (E, Pat, Y);
|
|
begin
|
|
X.Alt := EPY;
|
|
X.Index := EPY.Index + 1;
|
|
return (AFC with P.Stk + 3, X);
|
|
end;
|
|
end Arbno;
|
|
|
|
------------------
|
|
-- Arbno_Simple --
|
|
------------------
|
|
|
|
-- +-------------+
|
|
-- | ^
|
|
-- V |
|
|
-- +---+ |
|
|
-- | S |----> |
|
|
-- +---+ |
|
|
-- . |
|
|
-- . |
|
|
-- +---+ |
|
|
-- | P |---------->+
|
|
-- +---+
|
|
|
|
-- The node numbering of the constituent pattern P is not affected.
|
|
-- The S node has a node number of P.Index + 1.
|
|
|
|
-- Note that we know that P cannot be EOP, because a null pattern
|
|
-- does not meet the requirements for simple Arbno.
|
|
|
|
function Arbno_Simple (P : PE_Ptr) return PE_Ptr is
|
|
S : constant PE_Ptr := new PE'(PC_Arbno_S, P.Index + 1, EOP, P);
|
|
begin
|
|
Set_Successor (P, S);
|
|
return S;
|
|
end Arbno_Simple;
|
|
|
|
---------
|
|
-- Bal --
|
|
---------
|
|
|
|
function Bal return Pattern is
|
|
begin
|
|
return (AFC with 1, new PE'(PC_Bal, 1, EOP));
|
|
end Bal;
|
|
|
|
-------------
|
|
-- Bracket --
|
|
-------------
|
|
|
|
function Bracket (E, P, A : PE_Ptr) return PE_Ptr is
|
|
begin
|
|
if P = EOP then
|
|
E.Pthen := A;
|
|
E.Index := 2;
|
|
A.Index := 1;
|
|
|
|
else
|
|
E.Pthen := P;
|
|
Set_Successor (P, A);
|
|
E.Index := P.Index + 2;
|
|
A.Index := P.Index + 1;
|
|
end if;
|
|
|
|
return E;
|
|
end Bracket;
|
|
|
|
-----------
|
|
-- Break --
|
|
-----------
|
|
|
|
function Break (Str : String) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_Break_CS, 1, EOP, To_Set (Str)));
|
|
end Break;
|
|
|
|
function Break (Str : VString) return Pattern is
|
|
begin
|
|
return Break (S (Str));
|
|
end Break;
|
|
|
|
function Break (Str : Character) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_Break_CH, 1, EOP, Str));
|
|
end Break;
|
|
|
|
function Break (Str : Character_Set) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_Break_CS, 1, EOP, Str));
|
|
end Break;
|
|
|
|
function Break (Str : not null access VString) return Pattern is
|
|
begin
|
|
return (AFC with 0,
|
|
new PE'(PC_Break_VP, 1, EOP, Str.all'Unchecked_Access));
|
|
end Break;
|
|
|
|
function Break (Str : VString_Func) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_Break_VF, 1, EOP, Str));
|
|
end Break;
|
|
|
|
------------
|
|
-- BreakX --
|
|
------------
|
|
|
|
function BreakX (Str : String) return Pattern is
|
|
begin
|
|
return BreakX_Make (new PE'(PC_BreakX_CS, 3, N, To_Set (Str)));
|
|
end BreakX;
|
|
|
|
function BreakX (Str : VString) return Pattern is
|
|
begin
|
|
return BreakX (S (Str));
|
|
end BreakX;
|
|
|
|
function BreakX (Str : Character) return Pattern is
|
|
begin
|
|
return BreakX_Make (new PE'(PC_BreakX_CH, 3, N, Str));
|
|
end BreakX;
|
|
|
|
function BreakX (Str : Character_Set) return Pattern is
|
|
begin
|
|
return BreakX_Make (new PE'(PC_BreakX_CS, 3, N, Str));
|
|
end BreakX;
|
|
|
|
function BreakX (Str : not null access VString) return Pattern is
|
|
begin
|
|
return BreakX_Make (new PE'(PC_BreakX_VP, 3, N, VString_Ptr (Str)));
|
|
end BreakX;
|
|
|
|
function BreakX (Str : VString_Func) return Pattern is
|
|
begin
|
|
return BreakX_Make (new PE'(PC_BreakX_VF, 3, N, Str));
|
|
end BreakX;
|
|
|
|
-----------------
|
|
-- BreakX_Make --
|
|
-----------------
|
|
|
|
-- +---+ +---+
|
|
-- | B |---->| A |---->
|
|
-- +---+ +---+
|
|
-- ^ .
|
|
-- | .
|
|
-- | +---+
|
|
-- +<------| X |
|
|
-- +---+
|
|
|
|
-- The B node is numbered 3, the alternative node is 1, and the X
|
|
-- node is 2.
|
|
|
|
function BreakX_Make (B : PE_Ptr) return Pattern is
|
|
X : constant PE_Ptr := new PE'(PC_BreakX_X, 2, B);
|
|
A : constant PE_Ptr := new PE'(PC_Alt, 1, EOP, X);
|
|
begin
|
|
B.Pthen := A;
|
|
return (AFC with 2, B);
|
|
end BreakX_Make;
|
|
|
|
---------------------
|
|
-- Build_Ref_Array --
|
|
---------------------
|
|
|
|
procedure Build_Ref_Array (E : PE_Ptr; RA : out Ref_Array) is
|
|
|
|
procedure Record_PE (E : PE_Ptr);
|
|
-- Record given pattern element if not already recorded in RA,
|
|
-- and also record any referenced pattern elements recursively.
|
|
|
|
---------------
|
|
-- Record_PE --
|
|
---------------
|
|
|
|
procedure Record_PE (E : PE_Ptr) is
|
|
begin
|
|
PutD (" Record_PE called with PE_Ptr = " & Image (E));
|
|
|
|
if E = EOP or else RA (E.Index) /= null then
|
|
Put_LineD (", nothing to do");
|
|
return;
|
|
|
|
else
|
|
Put_LineD (", recording" & IndexT'Image (E.Index));
|
|
RA (E.Index) := E;
|
|
Record_PE (E.Pthen);
|
|
|
|
if E.Pcode in PC_Has_Alt then
|
|
Record_PE (E.Alt);
|
|
end if;
|
|
end if;
|
|
end Record_PE;
|
|
|
|
-- Start of processing for Build_Ref_Array
|
|
|
|
begin
|
|
New_LineD;
|
|
Put_LineD ("Entering Build_Ref_Array");
|
|
Record_PE (E);
|
|
New_LineD;
|
|
end Build_Ref_Array;
|
|
|
|
-------------
|
|
-- C_To_PE --
|
|
-------------
|
|
|
|
function C_To_PE (C : PChar) return PE_Ptr is
|
|
begin
|
|
return new PE'(PC_Char, 1, EOP, C);
|
|
end C_To_PE;
|
|
|
|
------------
|
|
-- Cancel --
|
|
------------
|
|
|
|
function Cancel return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_Cancel, 1, EOP));
|
|
end Cancel;
|
|
|
|
------------
|
|
-- Concat --
|
|
------------
|
|
|
|
-- Concat needs to traverse the left operand performing the following
|
|
-- set of fixups:
|
|
|
|
-- a) Any successor pointers (Pthen fields) that are set to EOP are
|
|
-- reset to point to the second operand.
|
|
|
|
-- b) Any PC_Arbno_Y node has its stack count field incremented
|
|
-- by the parameter Incr provided for this purpose.
|
|
|
|
-- d) Num fields of all pattern elements in the left operand are
|
|
-- adjusted to include the elements of the right operand.
|
|
|
|
-- Note: we do not use Set_Successor in the processing for Concat, since
|
|
-- there is no point in doing two traversals, we may as well do everything
|
|
-- at the same time.
|
|
|
|
function Concat (L, R : PE_Ptr; Incr : Natural) return PE_Ptr is
|
|
begin
|
|
if L = EOP then
|
|
return R;
|
|
|
|
elsif R = EOP then
|
|
return L;
|
|
|
|
else
|
|
declare
|
|
Refs : Ref_Array (1 .. L.Index);
|
|
-- We build a reference array for L whose N'th element points to
|
|
-- the pattern element of L whose original Index value is N.
|
|
|
|
P : PE_Ptr;
|
|
|
|
begin
|
|
Build_Ref_Array (L, Refs);
|
|
|
|
for J in Refs'Range loop
|
|
P := Refs (J);
|
|
|
|
P.Index := P.Index + R.Index;
|
|
|
|
if P.Pcode = PC_Arbno_Y then
|
|
P.Nat := P.Nat + Incr;
|
|
end if;
|
|
|
|
if P.Pthen = EOP then
|
|
P.Pthen := R;
|
|
end if;
|
|
|
|
if P.Pcode in PC_Has_Alt and then P.Alt = EOP then
|
|
P.Alt := R;
|
|
end if;
|
|
end loop;
|
|
end;
|
|
|
|
return L;
|
|
end if;
|
|
end Concat;
|
|
|
|
----------
|
|
-- Copy --
|
|
----------
|
|
|
|
function Copy (P : PE_Ptr) return PE_Ptr is
|
|
begin
|
|
if P = null then
|
|
Uninitialized_Pattern;
|
|
|
|
else
|
|
declare
|
|
Refs : Ref_Array (1 .. P.Index);
|
|
-- References to elements in P, indexed by Index field
|
|
|
|
Copy : Ref_Array (1 .. P.Index);
|
|
-- Holds copies of elements of P, indexed by Index field
|
|
|
|
E : PE_Ptr;
|
|
|
|
begin
|
|
Build_Ref_Array (P, Refs);
|
|
|
|
-- Now copy all nodes
|
|
|
|
for J in Refs'Range loop
|
|
Copy (J) := new PE'(Refs (J).all);
|
|
end loop;
|
|
|
|
-- Adjust all internal references
|
|
|
|
for J in Copy'Range loop
|
|
E := Copy (J);
|
|
|
|
-- Adjust successor pointer to point to copy
|
|
|
|
if E.Pthen /= EOP then
|
|
E.Pthen := Copy (E.Pthen.Index);
|
|
end if;
|
|
|
|
-- Adjust Alt pointer if there is one to point to copy
|
|
|
|
if E.Pcode in PC_Has_Alt and then E.Alt /= EOP then
|
|
E.Alt := Copy (E.Alt.Index);
|
|
end if;
|
|
|
|
-- Copy referenced string
|
|
|
|
if E.Pcode = PC_String then
|
|
E.Str := new String'(E.Str.all);
|
|
end if;
|
|
end loop;
|
|
|
|
return Copy (P.Index);
|
|
end;
|
|
end if;
|
|
end Copy;
|
|
|
|
----------
|
|
-- Dump --
|
|
----------
|
|
|
|
procedure Dump (P : Pattern) is
|
|
|
|
subtype Count is Ada.Text_IO.Count;
|
|
Scol : Count;
|
|
-- Used to keep track of column in dump output
|
|
|
|
Refs : Ref_Array (1 .. P.P.Index);
|
|
-- We build a reference array whose N'th element points to the
|
|
-- pattern element whose Index value is N.
|
|
|
|
Cols : Natural := 2;
|
|
-- Number of columns used for pattern numbers, minimum is 2
|
|
|
|
E : PE_Ptr;
|
|
|
|
procedure Write_Node_Id (E : PE_Ptr);
|
|
-- Writes out a string identifying the given pattern element
|
|
|
|
-------------------
|
|
-- Write_Node_Id --
|
|
-------------------
|
|
|
|
procedure Write_Node_Id (E : PE_Ptr) is
|
|
begin
|
|
if E = EOP then
|
|
Put ("EOP");
|
|
|
|
for J in 4 .. Cols loop
|
|
Put (' ');
|
|
end loop;
|
|
|
|
else
|
|
declare
|
|
Str : String (1 .. Cols);
|
|
N : Natural := Natural (E.Index);
|
|
|
|
begin
|
|
Put ("#");
|
|
|
|
for J in reverse Str'Range loop
|
|
Str (J) := Character'Val (48 + N mod 10);
|
|
N := N / 10;
|
|
end loop;
|
|
|
|
Put (Str);
|
|
end;
|
|
end if;
|
|
end Write_Node_Id;
|
|
|
|
-- Start of processing for Dump
|
|
|
|
begin
|
|
New_Line;
|
|
Put ("Pattern Dump Output (pattern at " &
|
|
Image (P'Address) &
|
|
", S = " & Natural'Image (P.Stk) & ')');
|
|
|
|
Scol := Col;
|
|
New_Line;
|
|
|
|
while Col < Scol loop
|
|
Put ('-');
|
|
end loop;
|
|
|
|
New_Line;
|
|
|
|
-- If uninitialized pattern, dump line and we are done
|
|
|
|
if P.P = null then
|
|
Put_Line ("Uninitialized pattern value");
|
|
return;
|
|
end if;
|
|
|
|
-- If null pattern, just dump it and we are all done
|
|
|
|
if P.P = EOP then
|
|
Put_Line ("EOP (null pattern)");
|
|
return;
|
|
end if;
|
|
|
|
Build_Ref_Array (P.P, Refs);
|
|
|
|
-- Set number of columns required for node numbers
|
|
|
|
while 10 ** Cols - 1 < Integer (P.P.Index) loop
|
|
Cols := Cols + 1;
|
|
end loop;
|
|
|
|
-- Now dump the nodes in reverse sequence. We output them in reverse
|
|
-- sequence since this corresponds to the natural order used to
|
|
-- construct the patterns.
|
|
|
|
for J in reverse Refs'Range loop
|
|
E := Refs (J);
|
|
Write_Node_Id (E);
|
|
Set_Col (Count (Cols) + 4);
|
|
Put (Image (E));
|
|
Put (" ");
|
|
Put (Pattern_Code'Image (E.Pcode));
|
|
Put (" ");
|
|
Set_Col (21 + Count (Cols) + Address_Image_Length);
|
|
Write_Node_Id (E.Pthen);
|
|
Set_Col (24 + 2 * Count (Cols) + Address_Image_Length);
|
|
|
|
case E.Pcode is
|
|
|
|
when PC_Alt |
|
|
PC_Arb_X |
|
|
PC_Arbno_S |
|
|
PC_Arbno_X =>
|
|
Write_Node_Id (E.Alt);
|
|
|
|
when PC_Rpat =>
|
|
Put (Str_PP (E.PP));
|
|
|
|
when PC_Pred_Func =>
|
|
Put (Str_BF (E.BF));
|
|
|
|
when PC_Assign_Imm |
|
|
PC_Assign_OnM |
|
|
PC_Any_VP |
|
|
PC_Break_VP |
|
|
PC_BreakX_VP |
|
|
PC_NotAny_VP |
|
|
PC_NSpan_VP |
|
|
PC_Span_VP |
|
|
PC_String_VP =>
|
|
Put (Str_VP (E.VP));
|
|
|
|
when PC_Write_Imm |
|
|
PC_Write_OnM =>
|
|
Put (Str_FP (E.FP));
|
|
|
|
when PC_String =>
|
|
Put (Image (E.Str.all));
|
|
|
|
when PC_String_2 =>
|
|
Put (Image (E.Str2));
|
|
|
|
when PC_String_3 =>
|
|
Put (Image (E.Str3));
|
|
|
|
when PC_String_4 =>
|
|
Put (Image (E.Str4));
|
|
|
|
when PC_String_5 =>
|
|
Put (Image (E.Str5));
|
|
|
|
when PC_String_6 =>
|
|
Put (Image (E.Str6));
|
|
|
|
when PC_Setcur =>
|
|
Put (Str_NP (E.Var));
|
|
|
|
when PC_Any_CH |
|
|
PC_Break_CH |
|
|
PC_BreakX_CH |
|
|
PC_Char |
|
|
PC_NotAny_CH |
|
|
PC_NSpan_CH |
|
|
PC_Span_CH =>
|
|
Put (''' & E.Char & ''');
|
|
|
|
when PC_Any_CS |
|
|
PC_Break_CS |
|
|
PC_BreakX_CS |
|
|
PC_NotAny_CS |
|
|
PC_NSpan_CS |
|
|
PC_Span_CS =>
|
|
Put ('"' & To_Sequence (E.CS) & '"');
|
|
|
|
when PC_Arbno_Y |
|
|
PC_Len_Nat |
|
|
PC_Pos_Nat |
|
|
PC_RPos_Nat |
|
|
PC_RTab_Nat |
|
|
PC_Tab_Nat =>
|
|
Put (S (E.Nat));
|
|
|
|
when PC_Pos_NF |
|
|
PC_Len_NF |
|
|
PC_RPos_NF |
|
|
PC_RTab_NF |
|
|
PC_Tab_NF =>
|
|
Put (Str_NF (E.NF));
|
|
|
|
when PC_Pos_NP |
|
|
PC_Len_NP |
|
|
PC_RPos_NP |
|
|
PC_RTab_NP |
|
|
PC_Tab_NP =>
|
|
Put (Str_NP (E.NP));
|
|
|
|
when PC_Any_VF |
|
|
PC_Break_VF |
|
|
PC_BreakX_VF |
|
|
PC_NotAny_VF |
|
|
PC_NSpan_VF |
|
|
PC_Span_VF |
|
|
PC_String_VF =>
|
|
Put (Str_VF (E.VF));
|
|
|
|
when others => null;
|
|
|
|
end case;
|
|
|
|
New_Line;
|
|
end loop;
|
|
|
|
New_Line;
|
|
end Dump;
|
|
|
|
----------
|
|
-- Fail --
|
|
----------
|
|
|
|
function Fail return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_Fail, 1, EOP));
|
|
end Fail;
|
|
|
|
-----------
|
|
-- Fence --
|
|
-----------
|
|
|
|
-- Simple case
|
|
|
|
function Fence return Pattern is
|
|
begin
|
|
return (AFC with 1, new PE'(PC_Fence, 1, EOP));
|
|
end Fence;
|
|
|
|
-- Function case
|
|
|
|
-- +---+ +---+ +---+
|
|
-- | E |---->| P |---->| X |---->
|
|
-- +---+ +---+ +---+
|
|
|
|
-- The node numbering of the constituent pattern P is not affected.
