This repository has been archived on 2024-12-16. You can view files and clone it, but cannot push or open issues or pull requests.
CodeBlocksPortable/MinGW/lib/gcc/mingw32/6.3.0/adainclude/s-stratt-xdr.adb

1897 lines
49 KiB
Ada

------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- S Y S T E M . S T R E A M _ A T T R I B U T E S --
-- --
-- B o d y --
-- --
-- Copyright (C) 1996-2013, Free Software Foundation, Inc. --
-- --
-- GARLIC is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- This file is an alternate version of s-stratt.adb based on the XDR
-- standard. It is especially useful for exchanging streams between two
-- different systems with different basic type representations and endianness.
with Ada.IO_Exceptions;
with Ada.Streams; use Ada.Streams;
with Ada.Unchecked_Conversion;
package body System.Stream_Attributes is
pragma Suppress (Range_Check);
pragma Suppress (Overflow_Check);
use UST;
Data_Error : exception renames Ada.IO_Exceptions.End_Error;
-- Exception raised if insufficient data read (End_Error is mandated by
-- AI95-00132).
SU : constant := System.Storage_Unit;
-- The code in this body assumes that SU = 8
BB : constant := 2 ** SU; -- Byte base
BL : constant := 2 ** SU - 1; -- Byte last
BS : constant := 2 ** (SU - 1); -- Byte sign
US : constant := Unsigned'Size; -- Unsigned size
UB : constant := (US - 1) / SU + 1; -- Unsigned byte
UL : constant := 2 ** US - 1; -- Unsigned last
subtype SE is Ada.Streams.Stream_Element;
subtype SEA is Ada.Streams.Stream_Element_Array;
subtype SEO is Ada.Streams.Stream_Element_Offset;
generic function UC renames Ada.Unchecked_Conversion;
type Field_Type is
record
E_Size : Integer; -- Exponent bit size
E_Bias : Integer; -- Exponent bias
F_Size : Integer; -- Fraction bit size
E_Last : Integer; -- Max exponent value
F_Mask : SE; -- Mask to apply on first fraction byte
E_Bytes : SEO; -- N. of exponent bytes completely used
F_Bytes : SEO; -- N. of fraction bytes completely used
F_Bits : Integer; -- N. of bits used on first fraction word
end record;
type Precision is (Single, Double, Quadruple);
Fields : constant array (Precision) of Field_Type := (
-- Single precision
(E_Size => 8,
E_Bias => 127,
F_Size => 23,
E_Last => 2 ** 8 - 1,
F_Mask => 16#7F#, -- 2 ** 7 - 1,
E_Bytes => 2,
F_Bytes => 3,
F_Bits => 23 mod US),
-- Double precision
(E_Size => 11,
E_Bias => 1023,
F_Size => 52,
E_Last => 2 ** 11 - 1,
F_Mask => 16#0F#, -- 2 ** 4 - 1,
E_Bytes => 2,
F_Bytes => 7,
F_Bits => 52 mod US),
-- Quadruple precision
(E_Size => 15,
E_Bias => 16383,
F_Size => 112,
E_Last => 2 ** 8 - 1,
F_Mask => 16#FF#, -- 2 ** 8 - 1,
E_Bytes => 2,
F_Bytes => 14,
F_Bits => 112 mod US));
-- The representation of all items requires a multiple of four bytes
-- (or 32 bits) of data. The bytes are numbered 0 through n-1. The bytes
-- are read or written to some byte stream such that byte m always
-- precedes byte m+1. If the n bytes needed to contain the data are not
-- a multiple of four, then the n bytes are followed by enough (0 to 3)
-- residual zero bytes, r, to make the total byte count a multiple of 4.