|
|
-- Where N is the number of nodes in P, the X node is numbered N + 1,
|
|
-- and the E node is N + 2.
|
|
|
|
function Fence (P : Pattern) return Pattern is
|
|
Pat : constant PE_Ptr := Copy (P.P);
|
|
E : constant PE_Ptr := new PE'(PC_R_Enter, 0, EOP);
|
|
X : constant PE_Ptr := new PE'(PC_Fence_X, 0, EOP);
|
|
begin
|
|
return (AFC with P.Stk + 1, Bracket (E, Pat, X));
|
|
end Fence;
|
|
|
|
--------------
|
|
-- Finalize --
|
|
--------------
|
|
|
|
procedure Finalize (Object : in out Pattern) is
|
|
|
|
procedure Free is new Ada.Unchecked_Deallocation (PE, PE_Ptr);
|
|
procedure Free is new Ada.Unchecked_Deallocation (String, String_Ptr);
|
|
|
|
begin
|
|
-- Nothing to do if already freed
|
|
|
|
if Object.P = null then
|
|
return;
|
|
|
|
-- Otherwise we must free all elements
|
|
|
|
else
|
|
declare
|
|
Refs : Ref_Array (1 .. Object.P.Index);
|
|
-- References to elements in pattern to be finalized
|
|
|
|
begin
|
|
Build_Ref_Array (Object.P, Refs);
|
|
|
|
for J in Refs'Range loop
|
|
if Refs (J).Pcode = PC_String then
|
|
Free (Refs (J).Str);
|
|
end if;
|
|
|
|
Free (Refs (J));
|
|
end loop;
|
|
|
|
Object.P := null;
|
|
end;
|
|
end if;
|
|
end Finalize;
|
|
|
|
-----------
|
|
-- Image --
|
|
-----------
|
|
|
|
function Image (P : PE_Ptr) return String is
|
|
begin
|
|
return Image (To_Address (P));
|
|
end Image;
|
|
|
|
function Image (P : Pattern) return String is
|
|
begin
|
|
return S (Image (P));
|
|
end Image;
|
|
|
|
function Image (P : Pattern) return VString is
|
|
|
|
Kill_Ampersand : Boolean := False;
|
|
-- Set True to delete next & to be output to Result
|
|
|
|
Result : VString := Nul;
|
|
-- The result is accumulated here, using Append
|
|
|
|
Refs : Ref_Array (1 .. P.P.Index);
|
|
-- We build a reference array whose N'th element points to the
|
|
-- pattern element whose Index value is N.
|
|
|
|
procedure Delete_Ampersand;
|
|
-- Deletes the ampersand at the end of Result
|
|
|
|
procedure Image_Seq (E : PE_Ptr; Succ : PE_Ptr; Paren : Boolean);
|
|
-- E refers to a pattern structure whose successor is given by Succ.
|
|
-- This procedure appends to Result a representation of this pattern.
|
|
-- The Paren parameter indicates whether parentheses are required if
|
|
-- the output is more than one element.
|
|
|
|
procedure Image_One (E : in out PE_Ptr);
|
|
-- E refers to a pattern structure. This procedure appends to Result
|
|
-- a representation of the single simple or compound pattern structure
|
|
-- at the start of E and updates E to point to its successor.
|
|
|
|
----------------------
|
|
-- Delete_Ampersand --
|
|
----------------------
|
|
|
|
procedure Delete_Ampersand is
|
|
L : constant Natural := Length (Result);
|
|
begin
|
|
if L > 2 then
|
|
Delete (Result, L - 1, L);
|
|
end if;
|
|
end Delete_Ampersand;
|
|
|
|
---------------
|
|
-- Image_One --
|
|
---------------
|
|
|
|
procedure Image_One (E : in out PE_Ptr) is
|
|
|
|
ER : PE_Ptr := E.Pthen;
|
|
-- Successor set as result in E unless reset
|
|
|
|
begin
|
|
case E.Pcode is
|
|
|
|
when PC_Cancel =>
|
|
Append (Result, "Cancel");
|
|
|
|
when PC_Alt => Alt : declare
|
|
|
|
Elmts_In_L : constant IndexT := E.Pthen.Index - E.Alt.Index;
|
|
-- Number of elements in left pattern of alternation
|
|
|
|
Lowest_In_L : constant IndexT := E.Index - Elmts_In_L;
|
|
-- Number of lowest index in elements of left pattern
|
|
|
|
E1 : PE_Ptr;
|
|
|
|
begin
|
|
-- The successor of the alternation node must have a lower
|
|
-- index than any node that is in the left pattern or a
|
|
-- higher index than the alternation node itself.
|
|
|
|
while ER /= EOP
|
|
and then ER.Index >= Lowest_In_L
|
|
and then ER.Index < E.Index
|
|
loop
|
|
ER := ER.Pthen;
|
|
end loop;
|
|
|
|
Append (Result, '(');
|
|
|
|
E1 := E;
|
|
loop
|
|
Image_Seq (E1.Pthen, ER, False);
|
|
Append (Result, " or ");
|
|
E1 := E1.Alt;
|
|
exit when E1.Pcode /= PC_Alt;
|
|
end loop;
|
|
|
|
Image_Seq (E1, ER, False);
|
|
Append (Result, ')');
|
|
end Alt;
|
|
|
|
when PC_Any_CS =>
|
|
Append (Result, "Any (" & Image (To_Sequence (E.CS)) & ')');
|
|
|
|
when PC_Any_VF =>
|
|
Append (Result, "Any (" & Str_VF (E.VF) & ')');
|
|
|
|
when PC_Any_VP =>
|
|
Append (Result, "Any (" & Str_VP (E.VP) & ')');
|
|
|
|
when PC_Arb_X =>
|
|
Append (Result, "Arb");
|
|
|
|
when PC_Arbno_S =>
|
|
Append (Result, "Arbno (");
|
|
Image_Seq (E.Alt, E, False);
|
|
Append (Result, ')');
|
|
|
|
when PC_Arbno_X =>
|
|
Append (Result, "Arbno (");
|
|
Image_Seq (E.Alt.Pthen, Refs (E.Index - 2), False);
|
|
Append (Result, ')');
|
|
|
|
when PC_Assign_Imm =>
|
|
Delete_Ampersand;
|
|
Append (Result, "* " & Str_VP (Refs (E.Index).VP));
|
|
|
|
when PC_Assign_OnM =>
|
|
Delete_Ampersand;
|
|
Append (Result, "** " & Str_VP (Refs (E.Index).VP));
|
|
|
|
when PC_Any_CH =>
|
|
Append (Result, "Any ('" & E.Char & "')");
|
|
|
|
when PC_Bal =>
|
|
Append (Result, "Bal");
|
|
|
|
when PC_Break_CH =>
|
|
Append (Result, "Break ('" & E.Char & "')");
|
|
|
|
when PC_Break_CS =>
|
|
Append (Result, "Break (" & Image (To_Sequence (E.CS)) & ')');
|
|
|
|
when PC_Break_VF =>
|
|
Append (Result, "Break (" & Str_VF (E.VF) & ')');
|
|
|
|
when PC_Break_VP =>
|
|
Append (Result, "Break (" & Str_VP (E.VP) & ')');
|
|
|
|
when PC_BreakX_CH =>
|
|
Append (Result, "BreakX ('" & E.Char & "')");
|
|
ER := ER.Pthen;
|
|
|
|
when PC_BreakX_CS =>
|
|
Append (Result, "BreakX (" & Image (To_Sequence (E.CS)) & ')');
|
|
ER := ER.Pthen;
|
|
|
|
when PC_BreakX_VF =>
|
|
Append (Result, "BreakX (" & Str_VF (E.VF) & ')');
|
|
ER := ER.Pthen;
|
|
|
|
when PC_BreakX_VP =>
|
|
Append (Result, "BreakX (" & Str_VP (E.VP) & ')');
|
|
ER := ER.Pthen;
|
|
|
|
when PC_Char =>
|
|
Append (Result, ''' & E.Char & ''');
|
|
|
|
when PC_Fail =>
|
|
Append (Result, "Fail");
|
|
|
|
when PC_Fence =>
|
|
Append (Result, "Fence");
|
|
|
|
when PC_Fence_X =>
|
|
Append (Result, "Fence (");
|
|
Image_Seq (E.Pthen, Refs (E.Index - 1), False);
|
|
Append (Result, ")");
|
|
ER := Refs (E.Index - 1).Pthen;
|
|
|
|
when PC_Len_Nat =>
|
|
Append (Result, "Len (" & E.Nat & ')');
|
|
|
|
when PC_Len_NF =>
|
|
Append (Result, "Len (" & Str_NF (E.NF) & ')');
|
|
|
|
when PC_Len_NP =>
|
|
Append (Result, "Len (" & Str_NP (E.NP) & ')');
|
|
|
|
when PC_NotAny_CH =>
|
|
Append (Result, "NotAny ('" & E.Char & "')");
|
|
|
|
when PC_NotAny_CS =>
|
|
Append (Result, "NotAny (" & Image (To_Sequence (E.CS)) & ')');
|
|
|
|
when PC_NotAny_VF =>
|
|
Append (Result, "NotAny (" & Str_VF (E.VF) & ')');
|
|
|
|
when PC_NotAny_VP =>
|
|
Append (Result, "NotAny (" & Str_VP (E.VP) & ')');
|
|
|
|
when PC_NSpan_CH =>
|
|
Append (Result, "NSpan ('" & E.Char & "')");
|
|
|
|
when PC_NSpan_CS =>
|
|
Append (Result, "NSpan (" & Image (To_Sequence (E.CS)) & ')');
|
|
|
|
when PC_NSpan_VF =>
|
|
Append (Result, "NSpan (" & Str_VF (E.VF) & ')');
|
|
|
|
when PC_NSpan_VP =>
|
|
Append (Result, "NSpan (" & Str_VP (E.VP) & ')');
|
|
|
|
when PC_Null =>
|
|
Append (Result, """""");
|
|
|
|
when PC_Pos_Nat =>
|
|
Append (Result, "Pos (" & E.Nat & ')');
|
|
|
|
when PC_Pos_NF =>
|
|
Append (Result, "Pos (" & Str_NF (E.NF) & ')');
|
|
|
|
when PC_Pos_NP =>
|
|
Append (Result, "Pos (" & Str_NP (E.NP) & ')');
|
|
|
|
when PC_R_Enter =>
|
|
Kill_Ampersand := True;
|
|
|
|
when PC_Rest =>
|
|
Append (Result, "Rest");
|
|
|
|
when PC_Rpat =>
|
|
Append (Result, "(+ " & Str_PP (E.PP) & ')');
|
|
|
|
when PC_Pred_Func =>
|
|
Append (Result, "(+ " & Str_BF (E.BF) & ')');
|
|
|
|
when PC_RPos_Nat =>
|
|
Append (Result, "RPos (" & E.Nat & ')');
|
|
|
|
when PC_RPos_NF =>
|
|
Append (Result, "RPos (" & Str_NF (E.NF) & ')');
|
|
|
|
when PC_RPos_NP =>
|
|
Append (Result, "RPos (" & Str_NP (E.NP) & ')');
|
|
|
|
when PC_RTab_Nat =>
|
|
Append (Result, "RTab (" & E.Nat & ')');
|
|
|
|
when PC_RTab_NF =>
|
|
Append (Result, "RTab (" & Str_NF (E.NF) & ')');
|
|
|
|
when PC_RTab_NP =>
|
|
Append (Result, "RTab (" & Str_NP (E.NP) & ')');
|
|
|
|
when PC_Setcur =>
|
|
Append (Result, "Setcur (" & Str_NP (E.Var) & ')');
|
|
|
|
when PC_Span_CH =>
|
|
Append (Result, "Span ('" & E.Char & "')");
|
|
|
|
when PC_Span_CS =>
|
|
Append (Result, "Span (" & Image (To_Sequence (E.CS)) & ')');
|
|
|
|
when PC_Span_VF =>
|
|
Append (Result, "Span (" & Str_VF (E.VF) & ')');
|
|
|
|
when PC_Span_VP =>
|
|
Append (Result, "Span (" & Str_VP (E.VP) & ')');
|
|
|
|
when PC_String =>
|
|
Append (Result, Image (E.Str.all));
|
|
|
|
when PC_String_2 =>
|
|
Append (Result, Image (E.Str2));
|
|
|
|
when PC_String_3 =>
|
|
Append (Result, Image (E.Str3));
|
|
|
|
when PC_String_4 =>
|
|
Append (Result, Image (E.Str4));
|
|
|
|
when PC_String_5 =>
|
|
Append (Result, Image (E.Str5));
|
|
|
|
when PC_String_6 =>
|
|
Append (Result, Image (E.Str6));
|
|
|
|
when PC_String_VF =>
|
|
Append (Result, "(+" & Str_VF (E.VF) & ')');
|
|
|
|
when PC_String_VP =>
|
|
Append (Result, "(+" & Str_VP (E.VP) & ')');
|
|
|
|
when PC_Succeed =>
|
|
Append (Result, "Succeed");
|
|
|
|
when PC_Tab_Nat =>
|
|
Append (Result, "Tab (" & E.Nat & ')');
|
|
|
|
when PC_Tab_NF =>
|
|
Append (Result, "Tab (" & Str_NF (E.NF) & ')');
|
|
|
|
when PC_Tab_NP =>
|
|
Append (Result, "Tab (" & Str_NP (E.NP) & ')');
|
|
|
|
when PC_Write_Imm =>
|
|
Append (Result, '(');
|
|
Image_Seq (E, Refs (E.Index - 1), True);
|
|
Append (Result, " * " & Str_FP (Refs (E.Index - 1).FP));
|
|
ER := Refs (E.Index - 1).Pthen;
|
|
|
|
when PC_Write_OnM =>
|
|
Append (Result, '(');
|
|
Image_Seq (E.Pthen, Refs (E.Index - 1), True);
|
|
Append (Result, " ** " & Str_FP (Refs (E.Index - 1).FP));
|
|
ER := Refs (E.Index - 1).Pthen;
|
|
|
|
-- Other pattern codes should not appear as leading elements
|
|
|
|
when PC_Arb_Y |
|
|
PC_Arbno_Y |
|
|
PC_Assign |
|
|
PC_BreakX_X |
|
|
PC_EOP |
|
|
PC_Fence_Y |
|
|
PC_R_Remove |
|
|
PC_R_Restore |
|
|
PC_Unanchored =>
|
|
Append (Result, "???");
|
|
|
|
end case;
|
|
|
|
E := ER;
|
|
end Image_One;
|
|
|
|
---------------
|
|
-- Image_Seq --
|
|
---------------
|
|
|
|
procedure Image_Seq (E : PE_Ptr; Succ : PE_Ptr; Paren : Boolean) is
|
|
Indx : constant Natural := Length (Result);
|
|
E1 : PE_Ptr := E;
|
|
Mult : Boolean := False;
|
|
|
|
begin
|
|
-- The image of EOP is "" (the null string)
|
|
|
|
if E = EOP then
|
|
Append (Result, """""");
|
|
|
|
-- Else generate appropriate concatenation sequence
|
|
|
|
else
|
|
loop
|
|
Image_One (E1);
|
|
exit when E1 = Succ;
|
|
exit when E1 = EOP;
|
|
Mult := True;
|
|
|
|
if Kill_Ampersand then
|
|
Kill_Ampersand := False;
|
|
else
|
|
Append (Result, " & ");
|
|
end if;
|
|
end loop;
|
|
end if;
|
|
|
|
if Mult and Paren then
|
|
Insert (Result, Indx + 1, "(");
|
|
Append (Result, ")");
|
|
end if;
|
|
end Image_Seq;
|
|
|
|
-- Start of processing for Image
|
|
|
|
begin
|
|
Build_Ref_Array (P.P, Refs);
|
|
Image_Seq (P.P, EOP, False);
|
|
return Result;
|
|
end Image;
|
|
|
|
-----------
|
|
-- Is_In --
|
|
-----------
|
|
|
|
function Is_In (C : Character; Str : String) return Boolean is
|
|
begin
|
|
for J in Str'Range loop
|
|
if Str (J) = C then
|
|
return True;
|
|
end if;
|
|
end loop;
|
|
|
|
return False;
|
|
end Is_In;
|
|
|
|
---------
|
|
-- Len --
|
|
---------
|
|
|
|
function Len (Count : Natural) return Pattern is
|
|
begin
|
|
-- Note, the following is not just an optimization, it is needed
|
|
-- to ensure that Arbno (Len (0)) does not generate an infinite
|
|
-- matching loop (since PC_Len_Nat is OK_For_Simple_Arbno).
|
|
|
|
if Count = 0 then
|
|
return (AFC with 0, new PE'(PC_Null, 1, EOP));
|
|
|
|
else
|
|
return (AFC with 0, new PE'(PC_Len_Nat, 1, EOP, Count));
|
|
end if;
|
|
end Len;
|
|
|
|
function Len (Count : Natural_Func) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_Len_NF, 1, EOP, Count));
|
|
end Len;
|
|
|
|
function Len (Count : not null access Natural) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_Len_NP, 1, EOP, Natural_Ptr (Count)));
|
|
end Len;
|
|
|
|
-----------------
|
|
-- Logic_Error --
|
|
-----------------
|
|
|
|
procedure Logic_Error is
|
|
begin
|
|
raise Program_Error with
|
|
"Internal logic error in GNAT.Spitbol.Patterns";
|
|
end Logic_Error;
|
|
|
|
-----------
|
|
-- Match --
|
|
-----------
|
|
|
|
function Match
|
|
(Subject : VString;
|
|
Pat : Pattern) return Boolean
|
|
is
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
Start : Natural;
|
|
Stop : Natural;
|
|
pragma Unreferenced (Stop);
|
|
|
|
begin
|
|
Get_String (Subject, S, L);
|
|
|
|
if Debug_Mode then
|
|
XMatchD (S (1 .. L), Pat.P, Pat.Stk, Start, Stop);
|
|
else
|
|
XMatch (S (1 .. L), Pat.P, Pat.Stk, Start, Stop);
|
|
end if;
|
|
|
|
return Start /= 0;
|
|
end Match;
|
|
|
|
function Match
|
|
(Subject : String;
|
|
Pat : Pattern) return Boolean
|
|
is
|
|
Start, Stop : Natural;
|
|
pragma Unreferenced (Stop);
|
|
|
|
subtype String1 is String (1 .. Subject'Length);
|
|
|
|
begin
|
|
if Debug_Mode then
|
|
XMatchD (String1 (Subject), Pat.P, Pat.Stk, Start, Stop);
|
|
else
|
|
XMatch (String1 (Subject), Pat.P, Pat.Stk, Start, Stop);
|
|
end if;
|
|
|
|
return Start /= 0;
|
|
end Match;
|
|
|
|
function Match
|
|
(Subject : VString_Var;
|
|
Pat : Pattern;
|
|
Replace : VString) return Boolean
|
|
is
|
|
Start : Natural;
|
|
Stop : Natural;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (Subject, S, L);
|
|
|
|
if Debug_Mode then
|
|
XMatchD (S (1 .. L), Pat.P, Pat.Stk, Start, Stop);
|
|
else
|
|
XMatch (S (1 .. L), Pat.P, Pat.Stk, Start, Stop);
|
|
end if;
|
|
|
|
if Start = 0 then
|
|
return False;
|
|
else
|
|
Get_String (Replace, S, L);
|
|
Replace_Slice
|
|
(Subject'Unrestricted_Access.all, Start, Stop, S (1 .. L));
|
|
return True;
|
|
end if;
|
|
end Match;
|
|
|
|
function Match
|
|
(Subject : VString_Var;
|
|
Pat : Pattern;
|
|
Replace : String) return Boolean
|
|
is
|
|
Start : Natural;
|
|
Stop : Natural;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (Subject, S, L);
|
|
|
|
if Debug_Mode then
|
|
XMatchD (S (1 .. L), Pat.P, Pat.Stk, Start, Stop);
|
|
else
|
|
XMatch (S (1 .. L), Pat.P, Pat.Stk, Start, Stop);
|
|
end if;
|
|
|
|
if Start = 0 then
|
|
return False;
|
|
else
|
|
Replace_Slice
|
|
(Subject'Unrestricted_Access.all, Start, Stop, Replace);
|
|
return True;
|
|
end if;
|
|
end Match;
|
|
|
|
procedure Match
|
|
(Subject : VString;
|
|
Pat : Pattern)
|
|
is
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
Start : Natural;
|
|
Stop : Natural;
|
|
pragma Unreferenced (Start, Stop);
|
|
|
|
begin
|
|
Get_String (Subject, S, L);
|
|
|
|
if Debug_Mode then
|
|
XMatchD (S (1 .. L), Pat.P, Pat.Stk, Start, Stop);
|
|
else
|
|
XMatch (S (1 .. L), Pat.P, Pat.Stk, Start, Stop);
|
|
end if;
|
|
end Match;
|
|
|
|
procedure Match
|
|
(Subject : String;
|
|
Pat : Pattern)
|
|
is
|
|
Start, Stop : Natural;
|
|
pragma Unreferenced (Start, Stop);
|
|
|
|
subtype String1 is String (1 .. Subject'Length);
|
|
|
|
begin
|
|
if Debug_Mode then
|
|
XMatchD (String1 (Subject), Pat.P, Pat.Stk, Start, Stop);
|
|
else
|
|
XMatch (String1 (Subject), Pat.P, Pat.Stk, Start, Stop);
|
|
end if;
|
|
end Match;
|
|
|
|
procedure Match
|
|
(Subject : in out VString;
|
|
Pat : Pattern;
|
|
Replace : VString)
|
|
is
|
|
Start : Natural;
|
|
Stop : Natural;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (Subject, S, L);
|
|
|
|
if Debug_Mode then
|
|
XMatchD (S (1 .. L), Pat.P, Pat.Stk, Start, Stop);
|
|
else
|
|
XMatch (S (1 .. L), Pat.P, Pat.Stk, Start, Stop);
|
|
end if;
|
|
|
|
if Start /= 0 then
|
|
Get_String (Replace, S, L);
|
|
Replace_Slice (Subject, Start, Stop, S (1 .. L));
|
|
end if;
|
|
end Match;
|
|
|
|
procedure Match
|
|
(Subject : in out VString;
|
|
Pat : Pattern;
|
|
Replace : String)
|
|
is
|
|
Start : Natural;
|
|
Stop : Natural;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (Subject, S, L);
|
|
|
|
if Debug_Mode then
|
|
XMatchD (S (1 .. L), Pat.P, Pat.Stk, Start, Stop);
|
|
else
|
|
XMatch (S (1 .. L), Pat.P, Pat.Stk, Start, Stop);
|
|
end if;
|
|
|
|
if Start /= 0 then
|
|
Replace_Slice (Subject, Start, Stop, Replace);
|
|
end if;
|
|
end Match;
|
|
|
|
function Match
|
|
(Subject : VString;
|
|
Pat : PString) return Boolean
|
|
is
|
|
Pat_Len : constant Natural := Pat'Length;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (Subject, S, L);
|
|
|
|
if Anchored_Mode then
|
|
if Pat_Len > L then
|
|
return False;
|
|
else
|
|
return Pat = S (1 .. Pat_Len);
|
|
end if;
|
|
|
|
else
|
|
for J in 1 .. L - Pat_Len + 1 loop
|
|
if Pat = S (J .. J + (Pat_Len - 1)) then
|
|
return True;
|
|
end if;
|
|
end loop;
|
|
|
|
return False;
|
|
end if;
|
|
end Match;
|
|
|
|
function Match
|
|
(Subject : String;
|
|
Pat : PString) return Boolean
|
|
is
|
|
Pat_Len : constant Natural := Pat'Length;
|
|
Sub_Len : constant Natural := Subject'Length;
|
|
SFirst : constant Natural := Subject'First;
|
|
|
|
begin
|
|
if Anchored_Mode then
|
|
if Pat_Len > Sub_Len then
|
|
return False;
|
|
else
|
|
return Pat = Subject (SFirst .. SFirst + Pat_Len - 1);
|
|
end if;
|
|
|
|
else
|
|
for J in SFirst .. SFirst + Sub_Len - Pat_Len loop
|
|
if Pat = Subject (J .. J + (Pat_Len - 1)) then
|
|
return True;
|
|
end if;
|
|
end loop;
|
|
|
|
return False;
|
|
end if;
|
|
end Match;
|
|
|
|
function Match
|
|
(Subject : VString_Var;
|
|
Pat : PString;
|
|
Replace : VString) return Boolean
|
|
is
|
|
Start : Natural;
|
|
Stop : Natural;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (Subject, S, L);
|
|
|
|
if Debug_Mode then
|
|
XMatchD (S (1 .. L), S_To_PE (Pat), 0, Start, Stop);
|
|
else
|
|
XMatch (S (1 .. L), S_To_PE (Pat), 0, Start, Stop);
|
|
end if;
|
|
|
|
if Start = 0 then
|
|
return False;
|
|
else
|
|
Get_String (Replace, S, L);
|
|
Replace_Slice
|
|
(Subject'Unrestricted_Access.all, Start, Stop, S (1 .. L));
|
|
return True;
|
|
end if;
|
|
end Match;
|
|
|
|
function Match
|
|
(Subject : VString_Var;
|
|
Pat : PString;
|
|
Replace : String) return Boolean
|
|
is
|
|
Start : Natural;
|
|
Stop : Natural;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (Subject, S, L);
|
|
|
|
if Debug_Mode then
|
|
XMatchD (S (1 .. L), S_To_PE (Pat), 0, Start, Stop);
|
|
else
|
|
XMatch (S (1 .. L), S_To_PE (Pat), 0, Start, Stop);
|
|
end if;
|
|
|
|
if Start = 0 then
|
|
return False;
|
|
else
|
|
Replace_Slice
|
|
(Subject'Unrestricted_Access.all, Start, Stop, Replace);
|
|
return True;
|
|
end if;
|
|
end Match;
|
|
|
|
procedure Match
|
|
(Subject : VString;
|
|
Pat : PString)
|
|
is
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
Start : Natural;
|
|
Stop : Natural;
|
|
pragma Unreferenced (Start, Stop);
|
|
|
|
begin
|
|
Get_String (Subject, S, L);
|
|
|
|
if Debug_Mode then
|
|
XMatchD (S (1 .. L), S_To_PE (Pat), 0, Start, Stop);
|
|
else
|
|
XMatch (S (1 .. L), S_To_PE (Pat), 0, Start, Stop);
|
|
end if;
|
|
end Match;
|
|
|
|
procedure Match
|
|
(Subject : String;
|
|
Pat : PString)
|
|
is
|
|
Start, Stop : Natural;
|
|
pragma Unreferenced (Start, Stop);
|
|
|
|
subtype String1 is String (1 .. Subject'Length);
|
|
|
|
begin
|
|
if Debug_Mode then
|
|
XMatchD (String1 (Subject), S_To_PE (Pat), 0, Start, Stop);
|
|
else
|
|
XMatch (String1 (Subject), S_To_PE (Pat), 0, Start, Stop);
|
|
end if;
|
|
end Match;
|
|
|
|
procedure Match
|
|
(Subject : in out VString;
|
|
Pat : PString;
|
|
Replace : VString)
|
|
is
|
|
Start : Natural;
|
|
Stop : Natural;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (Subject, S, L);
|
|
|
|
if Debug_Mode then
|
|
XMatchD (S (1 .. L), S_To_PE (Pat), 0, Start, Stop);
|
|
else
|
|
XMatch (S (1 .. L), S_To_PE (Pat), 0, Start, Stop);
|
|
end if;
|
|
|
|
if Start /= 0 then
|
|
Get_String (Replace, S, L);
|
|
Replace_Slice (Subject, Start, Stop, S (1 .. L));
|
|
end if;
|
|
end Match;
|
|
|
|
procedure Match
|
|
(Subject : in out VString;
|
|
Pat : PString;
|
|
Replace : String)
|
|
is
|
|
Start : Natural;
|
|
Stop : Natural;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (Subject, S, L);
|
|
|
|
if Debug_Mode then
|
|
XMatchD (S (1 .. L), S_To_PE (Pat), 0, Start, Stop);
|
|
else
|
|
XMatch (S (1 .. L), S_To_PE (Pat), 0, Start, Stop);
|
|
end if;
|
|
|
|
if Start /= 0 then
|
|
Replace_Slice (Subject, Start, Stop, Replace);
|
|
end if;
|
|
end Match;
|
|
|
|
function Match
|
|
(Subject : VString_Var;
|
|
Pat : Pattern;
|
|
Result : Match_Result_Var) return Boolean
|
|
is
|
|
Start : Natural;
|
|
Stop : Natural;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (Subject, S, L);
|
|
|
|
if Debug_Mode then
|
|
XMatchD (S (1 .. L), Pat.P, Pat.Stk, Start, Stop);
|
|
else
|
|
XMatch (S (1 .. L), Pat.P, Pat.Stk, Start, Stop);
|
|
end if;
|
|
|
|
if Start = 0 then
|
|
Result'Unrestricted_Access.all.Var := null;
|
|
return False;
|
|
|
|
else
|
|
Result'Unrestricted_Access.all.Var := Subject'Unrestricted_Access;
|
|
Result'Unrestricted_Access.all.Start := Start;
|
|
Result'Unrestricted_Access.all.Stop := Stop;
|
|
return True;
|
|
end if;
|
|
end Match;
|
|
|
|
procedure Match
|
|
(Subject : in out VString;
|
|
Pat : Pattern;
|
|
Result : out Match_Result)
|
|
is
|
|
Start : Natural;
|
|
Stop : Natural;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (Subject, S, L);
|
|
|
|
if Debug_Mode then
|
|
XMatchD (S (1 .. L), Pat.P, Pat.Stk, Start, Stop);
|
|
else
|
|
XMatch (S (1 .. L), Pat.P, Pat.Stk, Start, Stop);
|
|
end if;
|
|
|
|
if Start = 0 then
|
|
Result.Var := null;
|
|
else
|
|
Result.Var := Subject'Unrestricted_Access;
|
|
Result.Start := Start;
|
|
Result.Stop := Stop;
|
|
end if;
|
|
end Match;
|
|
|
|
---------------
|
|
-- New_LineD --
|
|
---------------
|
|
|
|
procedure New_LineD is
|
|
begin
|
|
if Internal_Debug then
|
|
New_Line;
|
|
end if;
|
|
end New_LineD;
|
|
|
|
------------
|
|
-- NotAny --
|
|
------------
|
|
|
|
function NotAny (Str : String) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_NotAny_CS, 1, EOP, To_Set (Str)));
|
|
end NotAny;
|
|
|
|
function NotAny (Str : VString) return Pattern is
|
|
begin
|
|
return NotAny (S (Str));
|
|
end NotAny;
|
|
|
|
function NotAny (Str : Character) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_NotAny_CH, 1, EOP, Str));
|
|
end NotAny;
|
|
|
|
function NotAny (Str : Character_Set) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_NotAny_CS, 1, EOP, Str));
|
|
end NotAny;
|
|
|
|
function NotAny (Str : not null access VString) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_NotAny_VP, 1, EOP, VString_Ptr (Str)));
|
|
end NotAny;
|
|
|
|
function NotAny (Str : VString_Func) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_NotAny_VF, 1, EOP, Str));
|
|
end NotAny;
|
|
|
|
-----------
|
|
-- NSpan --
|
|
-----------
|
|
|
|
function NSpan (Str : String) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_NSpan_CS, 1, EOP, To_Set (Str)));
|
|
end NSpan;
|
|
|
|
function NSpan (Str : VString) return Pattern is
|
|
begin
|
|
return NSpan (S (Str));
|
|
end NSpan;
|
|
|
|
function NSpan (Str : Character) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_NSpan_CH, 1, EOP, Str));
|
|
end NSpan;
|
|
|
|
function NSpan (Str : Character_Set) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_NSpan_CS, 1, EOP, Str));
|
|
end NSpan;
|
|
|
|
function NSpan (Str : not null access VString) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_NSpan_VP, 1, EOP, VString_Ptr (Str)));
|
|
end NSpan;
|
|
|
|
function NSpan (Str : VString_Func) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_NSpan_VF, 1, EOP, Str));
|
|
end NSpan;
|
|
|
|
---------
|
|
-- Pos --
|
|
---------
|
|
|
|
function Pos (Count : Natural) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_Pos_Nat, 1, EOP, Count));
|
|
end Pos;
|
|
|
|
function Pos (Count : Natural_Func) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_Pos_NF, 1, EOP, Count));
|
|
end Pos;
|
|
|
|
function Pos (Count : not null access Natural) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_Pos_NP, 1, EOP, Natural_Ptr (Count)));
|
|
end Pos;
|
|
|
|
----------
|
|
-- PutD --
|
|
----------
|
|
|
|
procedure PutD (Str : String) is
|
|
begin
|
|
if Internal_Debug then
|
|
Put (Str);
|
|
end if;
|
|
end PutD;
|
|
|
|
---------------
|
|
-- Put_LineD --
|
|
---------------
|
|
|
|
procedure Put_LineD (Str : String) is
|
|
begin
|
|
if Internal_Debug then
|
|
Put_Line (Str);
|
|
end if;
|
|
end Put_LineD;
|
|
|
|
-------------
|
|
-- Replace --
|
|
-------------
|
|
|
|
procedure Replace
|
|
(Result : in out Match_Result;
|
|
Replace : VString)
|
|
is
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (Replace, S, L);
|
|
|
|
if Result.Var /= null then
|
|
Replace_Slice (Result.Var.all, Result.Start, Result.Stop, S (1 .. L));
|
|
Result.Var := null;
|
|
end if;
|
|
end Replace;
|
|
|
|
----------
|
|
-- Rest --
|
|
----------
|
|
|
|
function Rest return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_Rest, 1, EOP));
|
|
end Rest;
|
|
|
|
----------
|
|
-- Rpos --
|
|
----------
|
|
|
|
function Rpos (Count : Natural) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_RPos_Nat, 1, EOP, Count));
|
|
end Rpos;
|
|
|
|
function Rpos (Count : Natural_Func) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_RPos_NF, 1, EOP, Count));
|
|
end Rpos;
|
|
|
|
function Rpos (Count : not null access Natural) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_RPos_NP, 1, EOP, Natural_Ptr (Count)));
|
|
end Rpos;
|
|
|
|
----------
|
|
-- Rtab --
|
|
----------
|
|
|
|
function Rtab (Count : Natural) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_RTab_Nat, 1, EOP, Count));
|
|
end Rtab;
|
|
|
|
function Rtab (Count : Natural_Func) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_RTab_NF, 1, EOP, Count));
|
|
end Rtab;
|
|
|
|
function Rtab (Count : not null access Natural) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_RTab_NP, 1, EOP, Natural_Ptr (Count)));
|
|
end Rtab;
|
|
|
|
-------------
|
|
-- S_To_PE --
|
|
-------------
|
|
|
|
function S_To_PE (Str : PString) return PE_Ptr is
|
|
Len : constant Natural := Str'Length;
|
|
|
|
begin
|
|
case Len is
|
|
when 0 =>
|
|
return new PE'(PC_Null, 1, EOP);
|
|
|
|
when 1 =>
|
|
return new PE'(PC_Char, 1, EOP, Str (Str'First));
|
|
|
|
when 2 =>
|
|
return new PE'(PC_String_2, 1, EOP, Str);
|
|
|
|
when 3 =>
|
|
return new PE'(PC_String_3, 1, EOP, Str);
|
|
|
|
when 4 =>
|
|
return new PE'(PC_String_4, 1, EOP, Str);
|
|
|
|
when 5 =>
|
|
return new PE'(PC_String_5, 1, EOP, Str);
|
|
|
|
when 6 =>
|
|
return new PE'(PC_String_6, 1, EOP, Str);
|
|
|
|
when others =>
|
|
return new PE'(PC_String, 1, EOP, new String'(Str));
|
|
|
|
end case;
|
|
end S_To_PE;
|
|
|
|
-------------------
|
|
-- Set_Successor --
|
|
-------------------
|
|
|
|
-- Note: this procedure is not used by the normal concatenation circuit,
|
|
-- since other fixups are required on the left operand in this case, and
|
|
-- they might as well be done all together.