-- An XDR signed integer is a 32-bit datum that encodes an integer
-- in the range [-2147483648,2147483647]. The integer is represented
-- in two's complement notation. The most and least significant bytes
-- are 0 and 3, respectively. Integers are declared as follows:
-- (MSB) (LSB)
-- +-------+-------+-------+-------+
-- |byte 0 |byte 1 |byte 2 |byte 3 |
-- +-------+-------+-------+-------+
-- <------------32 bits------------>
SSI_L : constant := 1;
SI_L : constant := 2;
I_L : constant := 4;
LI_L : constant := 8;
LLI_L : constant := 8;
subtype XDR_S_SSI is SEA (1 .. SSI_L);
subtype XDR_S_SI is SEA (1 .. SI_L);
subtype XDR_S_I is SEA (1 .. I_L);
subtype XDR_S_LI is SEA (1 .. LI_L);
subtype XDR_S_LLI is SEA (1 .. LLI_L);
function Short_Short_Integer_To_XDR_S_SSI is
new Ada.Unchecked_Conversion (Short_Short_Integer, XDR_S_SSI);
function XDR_S_SSI_To_Short_Short_Integer is
new Ada.Unchecked_Conversion (XDR_S_SSI, Short_Short_Integer);
function Short_Integer_To_XDR_S_SI is
new Ada.Unchecked_Conversion (Short_Integer, XDR_S_SI);
function XDR_S_SI_To_Short_Integer is
new Ada.Unchecked_Conversion (XDR_S_SI, Short_Integer);
function Integer_To_XDR_S_I is
new Ada.Unchecked_Conversion (Integer, XDR_S_I);
function XDR_S_I_To_Integer is
new Ada.Unchecked_Conversion (XDR_S_I, Integer);
function Long_Long_Integer_To_XDR_S_LI is
new Ada.Unchecked_Conversion (Long_Long_Integer, XDR_S_LI);
function XDR_S_LI_To_Long_Long_Integer is
new Ada.Unchecked_Conversion (XDR_S_LI, Long_Long_Integer);
function Long_Long_Integer_To_XDR_S_LLI is
new Ada.Unchecked_Conversion (Long_Long_Integer, XDR_S_LLI);
function XDR_S_LLI_To_Long_Long_Integer is
new Ada.Unchecked_Conversion (XDR_S_LLI, Long_Long_Integer);
-- An XDR unsigned integer is a 32-bit datum that encodes a nonnegative
-- integer in the range [0,4294967295]. It is represented by an unsigned
-- binary number whose most and least significant bytes are 0 and 3,
-- respectively. An unsigned integer is declared as follows:
-- (MSB) (LSB)
-- +-------+-------+-------+-------+
-- |byte 0 |byte 1 |byte 2 |byte 3 |
-- +-------+-------+-------+-------+
-- <------------32 bits------------>
SSU_L : constant := 1;
SU_L : constant := 2;
U_L : constant := 4;
LU_L : constant := 8;
LLU_L : constant := 8;
subtype XDR_S_SSU is SEA (1 .. SSU_L);
subtype XDR_S_SU is SEA (1 .. SU_L);
subtype XDR_S_U is SEA (1 .. U_L);
subtype XDR_S_LU is SEA (1 .. LU_L);
subtype XDR_S_LLU is SEA (1 .. LLU_L);
type XDR_SSU is mod BB ** SSU_L;
type XDR_SU is mod BB ** SU_L;
type XDR_U is mod BB ** U_L;
function Short_Unsigned_To_XDR_S_SU is
new Ada.Unchecked_Conversion (Short_Unsigned, XDR_S_SU);
function XDR_S_SU_To_Short_Unsigned is
new Ada.Unchecked_Conversion (XDR_S_SU, Short_Unsigned);
function Unsigned_To_XDR_S_U is
new Ada.Unchecked_Conversion (Unsigned, XDR_S_U);
function XDR_S_U_To_Unsigned is
new Ada.Unchecked_Conversion (XDR_S_U, Unsigned);
function Long_Long_Unsigned_To_XDR_S_LU is
new Ada.Unchecked_Conversion (Long_Long_Unsigned, XDR_S_LU);
function XDR_S_LU_To_Long_Long_Unsigned is
new Ada.Unchecked_Conversion (XDR_S_LU, Long_Long_Unsigned);
function Long_Long_Unsigned_To_XDR_S_LLU is
new Ada.Unchecked_Conversion (Long_Long_Unsigned, XDR_S_LLU);
function XDR_S_LLU_To_Long_Long_Unsigned is
new Ada.Unchecked_Conversion (XDR_S_LLU, Long_Long_Unsigned);
-- The standard defines the floating-point data type "float" (32 bits
-- or 4 bytes). The encoding used is the IEEE standard for normalized
-- single-precision floating-point numbers.
-- The standard defines the encoding used for the double-precision
-- floating-point data type "double" (64 bits or 8 bytes). The encoding
-- used is the IEEE standard for normalized double-precision floating-point
-- numbers.