|
|
|
|
procedure Set_Successor (Pat : PE_Ptr; Succ : PE_Ptr) is
|
|
begin
|
|
if Pat = null then
|
|
Uninitialized_Pattern;
|
|
|
|
elsif Pat = EOP then
|
|
Logic_Error;
|
|
|
|
else
|
|
declare
|
|
Refs : Ref_Array (1 .. Pat.Index);
|
|
-- We build a reference array for L whose N'th element points to
|
|
-- the pattern element of L whose original Index value is N.
|
|
|
|
P : PE_Ptr;
|
|
|
|
begin
|
|
Build_Ref_Array (Pat, Refs);
|
|
|
|
for J in Refs'Range loop
|
|
P := Refs (J);
|
|
|
|
if P.Pthen = EOP then
|
|
P.Pthen := Succ;
|
|
end if;
|
|
|
|
if P.Pcode in PC_Has_Alt and then P.Alt = EOP then
|
|
P.Alt := Succ;
|
|
end if;
|
|
end loop;
|
|
end;
|
|
end if;
|
|
end Set_Successor;
|
|
|
|
------------
|
|
-- Setcur --
|
|
------------
|
|
|
|
function Setcur (Var : not null access Natural) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_Setcur, 1, EOP, Natural_Ptr (Var)));
|
|
end Setcur;
|
|
|
|
----------
|
|
-- Span --
|
|
----------
|
|
|
|
function Span (Str : String) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_Span_CS, 1, EOP, To_Set (Str)));
|
|
end Span;
|
|
|
|
function Span (Str : VString) return Pattern is
|
|
begin
|
|
return Span (S (Str));
|
|
end Span;
|
|
|
|
function Span (Str : Character) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_Span_CH, 1, EOP, Str));
|
|
end Span;
|
|
|
|
function Span (Str : Character_Set) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_Span_CS, 1, EOP, Str));
|
|
end Span;
|
|
|
|
function Span (Str : not null access VString) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_Span_VP, 1, EOP, VString_Ptr (Str)));
|
|
end Span;
|
|
|
|
function Span (Str : VString_Func) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_Span_VF, 1, EOP, Str));
|
|
end Span;
|
|
|
|
------------
|
|
-- Str_BF --
|
|
------------
|
|
|
|
function Str_BF (A : Boolean_Func) return String is
|
|
function To_A is new Ada.Unchecked_Conversion (Boolean_Func, Address);
|
|
begin
|
|
return "BF(" & Image (To_A (A)) & ')';
|
|
end Str_BF;
|
|
|
|
------------
|
|
-- Str_FP --
|
|
------------
|
|
|
|
function Str_FP (A : File_Ptr) return String is
|
|
begin
|
|
return "FP(" & Image (A.all'Address) & ')';
|
|
end Str_FP;
|
|
|
|
------------
|
|
-- Str_NF --
|
|
------------
|
|
|
|
function Str_NF (A : Natural_Func) return String is
|
|
function To_A is new Ada.Unchecked_Conversion (Natural_Func, Address);
|
|
begin
|
|
return "NF(" & Image (To_A (A)) & ')';
|
|
end Str_NF;
|
|
|
|
------------
|
|
-- Str_NP --
|
|
------------
|
|
|
|
function Str_NP (A : Natural_Ptr) return String is
|
|
begin
|
|
return "NP(" & Image (A.all'Address) & ')';
|
|
end Str_NP;
|
|
|
|
------------
|
|
-- Str_PP --
|
|
------------
|
|
|
|
function Str_PP (A : Pattern_Ptr) return String is
|
|
begin
|
|
return "PP(" & Image (A.all'Address) & ')';
|
|
end Str_PP;
|
|
|
|
------------
|
|
-- Str_VF --
|
|
------------
|
|
|
|
function Str_VF (A : VString_Func) return String is
|
|
function To_A is new Ada.Unchecked_Conversion (VString_Func, Address);
|
|
begin
|
|
return "VF(" & Image (To_A (A)) & ')';
|
|
end Str_VF;
|
|
|
|
------------
|
|
-- Str_VP --
|
|
------------
|
|
|
|
function Str_VP (A : VString_Ptr) return String is
|
|
begin
|
|
return "VP(" & Image (A.all'Address) & ')';
|
|
end Str_VP;
|
|
|
|
-------------
|
|
-- Succeed --
|
|
-------------
|
|
|
|
function Succeed return Pattern is
|
|
begin
|
|
return (AFC with 1, new PE'(PC_Succeed, 1, EOP));
|
|
end Succeed;
|
|
|
|
---------
|
|
-- Tab --
|
|
---------
|
|
|
|
function Tab (Count : Natural) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_Tab_Nat, 1, EOP, Count));
|
|
end Tab;
|
|
|
|
function Tab (Count : Natural_Func) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_Tab_NF, 1, EOP, Count));
|
|
end Tab;
|
|
|
|
function Tab (Count : not null access Natural) return Pattern is
|
|
begin
|
|
return (AFC with 0, new PE'(PC_Tab_NP, 1, EOP, Natural_Ptr (Count)));
|
|
end Tab;
|
|
|
|
---------------------------
|
|
-- Uninitialized_Pattern --
|
|
---------------------------
|
|
|
|
procedure Uninitialized_Pattern is
|
|
begin
|
|
raise Program_Error with
|
|
"uninitialized value of type GNAT.Spitbol.Patterns.Pattern";
|
|
end Uninitialized_Pattern;
|
|
|
|
------------
|
|
-- XMatch --
|
|
------------
|
|
|
|
procedure XMatch
|
|
(Subject : String;
|
|
Pat_P : PE_Ptr;
|
|
Pat_S : Natural;
|
|
Start : out Natural;
|
|
Stop : out Natural)
|
|
is
|
|
Node : PE_Ptr;
|
|
-- Pointer to current pattern node. Initialized from Pat_P, and then
|
|
-- updated as the match proceeds through its constituent elements.
|
|
|
|
Length : constant Natural := Subject'Length;
|
|
-- Length of string (= Subject'Last, since Subject'First is always 1)
|
|
|
|
Cursor : Integer := 0;
|
|
-- If the value is non-negative, then this value is the index showing
|
|
-- the current position of the match in the subject string. The next
|
|
-- character to be matched is at Subject (Cursor + 1). Note that since
|
|
-- our view of the subject string in XMatch always has a lower bound
|
|
-- of one, regardless of original bounds, that this definition exactly
|
|
-- corresponds to the cursor value as referenced by functions like Pos.
|
|
--
|
|
-- If the value is negative, then this is a saved stack pointer,
|
|
-- typically a base pointer of an inner or outer region. Cursor
|
|
-- temporarily holds such a value when it is popped from the stack
|
|
-- by Fail. In all cases, Cursor is reset to a proper non-negative
|
|
-- cursor value before the match proceeds (e.g. by propagating the
|
|
-- failure and popping a "real" cursor value from the stack.
|
|
|
|
PE_Unanchored : aliased PE := (PC_Unanchored, 0, Pat_P);
|
|
-- Dummy pattern element used in the unanchored case
|
|
|
|
Stack : Stack_Type;
|
|
-- The pattern matching failure stack for this call to Match
|
|
|
|
Stack_Ptr : Stack_Range;
|
|
-- Current stack pointer. This points to the top element of the stack
|
|
-- that is currently in use. At the outer level this is the special
|
|
-- entry placed on the stack according to the anchor mode.
|
|
|
|
Stack_Init : constant Stack_Range := Stack'First + 1;
|
|
-- This is the initial value of the Stack_Ptr and Stack_Base. The
|
|
-- initial (Stack'First) element of the stack is not used so that
|
|
-- when we pop the last element off, Stack_Ptr is still in range.
|
|
|
|
Stack_Base : Stack_Range;
|
|
-- This value is the stack base value, i.e. the stack pointer for the
|
|
-- first history stack entry in the current stack region. See separate
|
|
-- section on handling of recursive pattern matches.
|
|
|
|
Assign_OnM : Boolean := False;
|
|
-- Set True if assign-on-match or write-on-match operations may be
|
|
-- present in the history stack, which must then be scanned on a
|
|
-- successful match.
|
|
|
|
procedure Pop_Region;
|
|
pragma Inline (Pop_Region);
|
|
-- Used at the end of processing of an inner region. If the inner
|
|
-- region left no stack entries, then all trace of it is removed.
|
|
-- Otherwise a PC_Restore_Region entry is pushed to ensure proper
|
|
-- handling of alternatives in the inner region.
|
|
|
|
procedure Push (Node : PE_Ptr);
|
|
pragma Inline (Push);
|
|
-- Make entry in pattern matching stack with current cursor value
|
|
|
|
procedure Push_Region;
|
|
pragma Inline (Push_Region);
|
|
-- This procedure makes a new region on the history stack. The
|
|
-- caller first establishes the special entry on the stack, but
|
|
-- does not push the stack pointer. Then this call stacks a
|
|
-- PC_Remove_Region node, on top of this entry, using the cursor
|
|
-- field of the PC_Remove_Region entry to save the outer level
|
|
-- stack base value, and resets the stack base to point to this
|
|
-- PC_Remove_Region node.
|
|
|
|
----------------
|
|
-- Pop_Region --
|
|
----------------
|
|
|
|
procedure Pop_Region is
|
|
begin
|
|
-- If nothing was pushed in the inner region, we can just get
|
|
-- rid of it entirely, leaving no traces that it was ever there
|
|
|
|
if Stack_Ptr = Stack_Base then
|
|
Stack_Ptr := Stack_Base - 2;
|
|
Stack_Base := Stack (Stack_Ptr + 2).Cursor;
|
|
|
|
-- If stuff was pushed in the inner region, then we have to
|
|
-- push a PC_R_Restore node so that we properly handle possible
|
|
-- rematches within the region.
|
|
|
|
else
|
|
Stack_Ptr := Stack_Ptr + 1;
|
|
Stack (Stack_Ptr).Cursor := Stack_Base;
|
|
Stack (Stack_Ptr).Node := CP_R_Restore'Access;
|
|
Stack_Base := Stack (Stack_Base).Cursor;
|
|
end if;
|
|
end Pop_Region;
|
|
|
|
----------
|
|
-- Push --
|
|
----------
|
|
|
|
procedure Push (Node : PE_Ptr) is
|
|
begin
|
|
Stack_Ptr := Stack_Ptr + 1;
|
|
Stack (Stack_Ptr).Cursor := Cursor;
|
|
Stack (Stack_Ptr).Node := Node;
|
|
end Push;
|
|
|
|
-----------------
|
|
-- Push_Region --
|
|
-----------------
|
|
|
|
procedure Push_Region is
|
|
begin
|
|
Stack_Ptr := Stack_Ptr + 2;
|
|
Stack (Stack_Ptr).Cursor := Stack_Base;
|
|
Stack (Stack_Ptr).Node := CP_R_Remove'Access;
|
|
Stack_Base := Stack_Ptr;
|
|
end Push_Region;
|
|
|
|
-- Start of processing for XMatch
|
|
|
|
begin
|
|
if Pat_P = null then
|
|
Uninitialized_Pattern;
|
|
end if;
|
|
|
|
-- Check we have enough stack for this pattern. This check deals with
|
|
-- every possibility except a match of a recursive pattern, where we
|
|
-- make a check at each recursion level.
|
|
|
|
if Pat_S >= Stack_Size - 1 then
|
|
raise Pattern_Stack_Overflow;
|
|
end if;
|
|
|
|
-- In anchored mode, the bottom entry on the stack is an abort entry
|
|
|
|
if Anchored_Mode then
|
|
Stack (Stack_Init).Node := CP_Cancel'Access;
|
|
Stack (Stack_Init).Cursor := 0;
|
|
|
|
-- In unanchored more, the bottom entry on the stack references
|
|
-- the special pattern element PE_Unanchored, whose Pthen field
|
|
-- points to the initial pattern element. The cursor value in this
|
|
-- entry is the number of anchor moves so far.
|
|
|
|
else
|
|
Stack (Stack_Init).Node := PE_Unanchored'Unchecked_Access;
|
|
Stack (Stack_Init).Cursor := 0;
|
|
end if;
|
|
|
|
Stack_Ptr := Stack_Init;
|
|
Stack_Base := Stack_Ptr;
|
|
Cursor := 0;
|
|
Node := Pat_P;
|
|
goto Match;
|
|
|
|
-----------------------------------------
|
|
-- Main Pattern Matching State Control --
|
|
-----------------------------------------
|
|
|
|
-- This is a state machine which uses gotos to change state. The
|
|
-- initial state is Match, to initiate the matching of the first
|
|
-- element, so the goto Match above starts the match. In the
|
|
-- following descriptions, we indicate the global values that
|
|
-- are relevant for the state transition.
|
|
|
|
-- Come here if entire match fails
|
|
|
|
<<Match_Fail>>
|
|
Start := 0;
|
|
Stop := 0;
|
|
return;
|
|
|
|
-- Come here if entire match succeeds
|
|
|
|
-- Cursor current position in subject string
|
|
|
|
<<Match_Succeed>>
|
|
Start := Stack (Stack_Init).Cursor + 1;
|
|
Stop := Cursor;
|
|
|
|
-- Scan history stack for deferred assignments or writes
|
|
|
|
if Assign_OnM then
|
|
for S in Stack_Init .. Stack_Ptr loop
|
|
if Stack (S).Node = CP_Assign'Access then
|
|
declare
|
|
Inner_Base : constant Stack_Range :=
|
|
Stack (S + 1).Cursor;
|
|
Special_Entry : constant Stack_Range :=
|
|
Inner_Base - 1;
|
|
Node_OnM : constant PE_Ptr :=
|
|
Stack (Special_Entry).Node;
|
|
Start : constant Natural :=
|
|
Stack (Special_Entry).Cursor + 1;
|
|
Stop : constant Natural := Stack (S).Cursor;
|
|
|
|
begin
|
|
if Node_OnM.Pcode = PC_Assign_OnM then
|
|
Set_Unbounded_String
|
|
(Node_OnM.VP.all, Subject (Start .. Stop));
|
|
|
|
elsif Node_OnM.Pcode = PC_Write_OnM then
|
|
Put_Line (Node_OnM.FP.all, Subject (Start .. Stop));
|
|
|
|
else
|
|
Logic_Error;
|
|
end if;
|
|
end;
|
|
end if;
|
|
end loop;
|
|
end if;
|
|
|
|
return;
|
|
|
|
-- Come here if attempt to match current element fails
|
|
|
|
-- Stack_Base current stack base
|
|
-- Stack_Ptr current stack pointer
|
|
|
|
<<Fail>>
|
|
Cursor := Stack (Stack_Ptr).Cursor;
|
|
Node := Stack (Stack_Ptr).Node;
|
|
Stack_Ptr := Stack_Ptr - 1;
|
|
goto Match;
|
|
|
|
-- Come here if attempt to match current element succeeds
|
|
|
|
-- Cursor current position in subject string
|
|
-- Node pointer to node successfully matched
|
|
-- Stack_Base current stack base
|
|
-- Stack_Ptr current stack pointer
|
|
|
|
<<Succeed>>
|
|
Node := Node.Pthen;
|
|
|
|
-- Come here to match the next pattern element
|
|
|
|
-- Cursor current position in subject string
|
|
-- Node pointer to node to be matched
|
|
-- Stack_Base current stack base
|
|
-- Stack_Ptr current stack pointer
|
|
|
|
<<Match>>
|
|
|
|
--------------------------------------------------
|
|
-- Main Pattern Match Element Matching Routines --
|
|
--------------------------------------------------
|
|
|
|
-- Here is the case statement that processes the current node. The
|
|
-- processing for each element does one of five things:
|
|
|
|
-- goto Succeed to move to the successor
|
|
-- goto Match_Succeed if the entire match succeeds
|
|
-- goto Match_Fail if the entire match fails
|
|
-- goto Fail to signal failure of current match
|
|
|
|
-- Processing is NOT allowed to fall through
|
|
|
|
case Node.Pcode is
|
|
|
|
-- Cancel
|
|
|
|
when PC_Cancel =>
|
|
goto Match_Fail;
|
|
|
|
-- Alternation
|
|
|
|
when PC_Alt =>
|
|
Push (Node.Alt);
|
|
Node := Node.Pthen;
|
|
goto Match;
|
|
|
|
-- Any (one character case)
|
|
|
|
when PC_Any_CH =>
|
|
if Cursor < Length
|
|
and then Subject (Cursor + 1) = Node.Char
|
|
then
|
|
Cursor := Cursor + 1;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- Any (character set case)
|
|
|
|
when PC_Any_CS =>
|
|
if Cursor < Length
|
|
and then Is_In (Subject (Cursor + 1), Node.CS)
|
|
then
|
|
Cursor := Cursor + 1;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- Any (string function case)
|
|
|
|
when PC_Any_VF => declare
|
|
U : constant VString := Node.VF.all;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (U, S, L);
|
|
|
|
if Cursor < Length
|
|
and then Is_In (Subject (Cursor + 1), S (1 .. L))
|
|
then
|
|
Cursor := Cursor + 1;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
end;
|
|
|
|
-- Any (string pointer case)
|
|
|
|
when PC_Any_VP => declare
|
|
U : constant VString := Node.VP.all;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (U, S, L);
|
|
|
|
if Cursor < Length
|
|
and then Is_In (Subject (Cursor + 1), S (1 .. L))
|
|
then
|
|
Cursor := Cursor + 1;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
end;
|
|
|
|
-- Arb (initial match)
|
|
|
|
when PC_Arb_X =>
|
|
Push (Node.Alt);
|
|
Node := Node.Pthen;
|
|
goto Match;
|
|
|
|
-- Arb (extension)
|
|
|
|
when PC_Arb_Y =>
|
|
if Cursor < Length then
|
|
Cursor := Cursor + 1;
|
|
Push (Node);
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- Arbno_S (simple Arbno initialize). This is the node that
|
|
-- initiates the match of a simple Arbno structure.
|
|
|
|
when PC_Arbno_S =>
|
|
Push (Node.Alt);
|
|
Node := Node.Pthen;
|
|
goto Match;
|
|
|
|
-- Arbno_X (Arbno initialize). This is the node that initiates
|
|
-- the match of a complex Arbno structure.
|
|
|
|
when PC_Arbno_X =>
|
|
Push (Node.Alt);
|
|
Node := Node.Pthen;
|
|
goto Match;
|
|
|
|
-- Arbno_Y (Arbno rematch). This is the node that is executed
|
|
-- following successful matching of one instance of a complex
|
|
-- Arbno pattern.
|
|
|
|
when PC_Arbno_Y => declare
|
|
Null_Match : constant Boolean :=
|
|
Cursor = Stack (Stack_Base - 1).Cursor;
|
|
|
|
begin
|
|
Pop_Region;
|
|
|
|
-- If arbno extension matched null, then immediately fail
|
|
|
|
if Null_Match then
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- Here we must do a stack check to make sure enough stack
|
|
-- is left. This check will happen once for each instance of
|
|
-- the Arbno pattern that is matched. The Nat field of a
|
|
-- PC_Arbno pattern contains the maximum stack entries needed
|
|
-- for the Arbno with one instance and the successor pattern
|
|
|
|
if Stack_Ptr + Node.Nat >= Stack'Last then
|
|
raise Pattern_Stack_Overflow;
|
|
end if;
|
|
|
|
goto Succeed;
|
|
end;
|
|
|
|
-- Assign. If this node is executed, it means the assign-on-match
|
|
-- or write-on-match operation will not happen after all, so we
|
|
-- is propagate the failure, removing the PC_Assign node.
|
|
|
|
when PC_Assign =>
|
|
goto Fail;
|
|
|
|
-- Assign immediate. This node performs the actual assignment
|
|
|
|
when PC_Assign_Imm =>
|
|
Set_Unbounded_String
|
|
(Node.VP.all,
|
|
Subject (Stack (Stack_Base - 1).Cursor + 1 .. Cursor));
|
|
Pop_Region;
|
|
goto Succeed;
|
|
|
|
-- Assign on match. This node sets up for the eventual assignment
|
|
|
|
when PC_Assign_OnM =>
|
|
Stack (Stack_Base - 1).Node := Node;
|
|
Push (CP_Assign'Access);
|
|
Pop_Region;
|
|
Assign_OnM := True;
|
|
goto Succeed;
|
|
|
|
-- Bal
|
|
|
|
when PC_Bal =>
|
|
if Cursor >= Length or else Subject (Cursor + 1) = ')' then
|
|
goto Fail;
|
|
|
|
elsif Subject (Cursor + 1) = '(' then
|
|
declare
|
|
Paren_Count : Natural := 1;
|
|
|
|
begin
|
|
loop
|
|
Cursor := Cursor + 1;
|
|
|
|
if Cursor >= Length then
|
|
goto Fail;
|
|
|
|
elsif Subject (Cursor + 1) = '(' then
|
|
Paren_Count := Paren_Count + 1;
|
|
|
|
elsif Subject (Cursor + 1) = ')' then
|
|
Paren_Count := Paren_Count - 1;
|
|
exit when Paren_Count = 0;
|
|
end if;
|
|
end loop;
|
|
end;
|
|
end if;
|
|
|
|
Cursor := Cursor + 1;
|
|
Push (Node);
|
|
goto Succeed;
|
|
|
|
-- Break (one character case)
|
|
|
|
when PC_Break_CH =>
|
|
while Cursor < Length loop
|
|
if Subject (Cursor + 1) = Node.Char then
|
|
goto Succeed;
|
|
else
|
|
Cursor := Cursor + 1;
|
|
end if;
|
|
end loop;
|
|
|
|
goto Fail;
|
|
|
|
-- Break (character set case)
|
|
|
|
when PC_Break_CS =>
|
|
while Cursor < Length loop
|
|
if Is_In (Subject (Cursor + 1), Node.CS) then
|
|
goto Succeed;
|
|
else
|
|
Cursor := Cursor + 1;
|
|
end if;
|
|
end loop;
|
|
|
|
goto Fail;
|
|
|
|
-- Break (string function case)
|
|
|
|
when PC_Break_VF => declare
|
|
U : constant VString := Node.VF.all;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (U, S, L);
|
|
|
|
while Cursor < Length loop
|
|
if Is_In (Subject (Cursor + 1), S (1 .. L)) then
|
|
goto Succeed;
|
|
else
|
|
Cursor := Cursor + 1;
|
|
end if;
|
|
end loop;
|
|
|
|
goto Fail;
|
|
end;
|
|
|
|
-- Break (string pointer case)
|
|
|
|
when PC_Break_VP => declare
|
|
U : constant VString := Node.VP.all;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (U, S, L);
|
|
|
|
while Cursor < Length loop
|
|
if Is_In (Subject (Cursor + 1), S (1 .. L)) then
|
|
goto Succeed;
|
|
else
|
|
Cursor := Cursor + 1;
|
|
end if;
|
|
end loop;
|
|
|
|
goto Fail;
|
|
end;
|
|
|
|
-- BreakX (one character case)
|
|
|
|
when PC_BreakX_CH =>
|
|
while Cursor < Length loop
|
|
if Subject (Cursor + 1) = Node.Char then
|
|
goto Succeed;
|
|
else
|
|
Cursor := Cursor + 1;
|
|
end if;
|
|
end loop;
|
|
|
|
goto Fail;
|
|
|
|
-- BreakX (character set case)
|
|
|
|
when PC_BreakX_CS =>
|
|
while Cursor < Length loop
|
|
if Is_In (Subject (Cursor + 1), Node.CS) then
|
|
goto Succeed;
|
|
else
|
|
Cursor := Cursor + 1;
|
|
end if;
|
|
end loop;
|
|
|
|
goto Fail;
|
|
|
|
-- BreakX (string function case)
|
|
|
|
when PC_BreakX_VF => declare
|
|
U : constant VString := Node.VF.all;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (U, S, L);
|
|
|
|
while Cursor < Length loop
|
|
if Is_In (Subject (Cursor + 1), S (1 .. L)) then
|
|
goto Succeed;
|
|
else
|
|
Cursor := Cursor + 1;
|
|
end if;
|
|
end loop;
|
|
|
|
goto Fail;
|
|
end;
|
|
|
|
-- BreakX (string pointer case)
|
|
|
|
when PC_BreakX_VP => declare
|
|
U : constant VString := Node.VP.all;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (U, S, L);
|
|
|
|
while Cursor < Length loop
|
|
if Is_In (Subject (Cursor + 1), S (1 .. L)) then
|
|
goto Succeed;
|
|
else
|
|
Cursor := Cursor + 1;
|
|
end if;
|
|
end loop;
|
|
|
|
goto Fail;
|
|
end;
|
|
|
|
-- BreakX_X (BreakX extension). See section on "Compound Pattern
|
|
-- Structures". This node is the alternative that is stacked to
|
|
-- skip past the break character and extend the break.
|
|
|
|
when PC_BreakX_X =>
|
|
Cursor := Cursor + 1;
|
|
goto Succeed;
|
|
|
|
-- Character (one character string)
|
|
|
|
when PC_Char =>
|
|
if Cursor < Length
|
|
and then Subject (Cursor + 1) = Node.Char
|
|
then
|
|
Cursor := Cursor + 1;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- End of Pattern
|
|
|
|
when PC_EOP =>
|
|
if Stack_Base = Stack_Init then
|
|
goto Match_Succeed;
|
|
|
|
-- End of recursive inner match. See separate section on
|
|
-- handing of recursive pattern matches for details.
|
|
|
|
else
|
|
Node := Stack (Stack_Base - 1).Node;
|
|
Pop_Region;
|
|
goto Match;
|
|
end if;
|
|
|
|
-- Fail
|
|
|
|
when PC_Fail =>
|
|
goto Fail;
|
|
|
|
-- Fence (built in pattern)
|
|
|
|
when PC_Fence =>
|
|
Push (CP_Cancel'Access);
|
|
goto Succeed;
|
|
|
|
-- Fence function node X. This is the node that gets control
|
|
-- after a successful match of the fenced pattern.
|
|
|
|
when PC_Fence_X =>
|
|
Stack_Ptr := Stack_Ptr + 1;
|
|
Stack (Stack_Ptr).Cursor := Stack_Base;
|
|
Stack (Stack_Ptr).Node := CP_Fence_Y'Access;
|
|
Stack_Base := Stack (Stack_Base).Cursor;
|
|
goto Succeed;
|
|
|
|
-- Fence function node Y. This is the node that gets control on
|
|
-- a failure that occurs after the fenced pattern has matched.
|
|
|
|
-- Note: the Cursor at this stage is actually the inner stack
|
|
-- base value. We don't reset this, but we do use it to strip
|
|
-- off all the entries made by the fenced pattern.
|
|
|
|
when PC_Fence_Y =>
|
|
Stack_Ptr := Cursor - 2;
|
|
goto Fail;
|
|
|
|
-- Len (integer case)
|
|
|
|
when PC_Len_Nat =>
|
|
if Cursor + Node.Nat > Length then
|
|
goto Fail;
|
|
else
|
|
Cursor := Cursor + Node.Nat;
|
|
goto Succeed;
|
|
end if;
|
|
|
|
-- Len (Integer function case)
|
|
|
|
when PC_Len_NF => declare
|
|
N : constant Natural := Node.NF.all;
|
|
begin
|
|
if Cursor + N > Length then
|
|
goto Fail;
|
|
else
|
|
Cursor := Cursor + N;
|
|
goto Succeed;
|
|
end if;
|
|
end;
|
|
|
|
-- Len (integer pointer case)
|
|
|
|
when PC_Len_NP =>
|
|
if Cursor + Node.NP.all > Length then
|
|
goto Fail;
|
|
else
|
|
Cursor := Cursor + Node.NP.all;
|
|
goto Succeed;
|
|
end if;
|
|
|
|
-- NotAny (one character case)
|
|
|
|
when PC_NotAny_CH =>
|
|
if Cursor < Length
|
|
and then Subject (Cursor + 1) /= Node.Char
|
|
then
|
|
Cursor := Cursor + 1;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- NotAny (character set case)
|
|
|
|
when PC_NotAny_CS =>
|
|
if Cursor < Length
|
|
and then not Is_In (Subject (Cursor + 1), Node.CS)
|
|
then
|
|
Cursor := Cursor + 1;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- NotAny (string function case)
|
|
|
|
when PC_NotAny_VF => declare
|
|
U : constant VString := Node.VF.all;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (U, S, L);
|
|
|
|
if Cursor < Length
|
|
and then
|
|
not Is_In (Subject (Cursor + 1), S (1 .. L))
|
|
then
|
|
Cursor := Cursor + 1;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
end;
|
|
|
|
-- NotAny (string pointer case)
|
|
|
|
when PC_NotAny_VP => declare
|
|
U : constant VString := Node.VP.all;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (U, S, L);
|
|
|
|
if Cursor < Length
|
|
and then
|
|
not Is_In (Subject (Cursor + 1), S (1 .. L))
|
|
then
|
|
Cursor := Cursor + 1;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
end;
|
|
|
|
-- NSpan (one character case)
|
|
|
|
when PC_NSpan_CH =>
|
|
while Cursor < Length
|
|
and then Subject (Cursor + 1) = Node.Char
|
|
loop
|
|
Cursor := Cursor + 1;
|
|
end loop;
|
|
|
|
goto Succeed;
|
|
|
|
-- NSpan (character set case)
|
|
|
|
when PC_NSpan_CS =>
|
|
while Cursor < Length
|
|
and then Is_In (Subject (Cursor + 1), Node.CS)
|
|
loop
|
|
Cursor := Cursor + 1;
|
|
end loop;
|
|
|
|
goto Succeed;
|
|
|
|
-- NSpan (string function case)
|
|
|
|
when PC_NSpan_VF => declare
|
|
U : constant VString := Node.VF.all;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (U, S, L);
|
|
|
|
while Cursor < Length
|
|
and then Is_In (Subject (Cursor + 1), S (1 .. L))
|
|
loop
|
|
Cursor := Cursor + 1;
|
|
end loop;
|
|
|
|
goto Succeed;
|
|
end;
|
|
|
|
-- NSpan (string pointer case)
|
|
|
|
when PC_NSpan_VP => declare
|
|
U : constant VString := Node.VP.all;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (U, S, L);
|
|
|
|
while Cursor < Length
|
|
and then Is_In (Subject (Cursor + 1), S (1 .. L))
|
|
loop
|
|
Cursor := Cursor + 1;
|
|
end loop;
|
|
|
|
goto Succeed;
|
|
end;
|
|
|
|
-- Null string
|
|
|
|
when PC_Null =>
|
|
goto Succeed;
|
|
|
|
-- Pos (integer case)
|
|
|
|
when PC_Pos_Nat =>
|
|
if Cursor = Node.Nat then
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- Pos (Integer function case)
|
|
|
|
when PC_Pos_NF => declare
|
|
N : constant Natural := Node.NF.all;
|
|
begin
|
|
if Cursor = N then
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
end;
|
|
|
|
-- Pos (integer pointer case)
|
|
|
|
when PC_Pos_NP =>
|
|
if Cursor = Node.NP.all then
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- Predicate function
|
|
|
|
when PC_Pred_Func =>
|
|
if Node.BF.all then
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- Region Enter. Initiate new pattern history stack region
|
|
|
|
when PC_R_Enter =>
|
|
Stack (Stack_Ptr + 1).Cursor := Cursor;
|
|
Push_Region;
|
|
goto Succeed;
|
|
|
|
-- Region Remove node. This is the node stacked by an R_Enter.
|
|
-- It removes the special format stack entry right underneath, and
|
|
-- then restores the outer level stack base and signals failure.
|
|
|
|
-- Note: the cursor value at this stage is actually the (negative)
|
|
-- stack base value for the outer level.
|
|
|
|
when PC_R_Remove =>
|
|
Stack_Base := Cursor;
|
|
Stack_Ptr := Stack_Ptr - 1;
|
|
goto Fail;
|
|
|
|
-- Region restore node. This is the node stacked at the end of an
|
|
-- inner level match. Its function is to restore the inner level
|
|
-- region, so that alternatives in this region can be sought.
|
|
|
|
-- Note: the Cursor at this stage is actually the negative of the
|
|
-- inner stack base value, which we use to restore the inner region.