SF_L : constant := 4; -- Single precision
F_L : constant := 4; -- Single precision
LF_L : constant := 8; -- Double precision
LLF_L : constant := 16; -- Quadruple precision
TM_L : constant := 8;
subtype XDR_S_TM is SEA (1 .. TM_L);
type XDR_TM is mod BB ** TM_L;
type XDR_SA is mod 2 ** Standard'Address_Size;
function To_XDR_SA is new UC (System.Address, XDR_SA);
function To_XDR_SA is new UC (XDR_SA, System.Address);
-- Enumerations have the same representation as signed integers.
-- Enumerations are handy for describing subsets of the integers.
-- Booleans are important enough and occur frequently enough to warrant
-- their own explicit type in the standard. Booleans are declared as
-- an enumeration, with FALSE = 0 and TRUE = 1.
-- The standard defines a string of n (numbered 0 through n-1) ASCII
-- bytes to be the number n encoded as an unsigned integer (as described
-- above), and followed by the n bytes of the string. Byte m of the string
-- always precedes byte m+1 of the string, and byte 0 of the string always
-- follows the string's length. If n is not a multiple of four, then the
-- n bytes are followed by enough (0 to 3) residual zero bytes, r, to make
-- the total byte count a multiple of four.
-- To fit with XDR string, do not consider character as an enumeration
-- type.
C_L : constant := 1;
subtype XDR_S_C is SEA (1 .. C_L);
-- Consider Wide_Character as an enumeration type
WC_L : constant := 4;
subtype XDR_S_WC is SEA (1 .. WC_L);
type XDR_WC is mod BB ** WC_L;
-- Consider Wide_Wide_Character as an enumeration type
WWC_L : constant := 8;
subtype XDR_S_WWC is SEA (1 .. WWC_L);
type XDR_WWC is mod BB ** WWC_L;
-- Optimization: if we already have the correct Bit_Order, then some
-- computations can be avoided since the source and the target will be
-- identical anyway. They will be replaced by direct unchecked
-- conversions.
Optimize_Integers : constant Boolean :=
Default_Bit_Order = High_Order_First;
-----------------
-- Block_IO_OK --
-----------------
-- We must inhibit Block_IO, because in XDR mode, each element is output
-- according to XDR requirements, which is not at all the same as writing
-- the whole array in one block.
function Block_IO_OK return Boolean is
begin
return False;
end Block_IO_OK;
----------
-- I_AD --
----------
function I_AD (Stream : not null access RST) return Fat_Pointer is
FP : Fat_Pointer;
begin
FP.P1 := I_AS (Stream).P1;
FP.P2 := I_AS (Stream).P1;
return FP;
end I_AD;
----------
-- I_AS --
----------
function I_AS (Stream : not null access RST) return Thin_Pointer is
S : XDR_S_TM;
L : SEO;
U : XDR_TM := 0;
begin
Ada.Streams.Read (Stream.all, S, L);
if L /= S'Last then
raise Data_Error;
else
for N in S'Range loop
U := U * BB + XDR_TM (S (N));
end loop;
return (P1 => To_XDR_SA (XDR_SA (U)));
end if;
end I_AS;
---------
-- I_B --
---------
function I_B (Stream : not null access RST) return Boolean is
begin
case I_SSU (Stream) is
when 0 => return False;
when 1 => return True;
when others => raise Data_Error;
end case;
end I_B;
---------
-- I_C --
---------
function I_C (Stream : not null access RST) return Character is
S : XDR_S_C;
L : SEO;
begin
Ada.Streams.Read (Stream.all, S, L);
if L /= S'Last then
raise Data_Error;
else
-- Use Ada requirements on Character representation clause
return Character'Val (S (1));
end if;
end I_C;
---------
-- I_F --
---------
function I_F (Stream : not null access RST) return Float is