|
|
|
|
when PC_R_Restore =>
|
|
Stack_Base := Cursor;
|
|
goto Fail;
|
|
|
|
-- Rest
|
|
|
|
when PC_Rest =>
|
|
Cursor := Length;
|
|
goto Succeed;
|
|
|
|
-- Initiate recursive match (pattern pointer case)
|
|
|
|
when PC_Rpat =>
|
|
Stack (Stack_Ptr + 1).Node := Node.Pthen;
|
|
Push_Region;
|
|
|
|
if Stack_Ptr + Node.PP.all.Stk >= Stack_Size then
|
|
raise Pattern_Stack_Overflow;
|
|
else
|
|
Node := Node.PP.all.P;
|
|
goto Match;
|
|
end if;
|
|
|
|
-- RPos (integer case)
|
|
|
|
when PC_RPos_Nat =>
|
|
if Cursor = (Length - Node.Nat) then
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- RPos (integer function case)
|
|
|
|
when PC_RPos_NF => declare
|
|
N : constant Natural := Node.NF.all;
|
|
begin
|
|
if Length - Cursor = N then
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
end;
|
|
|
|
-- RPos (integer pointer case)
|
|
|
|
when PC_RPos_NP =>
|
|
if Cursor = (Length - Node.NP.all) then
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- RTab (integer case)
|
|
|
|
when PC_RTab_Nat =>
|
|
if Cursor <= (Length - Node.Nat) then
|
|
Cursor := Length - Node.Nat;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- RTab (integer function case)
|
|
|
|
when PC_RTab_NF => declare
|
|
N : constant Natural := Node.NF.all;
|
|
begin
|
|
if Length - Cursor >= N then
|
|
Cursor := Length - N;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
end;
|
|
|
|
-- RTab (integer pointer case)
|
|
|
|
when PC_RTab_NP =>
|
|
if Cursor <= (Length - Node.NP.all) then
|
|
Cursor := Length - Node.NP.all;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- Cursor assignment
|
|
|
|
when PC_Setcur =>
|
|
Node.Var.all := Cursor;
|
|
goto Succeed;
|
|
|
|
-- Span (one character case)
|
|
|
|
when PC_Span_CH => declare
|
|
P : Natural;
|
|
|
|
begin
|
|
P := Cursor;
|
|
while P < Length
|
|
and then Subject (P + 1) = Node.Char
|
|
loop
|
|
P := P + 1;
|
|
end loop;
|
|
|
|
if P /= Cursor then
|
|
Cursor := P;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
end;
|
|
|
|
-- Span (character set case)
|
|
|
|
when PC_Span_CS => declare
|
|
P : Natural;
|
|
|
|
begin
|
|
P := Cursor;
|
|
while P < Length
|
|
and then Is_In (Subject (P + 1), Node.CS)
|
|
loop
|
|
P := P + 1;
|
|
end loop;
|
|
|
|
if P /= Cursor then
|
|
Cursor := P;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
end;
|
|
|
|
-- Span (string function case)
|
|
|
|
when PC_Span_VF => declare
|
|
U : constant VString := Node.VF.all;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
P : Natural;
|
|
|
|
begin
|
|
Get_String (U, S, L);
|
|
|
|
P := Cursor;
|
|
while P < Length
|
|
and then Is_In (Subject (P + 1), S (1 .. L))
|
|
loop
|
|
P := P + 1;
|
|
end loop;
|
|
|
|
if P /= Cursor then
|
|
Cursor := P;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
end;
|
|
|
|
-- Span (string pointer case)
|
|
|
|
when PC_Span_VP => declare
|
|
U : constant VString := Node.VP.all;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
P : Natural;
|
|
|
|
begin
|
|
Get_String (U, S, L);
|
|
|
|
P := Cursor;
|
|
while P < Length
|
|
and then Is_In (Subject (P + 1), S (1 .. L))
|
|
loop
|
|
P := P + 1;
|
|
end loop;
|
|
|
|
if P /= Cursor then
|
|
Cursor := P;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
end;
|
|
|
|
-- String (two character case)
|
|
|
|
when PC_String_2 =>
|
|
if (Length - Cursor) >= 2
|
|
and then Subject (Cursor + 1 .. Cursor + 2) = Node.Str2
|
|
then
|
|
Cursor := Cursor + 2;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- String (three character case)
|
|
|
|
when PC_String_3 =>
|
|
if (Length - Cursor) >= 3
|
|
and then Subject (Cursor + 1 .. Cursor + 3) = Node.Str3
|
|
then
|
|
Cursor := Cursor + 3;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- String (four character case)
|
|
|
|
when PC_String_4 =>
|
|
if (Length - Cursor) >= 4
|
|
and then Subject (Cursor + 1 .. Cursor + 4) = Node.Str4
|
|
then
|
|
Cursor := Cursor + 4;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- String (five character case)
|
|
|
|
when PC_String_5 =>
|
|
if (Length - Cursor) >= 5
|
|
and then Subject (Cursor + 1 .. Cursor + 5) = Node.Str5
|
|
then
|
|
Cursor := Cursor + 5;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- String (six character case)
|
|
|
|
when PC_String_6 =>
|
|
if (Length - Cursor) >= 6
|
|
and then Subject (Cursor + 1 .. Cursor + 6) = Node.Str6
|
|
then
|
|
Cursor := Cursor + 6;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- String (case of more than six characters)
|
|
|
|
when PC_String => declare
|
|
Len : constant Natural := Node.Str'Length;
|
|
begin
|
|
if (Length - Cursor) >= Len
|
|
and then Node.Str.all = Subject (Cursor + 1 .. Cursor + Len)
|
|
then
|
|
Cursor := Cursor + Len;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
end;
|
|
|
|
-- String (function case)
|
|
|
|
when PC_String_VF => declare
|
|
U : constant VString := Node.VF.all;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (U, S, L);
|
|
|
|
if (Length - Cursor) >= L
|
|
and then S (1 .. L) = Subject (Cursor + 1 .. Cursor + L)
|
|
then
|
|
Cursor := Cursor + L;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
end;
|
|
|
|
-- String (pointer case)
|
|
|
|
when PC_String_VP => declare
|
|
U : constant VString := Node.VP.all;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (U, S, L);
|
|
|
|
if (Length - Cursor) >= L
|
|
and then S (1 .. L) = Subject (Cursor + 1 .. Cursor + L)
|
|
then
|
|
Cursor := Cursor + L;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
end;
|
|
|
|
-- Succeed
|
|
|
|
when PC_Succeed =>
|
|
Push (Node);
|
|
goto Succeed;
|
|
|
|
-- Tab (integer case)
|
|
|
|
when PC_Tab_Nat =>
|
|
if Cursor <= Node.Nat then
|
|
Cursor := Node.Nat;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- Tab (integer function case)
|
|
|
|
when PC_Tab_NF => declare
|
|
N : constant Natural := Node.NF.all;
|
|
begin
|
|
if Cursor <= N then
|
|
Cursor := N;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
end;
|
|
|
|
-- Tab (integer pointer case)
|
|
|
|
when PC_Tab_NP =>
|
|
if Cursor <= Node.NP.all then
|
|
Cursor := Node.NP.all;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- Unanchored movement
|
|
|
|
when PC_Unanchored =>
|
|
|
|
-- All done if we tried every position
|
|
|
|
if Cursor > Length then
|
|
goto Match_Fail;
|
|
|
|
-- Otherwise extend the anchor point, and restack ourself
|
|
|
|
else
|
|
Cursor := Cursor + 1;
|
|
Push (Node);
|
|
goto Succeed;
|
|
end if;
|
|
|
|
-- Write immediate. This node performs the actual write
|
|
|
|
when PC_Write_Imm =>
|
|
Put_Line
|
|
(Node.FP.all,
|
|
Subject (Stack (Stack_Base - 1).Cursor + 1 .. Cursor));
|
|
Pop_Region;
|
|
goto Succeed;
|
|
|
|
-- Write on match. This node sets up for the eventual write
|
|
|
|
when PC_Write_OnM =>
|
|
Stack (Stack_Base - 1).Node := Node;
|
|
Push (CP_Assign'Access);
|
|
Pop_Region;
|
|
Assign_OnM := True;
|
|
goto Succeed;
|
|
|
|
end case;
|
|
|
|
-- We are NOT allowed to fall though this case statement, since every
|
|
-- match routine must end by executing a goto to the appropriate point
|
|
-- in the finite state machine model.
|
|
|
|
pragma Warnings (Off);
|
|
Logic_Error;
|
|
pragma Warnings (On);
|
|
end XMatch;
|
|
|
|
-------------
|
|
-- XMatchD --
|
|
-------------
|
|
|
|
-- Maintenance note: There is a LOT of code duplication between XMatch
|
|
-- and XMatchD. This is quite intentional, the point is to avoid any
|
|
-- unnecessary debugging overhead in the XMatch case, but this does mean
|
|
-- that any changes to XMatchD must be mirrored in XMatch. In case of
|
|
-- any major changes, the proper approach is to delete XMatch, make the
|
|
-- changes to XMatchD, and then make a copy of XMatchD, removing all
|
|
-- calls to Dout, and all Put and Put_Line operations. This copy becomes
|
|
-- the new XMatch.
|
|
|
|
procedure XMatchD
|
|
(Subject : String;
|
|
Pat_P : PE_Ptr;
|
|
Pat_S : Natural;
|
|
Start : out Natural;
|
|
Stop : out Natural)
|
|
is
|
|
Node : PE_Ptr;
|
|
-- Pointer to current pattern node. Initialized from Pat_P, and then
|
|
-- updated as the match proceeds through its constituent elements.
|
|
|
|
Length : constant Natural := Subject'Length;
|
|
-- Length of string (= Subject'Last, since Subject'First is always 1)
|
|
|
|
Cursor : Integer := 0;
|
|
-- If the value is non-negative, then this value is the index showing
|
|
-- the current position of the match in the subject string. The next
|
|
-- character to be matched is at Subject (Cursor + 1). Note that since
|
|
-- our view of the subject string in XMatch always has a lower bound
|
|
-- of one, regardless of original bounds, that this definition exactly
|
|
-- corresponds to the cursor value as referenced by functions like Pos.
|
|
--
|
|
-- If the value is negative, then this is a saved stack pointer,
|
|
-- typically a base pointer of an inner or outer region. Cursor
|
|
-- temporarily holds such a value when it is popped from the stack
|
|
-- by Fail. In all cases, Cursor is reset to a proper non-negative
|
|
-- cursor value before the match proceeds (e.g. by propagating the
|
|
-- failure and popping a "real" cursor value from the stack.
|
|
|
|
PE_Unanchored : aliased PE := (PC_Unanchored, 0, Pat_P);
|
|
-- Dummy pattern element used in the unanchored case
|
|
|
|
Region_Level : Natural := 0;
|
|
-- Keeps track of recursive region level. This is used only for
|
|
-- debugging, it is the number of saved history stack base values.
|
|
|
|
Stack : Stack_Type;
|
|
-- The pattern matching failure stack for this call to Match
|
|
|
|
Stack_Ptr : Stack_Range;
|
|
-- Current stack pointer. This points to the top element of the stack
|
|
-- that is currently in use. At the outer level this is the special
|
|
-- entry placed on the stack according to the anchor mode.
|
|
|
|
Stack_Init : constant Stack_Range := Stack'First + 1;
|
|
-- This is the initial value of the Stack_Ptr and Stack_Base. The
|
|
-- initial (Stack'First) element of the stack is not used so that
|
|
-- when we pop the last element off, Stack_Ptr is still in range.
|
|
|
|
Stack_Base : Stack_Range;
|
|
-- This value is the stack base value, i.e. the stack pointer for the
|
|
-- first history stack entry in the current stack region. See separate
|
|
-- section on handling of recursive pattern matches.
|
|
|
|
Assign_OnM : Boolean := False;
|
|
-- Set True if assign-on-match or write-on-match operations may be
|
|
-- present in the history stack, which must then be scanned on a
|
|
-- successful match.
|
|
|
|
procedure Dout (Str : String);
|
|
-- Output string to standard error with bars indicating region level
|
|
|
|
procedure Dout (Str : String; A : Character);
|
|
-- Calls Dout with the string S ('A')
|
|
|
|
procedure Dout (Str : String; A : Character_Set);
|
|
-- Calls Dout with the string S ("A")
|
|
|
|
procedure Dout (Str : String; A : Natural);
|
|
-- Calls Dout with the string S (A)
|
|
|
|
procedure Dout (Str : String; A : String);
|
|
-- Calls Dout with the string S ("A")
|
|
|
|
function Img (P : PE_Ptr) return String;
|
|
-- Returns a string of the form #nnn where nnn is P.Index
|
|
|
|
procedure Pop_Region;
|
|
pragma Inline (Pop_Region);
|
|
-- Used at the end of processing of an inner region. If the inner
|
|
-- region left no stack entries, then all trace of it is removed.
|
|
-- Otherwise a PC_Restore_Region entry is pushed to ensure proper
|
|
-- handling of alternatives in the inner region.
|
|
|
|
procedure Push (Node : PE_Ptr);
|
|
pragma Inline (Push);
|
|
-- Make entry in pattern matching stack with current cursor value
|
|
|
|
procedure Push_Region;
|
|
pragma Inline (Push_Region);
|
|
-- This procedure makes a new region on the history stack. The
|
|
-- caller first establishes the special entry on the stack, but
|
|
-- does not push the stack pointer. Then this call stacks a
|
|
-- PC_Remove_Region node, on top of this entry, using the cursor
|
|
-- field of the PC_Remove_Region entry to save the outer level
|
|
-- stack base value, and resets the stack base to point to this
|
|
-- PC_Remove_Region node.
|
|
|
|
----------
|
|
-- Dout --
|
|
----------
|
|
|
|
procedure Dout (Str : String) is
|
|
begin
|
|
for J in 1 .. Region_Level loop
|
|
Put ("| ");
|
|
end loop;
|
|
|
|
Put_Line (Str);
|
|
end Dout;
|
|
|
|
procedure Dout (Str : String; A : Character) is
|
|
begin
|
|
Dout (Str & " ('" & A & "')");
|
|
end Dout;
|
|
|
|
procedure Dout (Str : String; A : Character_Set) is
|
|
begin
|
|
Dout (Str & " (" & Image (To_Sequence (A)) & ')');
|
|
end Dout;
|
|
|
|
procedure Dout (Str : String; A : Natural) is
|
|
begin
|
|
Dout (Str & " (" & A & ')');
|
|
end Dout;
|
|
|
|
procedure Dout (Str : String; A : String) is
|
|
begin
|
|
Dout (Str & " (" & Image (A) & ')');
|
|
end Dout;
|
|
|
|
---------
|
|
-- Img --
|
|
---------
|
|
|
|
function Img (P : PE_Ptr) return String is
|
|
begin
|
|
return "#" & Integer (P.Index) & " ";
|
|
end Img;
|
|
|
|
----------------
|
|
-- Pop_Region --
|
|
----------------
|
|
|
|
procedure Pop_Region is
|
|
begin
|
|
Region_Level := Region_Level - 1;
|
|
|
|
-- If nothing was pushed in the inner region, we can just get
|
|
-- rid of it entirely, leaving no traces that it was ever there
|
|
|
|
if Stack_Ptr = Stack_Base then
|
|
Stack_Ptr := Stack_Base - 2;
|
|
Stack_Base := Stack (Stack_Ptr + 2).Cursor;
|
|
|
|
-- If stuff was pushed in the inner region, then we have to
|
|
-- push a PC_R_Restore node so that we properly handle possible
|
|
-- rematches within the region.
|
|
|
|
else
|
|
Stack_Ptr := Stack_Ptr + 1;
|
|
Stack (Stack_Ptr).Cursor := Stack_Base;
|
|
Stack (Stack_Ptr).Node := CP_R_Restore'Access;
|
|
Stack_Base := Stack (Stack_Base).Cursor;
|
|
end if;
|
|
end Pop_Region;
|
|
|
|
----------
|
|
-- Push --
|
|
----------
|
|
|
|
procedure Push (Node : PE_Ptr) is
|
|
begin
|
|
Stack_Ptr := Stack_Ptr + 1;
|
|
Stack (Stack_Ptr).Cursor := Cursor;
|
|
Stack (Stack_Ptr).Node := Node;
|
|
end Push;
|
|
|
|
-----------------
|
|
-- Push_Region --
|
|
-----------------
|
|
|
|
procedure Push_Region is
|
|
begin
|
|
Region_Level := Region_Level + 1;
|
|
Stack_Ptr := Stack_Ptr + 2;
|
|
Stack (Stack_Ptr).Cursor := Stack_Base;
|
|
Stack (Stack_Ptr).Node := CP_R_Remove'Access;
|
|
Stack_Base := Stack_Ptr;
|
|
end Push_Region;
|
|
|
|
-- Start of processing for XMatchD
|
|
|
|
begin
|
|
New_Line;
|
|
Put_Line ("Initiating pattern match, subject = " & Image (Subject));
|
|
Put ("--------------------------------------");
|
|
|
|
for J in 1 .. Length loop
|
|
Put ('-');
|
|
end loop;
|
|
|
|
New_Line;
|
|
Put_Line ("subject length = " & Length);
|
|
|
|
if Pat_P = null then
|
|
Uninitialized_Pattern;
|
|
end if;
|
|
|
|
-- Check we have enough stack for this pattern. This check deals with
|
|
-- every possibility except a match of a recursive pattern, where we
|
|
-- make a check at each recursion level.
|
|
|
|
if Pat_S >= Stack_Size - 1 then
|
|
raise Pattern_Stack_Overflow;
|
|
end if;
|
|
|
|
-- In anchored mode, the bottom entry on the stack is an abort entry
|
|
|
|
if Anchored_Mode then
|
|
Stack (Stack_Init).Node := CP_Cancel'Access;
|
|
Stack (Stack_Init).Cursor := 0;
|
|
|
|
-- In unanchored more, the bottom entry on the stack references
|
|
-- the special pattern element PE_Unanchored, whose Pthen field
|
|
-- points to the initial pattern element. The cursor value in this
|
|
-- entry is the number of anchor moves so far.
|
|
|
|
else
|
|
Stack (Stack_Init).Node := PE_Unanchored'Unchecked_Access;
|
|
Stack (Stack_Init).Cursor := 0;
|
|
end if;
|
|
|
|
Stack_Ptr := Stack_Init;
|
|
Stack_Base := Stack_Ptr;
|
|
Cursor := 0;
|
|
Node := Pat_P;
|
|
goto Match;
|
|
|
|
-----------------------------------------
|
|
-- Main Pattern Matching State Control --
|
|
-----------------------------------------
|
|
|
|
-- This is a state machine which uses gotos to change state. The
|
|
-- initial state is Match, to initiate the matching of the first
|
|
-- element, so the goto Match above starts the match. In the
|
|
-- following descriptions, we indicate the global values that
|
|
-- are relevant for the state transition.