I : constant Precision := Single;
E_Size : Integer renames Fields (I).E_Size;
E_Bias : Integer renames Fields (I).E_Bias;
E_Last : Integer renames Fields (I).E_Last;
F_Mask : SE renames Fields (I).F_Mask;
E_Bytes : SEO renames Fields (I).E_Bytes;
F_Bytes : SEO renames Fields (I).F_Bytes;
F_Size : Integer renames Fields (I).F_Size;
Is_Positive : Boolean;
Exponent : Long_Unsigned;
Fraction : Long_Unsigned;
Result : Float;
S : SEA (1 .. F_L);
L : SEO;
begin
Ada.Streams.Read (Stream.all, S, L);
if L /= S'Last then
raise Data_Error;
end if;
-- Extract Fraction, Sign and Exponent
Fraction := Long_Unsigned (S (F_L + 1 - F_Bytes) and F_Mask);
for N in F_L + 2 - F_Bytes .. F_L loop
Fraction := Fraction * BB + Long_Unsigned (S (N));
end loop;
Result := Float'Scaling (Float (Fraction), -F_Size);
if BS <= S (1) then
Is_Positive := False;
Exponent := Long_Unsigned (S (1) - BS);
else
Is_Positive := True;
Exponent := Long_Unsigned (S (1));
end if;
for N in 2 .. E_Bytes loop
Exponent := Exponent * BB + Long_Unsigned (S (N));
end loop;
Exponent := Shift_Right (Exponent, Integer (E_Bytes) * SU - E_Size - 1);
-- NaN or Infinities
if Integer (Exponent) = E_Last then
raise Constraint_Error;
elsif Exponent = 0 then
-- Signed zeros
if Fraction = 0 then
null;
-- Denormalized float
else
Result := Float'Scaling (Result, 1 - E_Bias);
end if;
-- Normalized float
else
Result := Float'Scaling
(1.0 + Result, Integer (Exponent) - E_Bias);
end if;
if not Is_Positive then
Result := -Result;
end if;
return Result;
end I_F;
---------
-- I_I --
---------
function I_I (Stream : not null access RST) return Integer is
S : XDR_S_I;
L : SEO;
U : XDR_U := 0;
begin
Ada.Streams.Read (Stream.all, S, L);
if L /= S'Last then
raise Data_Error;
elsif Optimize_Integers then
return XDR_S_I_To_Integer (S);
else
for N in S'Range loop
U := U * BB + XDR_U (S (N));
end loop;
-- Test sign and apply two complement notation
if S (1) < BL then
return Integer (U);
else
return Integer (-((XDR_U'Last xor U) + 1));
end if;
end if;
end I_I;
----------
-- I_LF --
----------
function I_LF (Stream : not null access RST) return Long_Float is
I : constant Precision := Double;
E_Size : Integer renames Fields (I).E_Size;
E_Bias : Integer renames Fields (I).E_Bias;
E_Last : Integer renames Fields (I).E_Last;
F_Mask : SE renames Fields (I).F_Mask;
E_Bytes : SEO renames Fields (I).E_Bytes;
F_Bytes : SEO renames Fields (I).F_Bytes;
F_Size : Integer renames Fields (I).F_Size;
Is_Positive : Boolean;
Exponent : Long_Unsigned;
Fraction : Long_Long_Unsigned;
Result : Long_Float;
S : SEA (1 .. LF_L);
L : SEO;
begin
Ada.Streams.Read (Stream.all, S, L);
if L /= S'Last then
raise Data_Error;
end if;
-- Extract Fraction, Sign and Exponent
Fraction := Long_Long_Unsigned (S (LF_L + 1 - F_Bytes) and F_Mask);
for N in LF_L + 2 - F_Bytes .. LF_L loop
Fraction := Fraction * BB + Long_Long_Unsigned (S (N));
end loop;
Result := Long_Float'Scaling (Long_Float (Fraction), -F_Size);
if BS <= S (1) then
Is_Positive := False;
Exponent := Long_Unsigned (S (1) - BS);
else
Is_Positive := True;
Exponent := Long_Unsigned (S (1));
end if;
for N in 2 .. E_Bytes loop
Exponent := Exponent * BB + Long_Unsigned (S (N));
end loop;
Exponent := Shift_Right (Exponent, Integer (E_Bytes) * SU - E_Size - 1);
-- NaN or Infinities
if Integer (Exponent) = E_Last then
raise Constraint_Error;
elsif Exponent = 0 then
-- Signed zeros
if Fraction = 0 then
null;
-- Denormalized float
else
Result := Long_Float'Scaling (Result, 1 - E_Bias);
end if;
-- Normalized float
else
Result := Long_Float'Scaling
(1.0 + Result, Integer (Exponent) - E_Bias);
end if;
if not Is_Positive then
Result := -Result;
end if;
return Result;
end I_LF;
----------
-- I_LI --
----------
function I_LI (Stream : not null access RST) return Long_Integer is
S : XDR_S_LI;
L : SEO;
U : Unsigned := 0;
X : Long_Unsigned := 0;
begin
Ada.Streams.Read (Stream.all, S, L);
if L /= S'Last then
raise Data_Error;
elsif Optimize_Integers then
return Long_Integer (XDR_S_LI_To_Long_Long_Integer (S));
else
-- Compute using machine unsigned
-- rather than long_long_unsigned
for N in S'Range loop
U := U * BB + Unsigned (S (N));
-- We have filled an unsigned
if N mod UB = 0 then
X := Shift_Left (X, US) + Long_Unsigned (U);
U := 0;
end if;
end loop;
-- Test sign and apply two complement notation
if S (1) < BL then
return Long_Integer (X);
else
return Long_Integer (-((Long_Unsigned'Last xor X) + 1));
end if;
end if;
end I_LI;
-----------
-- I_LLF --
-----------
function I_LLF (Stream : not null access RST) return Long_Long_Float is
I : constant Precision := Quadruple;
E_Size : Integer renames Fields (I).E_Size;
E_Bias : Integer renames Fields (I).E_Bias;
E_Last : Integer renames Fields (I).E_Last;
E_Bytes : SEO renames Fields (I).E_Bytes;
F_Bytes : SEO renames Fields (I).F_Bytes;
F_Size : Integer renames Fields (I).F_Size;
Is_Positive : Boolean;
Exponent : Long_Unsigned;
Fraction_1 : Long_Long_Unsigned := 0;
Fraction_2 : Long_Long_Unsigned := 0;
Result : Long_Long_Float;
HF : constant Natural := F_Size / 2;
S : SEA (1 .. LLF_L);
L : SEO;
begin
Ada.Streams.Read (Stream.all, S, L);
if L /= S'Last then
raise Data_Error;
end if;
-- Extract Fraction, Sign and Exponent
for I in LLF_L - F_Bytes + 1 .. LLF_L - 7 loop
Fraction_1 := Fraction_1 * BB + Long_Long_Unsigned (S (I));
end loop;
for I in SEO (LLF_L - 6) .. SEO (LLF_L) loop
Fraction_2 := Fraction_2 * BB + Long_Long_Unsigned (S (I));
end loop;
Result := Long_Long_Float'Scaling (Long_Long_Float (Fraction_2), -HF);
Result := Long_Long_Float (Fraction_1) + Result;
Result := Long_Long_Float'Scaling (Result, HF - F_Size);
if BS <= S (1) then
Is_Positive := False;
Exponent := Long_Unsigned (S (1) - BS);
else
Is_Positive := True;
Exponent := Long_Unsigned (S (1));
end if;
for N in 2 .. E_Bytes loop
Exponent := Exponent * BB + Long_Unsigned (S (N));
end loop;
Exponent := Shift_Right (Exponent, Integer (E_Bytes) * SU - E_Size - 1);
-- NaN or Infinities
if Integer (Exponent) = E_Last then
raise Constraint_Error;
elsif Exponent = 0 then
-- Signed zeros
if Fraction_1 = 0 and then Fraction_2 = 0 then
null;
-- Denormalized float
else
Result := Long_Long_Float'Scaling (Result, 1 - E_Bias);
end if;
-- Normalized float
else
Result := Long_Long_Float'Scaling
(1.0 + Result, Integer (Exponent) - E_Bias);
end if;
if not Is_Positive then
Result := -Result;
end if;
return Result;
end I_LLF;
-----------
-- I_LLI --
-----------
function I_LLI (Stream : not null access RST) return Long_Long_Integer is
S : XDR_S_LLI;
L : SEO;
U : Unsigned := 0;
X : Long_Long_Unsigned := 0;
begin
Ada.Streams.Read (Stream.all, S, L);
if L /= S'Last then
raise Data_Error;
elsif Optimize_Integers then
return XDR_S_LLI_To_Long_Long_Integer (S);
else
-- Compute using machine unsigned for computing
-- rather than long_long_unsigned.