|
|
|
|
-- Come here if entire match fails
|
|
|
|
<<Match_Fail>>
|
|
Dout ("match fails");
|
|
New_Line;
|
|
Start := 0;
|
|
Stop := 0;
|
|
return;
|
|
|
|
-- Come here if entire match succeeds
|
|
|
|
-- Cursor current position in subject string
|
|
|
|
<<Match_Succeed>>
|
|
Dout ("match succeeds");
|
|
Start := Stack (Stack_Init).Cursor + 1;
|
|
Stop := Cursor;
|
|
Dout ("first matched character index = " & Start);
|
|
Dout ("last matched character index = " & Stop);
|
|
Dout ("matched substring = " & Image (Subject (Start .. Stop)));
|
|
|
|
-- Scan history stack for deferred assignments or writes
|
|
|
|
if Assign_OnM then
|
|
for S in Stack'First .. Stack_Ptr loop
|
|
if Stack (S).Node = CP_Assign'Access then
|
|
declare
|
|
Inner_Base : constant Stack_Range :=
|
|
Stack (S + 1).Cursor;
|
|
Special_Entry : constant Stack_Range :=
|
|
Inner_Base - 1;
|
|
Node_OnM : constant PE_Ptr :=
|
|
Stack (Special_Entry).Node;
|
|
Start : constant Natural :=
|
|
Stack (Special_Entry).Cursor + 1;
|
|
Stop : constant Natural := Stack (S).Cursor;
|
|
|
|
begin
|
|
if Node_OnM.Pcode = PC_Assign_OnM then
|
|
Set_Unbounded_String
|
|
(Node_OnM.VP.all, Subject (Start .. Stop));
|
|
Dout
|
|
(Img (Stack (S).Node) &
|
|
"deferred assignment of " &
|
|
Image (Subject (Start .. Stop)));
|
|
|
|
elsif Node_OnM.Pcode = PC_Write_OnM then
|
|
Put_Line (Node_OnM.FP.all, Subject (Start .. Stop));
|
|
Dout
|
|
(Img (Stack (S).Node) &
|
|
"deferred write of " &
|
|
Image (Subject (Start .. Stop)));
|
|
|
|
else
|
|
Logic_Error;
|
|
end if;
|
|
end;
|
|
end if;
|
|
end loop;
|
|
end if;
|
|
|
|
New_Line;
|
|
return;
|
|
|
|
-- Come here if attempt to match current element fails
|
|
|
|
-- Stack_Base current stack base
|
|
-- Stack_Ptr current stack pointer
|
|
|
|
<<Fail>>
|
|
Cursor := Stack (Stack_Ptr).Cursor;
|
|
Node := Stack (Stack_Ptr).Node;
|
|
Stack_Ptr := Stack_Ptr - 1;
|
|
|
|
if Cursor >= 0 then
|
|
Dout ("failure, cursor reset to " & Cursor);
|
|
end if;
|
|
|
|
goto Match;
|
|
|
|
-- Come here if attempt to match current element succeeds
|
|
|
|
-- Cursor current position in subject string
|
|
-- Node pointer to node successfully matched
|
|
-- Stack_Base current stack base
|
|
-- Stack_Ptr current stack pointer
|
|
|
|
<<Succeed>>
|
|
Dout ("success, cursor = " & Cursor);
|
|
Node := Node.Pthen;
|
|
|
|
-- Come here to match the next pattern element
|
|
|
|
-- Cursor current position in subject string
|
|
-- Node pointer to node to be matched
|
|
-- Stack_Base current stack base
|
|
-- Stack_Ptr current stack pointer
|
|
|
|
<<Match>>
|
|
|
|
--------------------------------------------------
|
|
-- Main Pattern Match Element Matching Routines --
|
|
--------------------------------------------------
|
|
|
|
-- Here is the case statement that processes the current node. The
|
|
-- processing for each element does one of five things:
|
|
|
|
-- goto Succeed to move to the successor
|
|
-- goto Match_Succeed if the entire match succeeds
|
|
-- goto Match_Fail if the entire match fails
|
|
-- goto Fail to signal failure of current match
|
|
|
|
-- Processing is NOT allowed to fall through
|
|
|
|
case Node.Pcode is
|
|
|
|
-- Cancel
|
|
|
|
when PC_Cancel =>
|
|
Dout (Img (Node) & "matching Cancel");
|
|
goto Match_Fail;
|
|
|
|
-- Alternation
|
|
|
|
when PC_Alt =>
|
|
Dout
|
|
(Img (Node) & "setting up alternative " & Img (Node.Alt));
|
|
Push (Node.Alt);
|
|
Node := Node.Pthen;
|
|
goto Match;
|
|
|
|
-- Any (one character case)
|
|
|
|
when PC_Any_CH =>
|
|
Dout (Img (Node) & "matching Any", Node.Char);
|
|
|
|
if Cursor < Length
|
|
and then Subject (Cursor + 1) = Node.Char
|
|
then
|
|
Cursor := Cursor + 1;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- Any (character set case)
|
|
|
|
when PC_Any_CS =>
|
|
Dout (Img (Node) & "matching Any", Node.CS);
|
|
|
|
if Cursor < Length
|
|
and then Is_In (Subject (Cursor + 1), Node.CS)
|
|
then
|
|
Cursor := Cursor + 1;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- Any (string function case)
|
|
|
|
when PC_Any_VF => declare
|
|
U : constant VString := Node.VF.all;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (U, S, L);
|
|
|
|
Dout (Img (Node) & "matching Any", S (1 .. L));
|
|
|
|
if Cursor < Length
|
|
and then Is_In (Subject (Cursor + 1), S (1 .. L))
|
|
then
|
|
Cursor := Cursor + 1;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
end;
|
|
|
|
-- Any (string pointer case)
|
|
|
|
when PC_Any_VP => declare
|
|
U : constant VString := Node.VP.all;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (U, S, L);
|
|
Dout (Img (Node) & "matching Any", S (1 .. L));
|
|
|
|
if Cursor < Length
|
|
and then Is_In (Subject (Cursor + 1), S (1 .. L))
|
|
then
|
|
Cursor := Cursor + 1;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
end;
|
|
|
|
-- Arb (initial match)
|
|
|
|
when PC_Arb_X =>
|
|
Dout (Img (Node) & "matching Arb");
|
|
Push (Node.Alt);
|
|
Node := Node.Pthen;
|
|
goto Match;
|
|
|
|
-- Arb (extension)
|
|
|
|
when PC_Arb_Y =>
|
|
Dout (Img (Node) & "extending Arb");
|
|
|
|
if Cursor < Length then
|
|
Cursor := Cursor + 1;
|
|
Push (Node);
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- Arbno_S (simple Arbno initialize). This is the node that
|
|
-- initiates the match of a simple Arbno structure.
|
|
|
|
when PC_Arbno_S =>
|
|
Dout (Img (Node) &
|
|
"setting up Arbno alternative " & Img (Node.Alt));
|
|
Push (Node.Alt);
|
|
Node := Node.Pthen;
|
|
goto Match;
|
|
|
|
-- Arbno_X (Arbno initialize). This is the node that initiates
|
|
-- the match of a complex Arbno structure.
|
|
|
|
when PC_Arbno_X =>
|
|
Dout (Img (Node) &
|
|
"setting up Arbno alternative " & Img (Node.Alt));
|
|
Push (Node.Alt);
|
|
Node := Node.Pthen;
|
|
goto Match;
|
|
|
|
-- Arbno_Y (Arbno rematch). This is the node that is executed
|
|
-- following successful matching of one instance of a complex
|
|
-- Arbno pattern.
|
|
|
|
when PC_Arbno_Y => declare
|
|
Null_Match : constant Boolean :=
|
|
Cursor = Stack (Stack_Base - 1).Cursor;
|
|
|
|
begin
|
|
Dout (Img (Node) & "extending Arbno");
|
|
Pop_Region;
|
|
|
|
-- If arbno extension matched null, then immediately fail
|
|
|
|
if Null_Match then
|
|
Dout ("Arbno extension matched null, so fails");
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- Here we must do a stack check to make sure enough stack
|
|
-- is left. This check will happen once for each instance of
|
|
-- the Arbno pattern that is matched. The Nat field of a
|
|
-- PC_Arbno pattern contains the maximum stack entries needed
|
|
-- for the Arbno with one instance and the successor pattern
|
|
|
|
if Stack_Ptr + Node.Nat >= Stack'Last then
|
|
raise Pattern_Stack_Overflow;
|
|
end if;
|
|
|
|
goto Succeed;
|
|
end;
|
|
|
|
-- Assign. If this node is executed, it means the assign-on-match
|
|
-- or write-on-match operation will not happen after all, so we
|
|
-- is propagate the failure, removing the PC_Assign node.
|
|
|
|
when PC_Assign =>
|
|
Dout (Img (Node) & "deferred assign/write cancelled");
|
|
goto Fail;
|
|
|
|
-- Assign immediate. This node performs the actual assignment
|
|
|
|
when PC_Assign_Imm =>
|
|
Dout
|
|
(Img (Node) & "executing immediate assignment of " &
|
|
Image (Subject (Stack (Stack_Base - 1).Cursor + 1 .. Cursor)));
|
|
Set_Unbounded_String
|
|
(Node.VP.all,
|
|
Subject (Stack (Stack_Base - 1).Cursor + 1 .. Cursor));
|
|
Pop_Region;
|
|
goto Succeed;
|
|
|
|
-- Assign on match. This node sets up for the eventual assignment
|
|
|
|
when PC_Assign_OnM =>
|
|
Dout (Img (Node) & "registering deferred assignment");
|
|
Stack (Stack_Base - 1).Node := Node;
|
|
Push (CP_Assign'Access);
|
|
Pop_Region;
|
|
Assign_OnM := True;
|
|
goto Succeed;
|
|
|
|
-- Bal
|
|
|
|
when PC_Bal =>
|
|
Dout (Img (Node) & "matching or extending Bal");
|
|
if Cursor >= Length or else Subject (Cursor + 1) = ')' then
|
|
goto Fail;
|
|
|
|
elsif Subject (Cursor + 1) = '(' then
|
|
declare
|
|
Paren_Count : Natural := 1;
|
|
|
|
begin
|
|
loop
|
|
Cursor := Cursor + 1;
|
|
|
|
if Cursor >= Length then
|
|
goto Fail;
|
|
|
|
elsif Subject (Cursor + 1) = '(' then
|
|
Paren_Count := Paren_Count + 1;
|
|
|
|
elsif Subject (Cursor + 1) = ')' then
|
|
Paren_Count := Paren_Count - 1;
|
|
exit when Paren_Count = 0;
|
|
end if;
|
|
end loop;
|
|
end;
|
|
end if;
|
|
|
|
Cursor := Cursor + 1;
|
|
Push (Node);
|
|
goto Succeed;
|
|
|
|
-- Break (one character case)
|
|
|
|
when PC_Break_CH =>
|
|
Dout (Img (Node) & "matching Break", Node.Char);
|
|
|
|
while Cursor < Length loop
|
|
if Subject (Cursor + 1) = Node.Char then
|
|
goto Succeed;
|
|
else
|
|
Cursor := Cursor + 1;
|
|
end if;
|
|
end loop;
|
|
|
|
goto Fail;
|
|
|
|
-- Break (character set case)
|
|
|
|
when PC_Break_CS =>
|
|
Dout (Img (Node) & "matching Break", Node.CS);
|
|
|
|
while Cursor < Length loop
|
|
if Is_In (Subject (Cursor + 1), Node.CS) then
|
|
goto Succeed;
|
|
else
|
|
Cursor := Cursor + 1;
|
|
end if;
|
|
end loop;
|
|
|
|
goto Fail;
|
|
|
|
-- Break (string function case)
|
|
|
|
when PC_Break_VF => declare
|
|
U : constant VString := Node.VF.all;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (U, S, L);
|
|
Dout (Img (Node) & "matching Break", S (1 .. L));
|
|
|
|
while Cursor < Length loop
|
|
if Is_In (Subject (Cursor + 1), S (1 .. L)) then
|
|
goto Succeed;
|
|
else
|
|
Cursor := Cursor + 1;
|
|
end if;
|
|
end loop;
|
|
|
|
goto Fail;
|
|
end;
|
|
|
|
-- Break (string pointer case)
|
|
|
|
when PC_Break_VP => declare
|
|
U : constant VString := Node.VP.all;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (U, S, L);
|
|
Dout (Img (Node) & "matching Break", S (1 .. L));
|
|
|
|
while Cursor < Length loop
|
|
if Is_In (Subject (Cursor + 1), S (1 .. L)) then
|
|
goto Succeed;
|
|
else
|
|
Cursor := Cursor + 1;
|
|
end if;
|
|
end loop;
|
|
|
|
goto Fail;
|
|
end;
|
|
|
|
-- BreakX (one character case)
|
|
|
|
when PC_BreakX_CH =>
|
|
Dout (Img (Node) & "matching BreakX", Node.Char);
|
|
|
|
while Cursor < Length loop
|
|
if Subject (Cursor + 1) = Node.Char then
|
|
goto Succeed;
|
|
else
|
|
Cursor := Cursor + 1;
|
|
end if;
|
|
end loop;
|
|
|
|
goto Fail;
|
|
|
|
-- BreakX (character set case)
|
|
|
|
when PC_BreakX_CS =>
|
|
Dout (Img (Node) & "matching BreakX", Node.CS);
|
|
|
|
while Cursor < Length loop
|
|
if Is_In (Subject (Cursor + 1), Node.CS) then
|
|
goto Succeed;
|
|
else
|
|
Cursor := Cursor + 1;
|
|
end if;
|
|
end loop;
|
|
|
|
goto Fail;
|
|
|
|
-- BreakX (string function case)
|
|
|
|
when PC_BreakX_VF => declare
|
|
U : constant VString := Node.VF.all;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (U, S, L);
|
|
Dout (Img (Node) & "matching BreakX", S (1 .. L));
|
|
|
|
while Cursor < Length loop
|
|
if Is_In (Subject (Cursor + 1), S (1 .. L)) then
|
|
goto Succeed;
|
|
else
|
|
Cursor := Cursor + 1;
|
|
end if;
|
|
end loop;
|
|
|
|
goto Fail;
|
|
end;
|
|
|
|
-- BreakX (string pointer case)
|
|
|
|
when PC_BreakX_VP => declare
|
|
U : constant VString := Node.VP.all;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (U, S, L);
|
|
Dout (Img (Node) & "matching BreakX", S (1 .. L));
|
|
|
|
while Cursor < Length loop
|
|
if Is_In (Subject (Cursor + 1), S (1 .. L)) then
|
|
goto Succeed;
|
|
else
|
|
Cursor := Cursor + 1;
|
|
end if;
|
|
end loop;
|
|
|
|
goto Fail;
|
|
end;
|
|
|
|
-- BreakX_X (BreakX extension). See section on "Compound Pattern
|
|
-- Structures". This node is the alternative that is stacked
|
|
-- to skip past the break character and extend the break.
|
|
|
|
when PC_BreakX_X =>
|
|
Dout (Img (Node) & "extending BreakX");
|
|
Cursor := Cursor + 1;
|
|
goto Succeed;
|
|
|
|
-- Character (one character string)
|
|
|
|
when PC_Char =>
|
|
Dout (Img (Node) & "matching '" & Node.Char & ''');
|
|
|
|
if Cursor < Length
|
|
and then Subject (Cursor + 1) = Node.Char
|
|
then
|
|
Cursor := Cursor + 1;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- End of Pattern
|
|
|
|
when PC_EOP =>
|
|
if Stack_Base = Stack_Init then
|
|
Dout ("end of pattern");
|
|
goto Match_Succeed;
|
|
|
|
-- End of recursive inner match. See separate section on
|
|
-- handing of recursive pattern matches for details.
|
|
|
|
else
|
|
Dout ("terminating recursive match");
|
|
Node := Stack (Stack_Base - 1).Node;
|
|
Pop_Region;
|
|
goto Match;
|
|
end if;
|
|
|
|
-- Fail
|
|
|
|
when PC_Fail =>
|
|
Dout (Img (Node) & "matching Fail");
|
|
goto Fail;
|
|
|
|
-- Fence (built in pattern)
|
|
|
|
when PC_Fence =>
|
|
Dout (Img (Node) & "matching Fence");
|
|
Push (CP_Cancel'Access);
|
|
goto Succeed;
|
|
|
|
-- Fence function node X. This is the node that gets control
|
|
-- after a successful match of the fenced pattern.
|
|
|
|
when PC_Fence_X =>
|
|
Dout (Img (Node) & "matching Fence function");
|
|
Stack_Ptr := Stack_Ptr + 1;
|
|
Stack (Stack_Ptr).Cursor := Stack_Base;
|
|
Stack (Stack_Ptr).Node := CP_Fence_Y'Access;
|
|
Stack_Base := Stack (Stack_Base).Cursor;
|
|
Region_Level := Region_Level - 1;
|
|
goto Succeed;
|
|
|
|
-- Fence function node Y. This is the node that gets control on
|
|
-- a failure that occurs after the fenced pattern has matched.
|
|
|
|
-- Note: the Cursor at this stage is actually the inner stack
|
|
-- base value. We don't reset this, but we do use it to strip
|
|
-- off all the entries made by the fenced pattern.