for N in S'Range loop
U := U * BB + Unsigned (S (N));
-- We have filled an unsigned
if N mod UB = 0 then
X := Shift_Left (X, US) + Long_Long_Unsigned (U);
U := 0;
end if;
end loop;
-- Test sign and apply two complement notation
if S (1) < BL then
return Long_Long_Integer (X);
else
return Long_Long_Integer (-((Long_Long_Unsigned'Last xor X) + 1));
end if;
end if;
end I_LLI;
-----------
-- I_LLU --
-----------
function I_LLU (Stream : not null access RST) return Long_Long_Unsigned is
S : XDR_S_LLU;
L : SEO;
U : Unsigned := 0;
X : Long_Long_Unsigned := 0;
begin
Ada.Streams.Read (Stream.all, S, L);
if L /= S'Last then
raise Data_Error;
elsif Optimize_Integers then
return XDR_S_LLU_To_Long_Long_Unsigned (S);
else
-- Compute using machine unsigned
-- rather than long_long_unsigned.
for N in S'Range loop
U := U * BB + Unsigned (S (N));
-- We have filled an unsigned
if N mod UB = 0 then
X := Shift_Left (X, US) + Long_Long_Unsigned (U);
U := 0;
end if;
end loop;
return X;
end if;
end I_LLU;
----------
-- I_LU --
----------
function I_LU (Stream : not null access RST) return Long_Unsigned is
S : XDR_S_LU;
L : SEO;
U : Unsigned := 0;
X : Long_Unsigned := 0;
begin
Ada.Streams.Read (Stream.all, S, L);
if L /= S'Last then
raise Data_Error;
elsif Optimize_Integers then
return Long_Unsigned (XDR_S_LU_To_Long_Long_Unsigned (S));
else
-- Compute using machine unsigned
-- rather than long_unsigned.
for N in S'Range loop
U := U * BB + Unsigned (S (N));
-- We have filled an unsigned
if N mod UB = 0 then
X := Shift_Left (X, US) + Long_Unsigned (U);
U := 0;
end if;
end loop;
return X;
end if;
end I_LU;
----------
-- I_SF --
----------
function I_SF (Stream : not null access RST) return Short_Float is
I : constant Precision := Single;
E_Size : Integer renames Fields (I).E_Size;
E_Bias : Integer renames Fields (I).E_Bias;
E_Last : Integer renames Fields (I).E_Last;
F_Mask : SE renames Fields (I).F_Mask;
E_Bytes : SEO renames Fields (I).E_Bytes;
F_Bytes : SEO renames Fields (I).F_Bytes;
F_Size : Integer renames Fields (I).F_Size;
Exponent : Long_Unsigned;
Fraction : Long_Unsigned;
Is_Positive : Boolean;
Result : Short_Float;
S : SEA (1 .. SF_L);
L : SEO;
begin
Ada.Streams.Read (Stream.all, S, L);
if L /= S'Last then
raise Data_Error;
end if;
-- Extract Fraction, Sign and Exponent
Fraction := Long_Unsigned (S (SF_L + 1 - F_Bytes) and F_Mask);
for N in SF_L + 2 - F_Bytes .. SF_L loop
Fraction := Fraction * BB + Long_Unsigned (S (N));
end loop;
Result := Short_Float'Scaling (Short_Float (Fraction), -F_Size);
if BS <= S (1) then
Is_Positive := False;
Exponent := Long_Unsigned (S (1) - BS);
else
Is_Positive := True;
Exponent := Long_Unsigned (S (1));
end if;
for N in 2 .. E_Bytes loop
Exponent := Exponent * BB + Long_Unsigned (S (N));
end loop;
Exponent := Shift_Right (Exponent, Integer (E_Bytes) * SU - E_Size - 1);
-- NaN or Infinities
if Integer (Exponent) = E_Last then
raise Constraint_Error;
elsif Exponent = 0 then
-- Signed zeros
if Fraction = 0 then
null;
-- Denormalized float
else
Result := Short_Float'Scaling (Result, 1 - E_Bias);
end if;
-- Normalized float
else
Result := Short_Float'Scaling
(1.0 + Result, Integer (Exponent) - E_Bias);
end if;
if not Is_Positive then
Result := -Result;
end if;
return Result;
end I_SF;
----------
-- I_SI --
----------
function I_SI (Stream : not null access RST) return Short_Integer is
S : XDR_S_SI;
L : SEO;
U : XDR_SU := 0;
begin
Ada.Streams.Read (Stream.all, S, L);
if L /= S'Last then
raise Data_Error;