|
|
|
|
when PC_Fence_Y =>
|
|
Dout (Img (Node) & "pattern matched by Fence caused failure");
|
|
Stack_Ptr := Cursor - 2;
|
|
goto Fail;
|
|
|
|
-- Len (integer case)
|
|
|
|
when PC_Len_Nat =>
|
|
Dout (Img (Node) & "matching Len", Node.Nat);
|
|
|
|
if Cursor + Node.Nat > Length then
|
|
goto Fail;
|
|
else
|
|
Cursor := Cursor + Node.Nat;
|
|
goto Succeed;
|
|
end if;
|
|
|
|
-- Len (Integer function case)
|
|
|
|
when PC_Len_NF => declare
|
|
N : constant Natural := Node.NF.all;
|
|
|
|
begin
|
|
Dout (Img (Node) & "matching Len", N);
|
|
|
|
if Cursor + N > Length then
|
|
goto Fail;
|
|
else
|
|
Cursor := Cursor + N;
|
|
goto Succeed;
|
|
end if;
|
|
end;
|
|
|
|
-- Len (integer pointer case)
|
|
|
|
when PC_Len_NP =>
|
|
Dout (Img (Node) & "matching Len", Node.NP.all);
|
|
|
|
if Cursor + Node.NP.all > Length then
|
|
goto Fail;
|
|
else
|
|
Cursor := Cursor + Node.NP.all;
|
|
goto Succeed;
|
|
end if;
|
|
|
|
-- NotAny (one character case)
|
|
|
|
when PC_NotAny_CH =>
|
|
Dout (Img (Node) & "matching NotAny", Node.Char);
|
|
|
|
if Cursor < Length
|
|
and then Subject (Cursor + 1) /= Node.Char
|
|
then
|
|
Cursor := Cursor + 1;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- NotAny (character set case)
|
|
|
|
when PC_NotAny_CS =>
|
|
Dout (Img (Node) & "matching NotAny", Node.CS);
|
|
|
|
if Cursor < Length
|
|
and then not Is_In (Subject (Cursor + 1), Node.CS)
|
|
then
|
|
Cursor := Cursor + 1;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- NotAny (string function case)
|
|
|
|
when PC_NotAny_VF => declare
|
|
U : constant VString := Node.VF.all;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (U, S, L);
|
|
Dout (Img (Node) & "matching NotAny", S (1 .. L));
|
|
|
|
if Cursor < Length
|
|
and then
|
|
not Is_In (Subject (Cursor + 1), S (1 .. L))
|
|
then
|
|
Cursor := Cursor + 1;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
end;
|
|
|
|
-- NotAny (string pointer case)
|
|
|
|
when PC_NotAny_VP => declare
|
|
U : constant VString := Node.VP.all;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (U, S, L);
|
|
Dout (Img (Node) & "matching NotAny", S (1 .. L));
|
|
|
|
if Cursor < Length
|
|
and then
|
|
not Is_In (Subject (Cursor + 1), S (1 .. L))
|
|
then
|
|
Cursor := Cursor + 1;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
end;
|
|
|
|
-- NSpan (one character case)
|
|
|
|
when PC_NSpan_CH =>
|
|
Dout (Img (Node) & "matching NSpan", Node.Char);
|
|
|
|
while Cursor < Length
|
|
and then Subject (Cursor + 1) = Node.Char
|
|
loop
|
|
Cursor := Cursor + 1;
|
|
end loop;
|
|
|
|
goto Succeed;
|
|
|
|
-- NSpan (character set case)
|
|
|
|
when PC_NSpan_CS =>
|
|
Dout (Img (Node) & "matching NSpan", Node.CS);
|
|
|
|
while Cursor < Length
|
|
and then Is_In (Subject (Cursor + 1), Node.CS)
|
|
loop
|
|
Cursor := Cursor + 1;
|
|
end loop;
|
|
|
|
goto Succeed;
|
|
|
|
-- NSpan (string function case)
|
|
|
|
when PC_NSpan_VF => declare
|
|
U : constant VString := Node.VF.all;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (U, S, L);
|
|
Dout (Img (Node) & "matching NSpan", S (1 .. L));
|
|
|
|
while Cursor < Length
|
|
and then Is_In (Subject (Cursor + 1), S (1 .. L))
|
|
loop
|
|
Cursor := Cursor + 1;
|
|
end loop;
|
|
|
|
goto Succeed;
|
|
end;
|
|
|
|
-- NSpan (string pointer case)
|
|
|
|
when PC_NSpan_VP => declare
|
|
U : constant VString := Node.VP.all;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (U, S, L);
|
|
Dout (Img (Node) & "matching NSpan", S (1 .. L));
|
|
|
|
while Cursor < Length
|
|
and then Is_In (Subject (Cursor + 1), S (1 .. L))
|
|
loop
|
|
Cursor := Cursor + 1;
|
|
end loop;
|
|
|
|
goto Succeed;
|
|
end;
|
|
|
|
when PC_Null =>
|
|
Dout (Img (Node) & "matching null");
|
|
goto Succeed;
|
|
|
|
-- Pos (integer case)
|
|
|
|
when PC_Pos_Nat =>
|
|
Dout (Img (Node) & "matching Pos", Node.Nat);
|
|
|
|
if Cursor = Node.Nat then
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- Pos (Integer function case)
|
|
|
|
when PC_Pos_NF => declare
|
|
N : constant Natural := Node.NF.all;
|
|
|
|
begin
|
|
Dout (Img (Node) & "matching Pos", N);
|
|
|
|
if Cursor = N then
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
end;
|
|
|
|
-- Pos (integer pointer case)
|
|
|
|
when PC_Pos_NP =>
|
|
Dout (Img (Node) & "matching Pos", Node.NP.all);
|
|
|
|
if Cursor = Node.NP.all then
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- Predicate function
|
|
|
|
when PC_Pred_Func =>
|
|
Dout (Img (Node) & "matching predicate function");
|
|
|
|
if Node.BF.all then
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- Region Enter. Initiate new pattern history stack region
|
|
|
|
when PC_R_Enter =>
|
|
Dout (Img (Node) & "starting match of nested pattern");
|
|
Stack (Stack_Ptr + 1).Cursor := Cursor;
|
|
Push_Region;
|
|
goto Succeed;
|
|
|
|
-- Region Remove node. This is the node stacked by an R_Enter.
|
|
-- It removes the special format stack entry right underneath, and
|
|
-- then restores the outer level stack base and signals failure.
|
|
|
|
-- Note: the cursor value at this stage is actually the (negative)
|
|
-- stack base value for the outer level.
|
|
|
|
when PC_R_Remove =>
|
|
Dout ("failure, match of nested pattern terminated");
|
|
Stack_Base := Cursor;
|
|
Region_Level := Region_Level - 1;
|
|
Stack_Ptr := Stack_Ptr - 1;
|
|
goto Fail;
|
|
|
|
-- Region restore node. This is the node stacked at the end of an
|
|
-- inner level match. Its function is to restore the inner level
|
|
-- region, so that alternatives in this region can be sought.
|
|
|
|
-- Note: the Cursor at this stage is actually the negative of the
|
|
-- inner stack base value, which we use to restore the inner region.
|
|
|
|
when PC_R_Restore =>
|
|
Dout ("failure, search for alternatives in nested pattern");
|
|
Region_Level := Region_Level + 1;
|
|
Stack_Base := Cursor;
|
|
goto Fail;
|
|
|
|
-- Rest
|
|
|
|
when PC_Rest =>
|
|
Dout (Img (Node) & "matching Rest");
|
|
Cursor := Length;
|
|
goto Succeed;
|
|
|
|
-- Initiate recursive match (pattern pointer case)
|
|
|
|
when PC_Rpat =>
|
|
Stack (Stack_Ptr + 1).Node := Node.Pthen;
|
|
Push_Region;
|
|
Dout (Img (Node) & "initiating recursive match");
|
|
|
|
if Stack_Ptr + Node.PP.all.Stk >= Stack_Size then
|
|
raise Pattern_Stack_Overflow;
|
|
else
|
|
Node := Node.PP.all.P;
|
|
goto Match;
|
|
end if;
|
|
|
|
-- RPos (integer case)
|
|
|
|
when PC_RPos_Nat =>
|
|
Dout (Img (Node) & "matching RPos", Node.Nat);
|
|
|
|
if Cursor = (Length - Node.Nat) then
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- RPos (integer function case)
|
|
|
|
when PC_RPos_NF => declare
|
|
N : constant Natural := Node.NF.all;
|
|
|
|
begin
|
|
Dout (Img (Node) & "matching RPos", N);
|
|
|
|
if Length - Cursor = N then
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
end;
|
|
|
|
-- RPos (integer pointer case)
|
|
|
|
when PC_RPos_NP =>
|
|
Dout (Img (Node) & "matching RPos", Node.NP.all);
|
|
|
|
if Cursor = (Length - Node.NP.all) then
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- RTab (integer case)
|
|
|
|
when PC_RTab_Nat =>
|
|
Dout (Img (Node) & "matching RTab", Node.Nat);
|
|
|
|
if Cursor <= (Length - Node.Nat) then
|
|
Cursor := Length - Node.Nat;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- RTab (integer function case)
|
|
|
|
when PC_RTab_NF => declare
|
|
N : constant Natural := Node.NF.all;
|
|
|
|
begin
|
|
Dout (Img (Node) & "matching RPos", N);
|
|
|
|
if Length - Cursor >= N then
|
|
Cursor := Length - N;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
end;
|
|
|
|
-- RTab (integer pointer case)
|
|
|
|
when PC_RTab_NP =>
|
|
Dout (Img (Node) & "matching RPos", Node.NP.all);
|
|
|
|
if Cursor <= (Length - Node.NP.all) then
|
|
Cursor := Length - Node.NP.all;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- Cursor assignment
|
|
|
|
when PC_Setcur =>
|
|
Dout (Img (Node) & "matching Setcur");
|
|
Node.Var.all := Cursor;
|
|
goto Succeed;
|
|
|
|
-- Span (one character case)
|
|
|
|
when PC_Span_CH => declare
|
|
P : Natural := Cursor;
|
|
|
|
begin
|
|
Dout (Img (Node) & "matching Span", Node.Char);
|
|
|
|
while P < Length
|
|
and then Subject (P + 1) = Node.Char
|
|
loop
|
|
P := P + 1;
|
|
end loop;
|
|
|
|
if P /= Cursor then
|
|
Cursor := P;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
end;
|
|
|
|
-- Span (character set case)
|
|
|
|
when PC_Span_CS => declare
|
|
P : Natural := Cursor;
|
|
|
|
begin
|
|
Dout (Img (Node) & "matching Span", Node.CS);
|
|
|
|
while P < Length
|
|
and then Is_In (Subject (P + 1), Node.CS)
|
|
loop
|
|
P := P + 1;
|
|
end loop;
|
|
|
|
if P /= Cursor then
|
|
Cursor := P;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
end;
|
|
|
|
-- Span (string function case)
|
|
|
|
when PC_Span_VF => declare
|
|
U : constant VString := Node.VF.all;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
P : Natural;
|
|
|
|
begin
|
|
Get_String (U, S, L);
|
|
Dout (Img (Node) & "matching Span", S (1 .. L));
|
|
|
|
P := Cursor;
|
|
while P < Length
|
|
and then Is_In (Subject (P + 1), S (1 .. L))
|
|
loop
|
|
P := P + 1;
|
|
end loop;
|
|
|
|
if P /= Cursor then
|
|
Cursor := P;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
end;
|
|
|
|
-- Span (string pointer case)
|
|
|
|
when PC_Span_VP => declare
|
|
U : constant VString := Node.VP.all;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
P : Natural;
|
|
|
|
begin
|
|
Get_String (U, S, L);
|
|
Dout (Img (Node) & "matching Span", S (1 .. L));
|
|
|
|
P := Cursor;
|
|
while P < Length
|
|
and then Is_In (Subject (P + 1), S (1 .. L))
|
|
loop
|
|
P := P + 1;
|
|
end loop;
|
|
|
|
if P /= Cursor then
|
|
Cursor := P;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
end;
|
|
|
|
-- String (two character case)
|
|
|
|
when PC_String_2 =>
|
|
Dout (Img (Node) & "matching " & Image (Node.Str2));
|
|
|
|
if (Length - Cursor) >= 2
|
|
and then Subject (Cursor + 1 .. Cursor + 2) = Node.Str2
|
|
then
|
|
Cursor := Cursor + 2;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- String (three character case)
|
|
|
|
when PC_String_3 =>
|
|
Dout (Img (Node) & "matching " & Image (Node.Str3));
|
|
|
|
if (Length - Cursor) >= 3
|
|
and then Subject (Cursor + 1 .. Cursor + 3) = Node.Str3
|
|
then
|
|
Cursor := Cursor + 3;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- String (four character case)
|
|
|
|
when PC_String_4 =>
|
|
Dout (Img (Node) & "matching " & Image (Node.Str4));
|
|
|
|
if (Length - Cursor) >= 4
|
|
and then Subject (Cursor + 1 .. Cursor + 4) = Node.Str4
|
|
then
|
|
Cursor := Cursor + 4;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- String (five character case)
|
|
|
|
when PC_String_5 =>
|
|
Dout (Img (Node) & "matching " & Image (Node.Str5));
|
|
|
|
if (Length - Cursor) >= 5
|
|
and then Subject (Cursor + 1 .. Cursor + 5) = Node.Str5
|
|
then
|
|
Cursor := Cursor + 5;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- String (six character case)
|
|
|
|
when PC_String_6 =>
|
|
Dout (Img (Node) & "matching " & Image (Node.Str6));
|
|
|
|
if (Length - Cursor) >= 6
|
|
and then Subject (Cursor + 1 .. Cursor + 6) = Node.Str6
|
|
then
|
|
Cursor := Cursor + 6;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- String (case of more than six characters)
|
|
|
|
when PC_String => declare
|
|
Len : constant Natural := Node.Str'Length;
|
|
|
|
begin
|
|
Dout (Img (Node) & "matching " & Image (Node.Str.all));
|
|
|
|
if (Length - Cursor) >= Len
|
|
and then Node.Str.all = Subject (Cursor + 1 .. Cursor + Len)
|
|
then
|
|
Cursor := Cursor + Len;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
end;
|
|
|
|
-- String (function case)
|
|
|
|
when PC_String_VF => declare
|
|
U : constant VString := Node.VF.all;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (U, S, L);
|
|
Dout (Img (Node) & "matching " & Image (S (1 .. L)));
|
|
|
|
if (Length - Cursor) >= L
|
|
and then S (1 .. L) = Subject (Cursor + 1 .. Cursor + L)
|
|
then
|
|
Cursor := Cursor + L;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
end;
|
|
|
|
-- String (vstring pointer case)
|
|
|
|
when PC_String_VP => declare
|
|
U : constant VString := Node.VP.all;
|
|
S : Big_String_Access;
|
|
L : Natural;
|
|
|
|
begin
|
|
Get_String (U, S, L);
|
|
Dout (Img (Node) & "matching " & Image (S (1 .. L)));
|
|
|
|
if (Length - Cursor) >= L
|
|
and then S (1 .. L) = Subject (Cursor + 1 .. Cursor + L)
|
|
then
|
|
Cursor := Cursor + L;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
end;
|
|
|
|
-- Succeed
|
|
|
|
when PC_Succeed =>
|
|
Dout (Img (Node) & "matching Succeed");
|
|
Push (Node);
|
|
goto Succeed;
|
|
|
|
-- Tab (integer case)
|
|
|
|
when PC_Tab_Nat =>
|
|
Dout (Img (Node) & "matching Tab", Node.Nat);
|
|
|
|
if Cursor <= Node.Nat then
|
|
Cursor := Node.Nat;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- Tab (integer function case)
|
|
|
|
when PC_Tab_NF => declare
|
|
N : constant Natural := Node.NF.all;
|
|
|
|
begin
|
|
Dout (Img (Node) & "matching Tab ", N);
|
|
|
|
if Cursor <= N then
|
|
Cursor := N;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
end;
|
|
|
|
-- Tab (integer pointer case)
|
|
|
|
when PC_Tab_NP =>
|
|
Dout (Img (Node) & "matching Tab ", Node.NP.all);
|
|
|
|
if Cursor <= Node.NP.all then
|
|
Cursor := Node.NP.all;
|
|
goto Succeed;
|
|
else
|
|
goto Fail;
|
|
end if;
|
|
|
|
-- Unanchored movement
|
|
|
|
when PC_Unanchored =>
|
|
Dout ("attempting to move anchor point");
|
|
|
|
-- All done if we tried every position
|
|
|
|
if Cursor > Length then
|
|
goto Match_Fail;
|
|
|
|
-- Otherwise extend the anchor point, and restack ourself
|
|
|
|
else
|
|
Cursor := Cursor + 1;
|
|
Push (Node);
|
|
goto Succeed;
|
|
end if;
|
|
|
|
-- Write immediate. This node performs the actual write
|
|
|
|
when PC_Write_Imm =>
|
|
Dout (Img (Node) & "executing immediate write of " &
|
|
Subject (Stack (Stack_Base - 1).Cursor + 1 .. Cursor));
|
|
|
|
Put_Line
|
|
(Node.FP.all,
|
|
Subject (Stack (Stack_Base - 1).Cursor + 1 .. Cursor));
|
|
Pop_Region;
|
|
goto Succeed;
|
|
|
|
-- Write on match. This node sets up for the eventual write
|
|
|
|
when PC_Write_OnM =>
|
|
Dout (Img (Node) & "registering deferred write");
|
|
Stack (Stack_Base - 1).Node := Node;
|
|
Push (CP_Assign'Access);
|
|
Pop_Region;
|
|
Assign_OnM := True;
|
|
goto Succeed;
|
|
|
|
end case;
|
|
|
|
-- We are NOT allowed to fall though this case statement, since every
|
|
-- match routine must end by executing a goto to the appropriate point
|
|
-- in the finite state machine model.
|
|
|
|
pragma Warnings (Off);
|
|
Logic_Error;
|
|
pragma Warnings (On);
|
|
end XMatchD;
|
|
|
|
end GNAT.Spitbol.Patterns;
|