elsif Optimize_Integers then
return XDR_S_SI_To_Short_Integer (S);
else
for N in S'Range loop
U := U * BB + XDR_SU (S (N));
end loop;
-- Test sign and apply two complement notation
if S (1) < BL then
return Short_Integer (U);
else
return Short_Integer (-((XDR_SU'Last xor U) + 1));
end if;
end if;
end I_SI;
-----------
-- I_SSI --
-----------
function I_SSI (Stream : not null access RST) return Short_Short_Integer is
S : XDR_S_SSI;
L : SEO;
U : XDR_SSU;
begin
Ada.Streams.Read (Stream.all, S, L);
if L /= S'Last then
raise Data_Error;
elsif Optimize_Integers then
return XDR_S_SSI_To_Short_Short_Integer (S);
else
U := XDR_SSU (S (1));
-- Test sign and apply two complement notation
if S (1) < BL then
return Short_Short_Integer (U);
else
return Short_Short_Integer (-((XDR_SSU'Last xor U) + 1));
end if;
end if;
end I_SSI;
-----------
-- I_SSU --
-----------
function I_SSU (Stream : not null access RST) return Short_Short_Unsigned is
S : XDR_S_SSU;
L : SEO;
U : XDR_SSU := 0;
begin
Ada.Streams.Read (Stream.all, S, L);
if L /= S'Last then
raise Data_Error;
else
U := XDR_SSU (S (1));
return Short_Short_Unsigned (U);
end if;
end I_SSU;
----------
-- I_SU --
----------
function I_SU (Stream : not null access RST) return Short_Unsigned is
S : XDR_S_SU;
L : SEO;
U : XDR_SU := 0;
begin
Ada.Streams.Read (Stream.all, S, L);
if L /= S'Last then
raise Data_Error;
elsif Optimize_Integers then
return XDR_S_SU_To_Short_Unsigned (S);
else
for N in S'Range loop
U := U * BB + XDR_SU (S (N));
end loop;
return Short_Unsigned (U);
end if;
end I_SU;
---------
-- I_U --
---------
function I_U (Stream : not null access RST) return Unsigned is
S : XDR_S_U;
L : SEO;
U : XDR_U := 0;
begin
Ada.Streams.Read (Stream.all, S, L);
if L /= S'Last then
raise Data_Error;
elsif Optimize_Integers then
return XDR_S_U_To_Unsigned (S);
else
for N in S'Range loop
U := U * BB + XDR_U (S (N));
end loop;
return Unsigned (U);
end if;
end I_U;
----------
-- I_WC --
----------
function I_WC (Stream : not null access RST) return Wide_Character is
S : XDR_S_WC;
L : SEO;
U : XDR_WC := 0;
begin
Ada.Streams.Read (Stream.all, S, L);
if L /= S'Last then
raise Data_Error;
else
for N in S'Range loop
U := U * BB + XDR_WC (S (N));
end loop;
-- Use Ada requirements on Wide_Character representation clause
return Wide_Character'Val (U);
end if;
end I_WC;
-----------
-- I_WWC --
-----------
function I_WWC (Stream : not null access RST) return Wide_Wide_Character is
S : XDR_S_WWC;
L : SEO;
U : XDR_WWC := 0;
begin
Ada.Streams.Read (Stream.all, S, L);
if L /= S'Last then
raise Data_Error;
else
for N in S'Range loop
U := U * BB + XDR_WWC (S (N));
end loop;
-- Use Ada requirements on Wide_Wide_Character representation clause
return Wide_Wide_Character'Val (U);
end if;
end I_WWC;
----------
-- W_AD --
----------
procedure W_AD (Stream : not null access RST; Item : Fat_Pointer) is
S : XDR_S_TM;
U : XDR_TM;
begin
U := XDR_TM (To_XDR_SA (Item.P1));
for N in reverse S'Range loop
S (N) := SE (U mod BB);
U := U / BB;
end loop;
Ada.Streams.Write (Stream.all, S);
U := XDR_TM (To_XDR_SA (Item.P2));
for N in reverse S'Range loop
S (N) := SE (U mod BB);
U := U / BB;
end loop;
Ada.Streams.Write (Stream.all, S);
if U /= 0 then
raise Data_Error;
end if;
end W_AD;
----------
-- W_AS --
----------
procedure W_AS (Stream : not null access RST; Item : Thin_Pointer) is
S : XDR_S_TM;
U : XDR_TM := XDR_TM (To_XDR_SA (Item.P1));
begin
for N in reverse S'Range loop
S (N) := SE (U mod BB);
U := U / BB;
end loop;
Ada.Streams.Write (Stream.all, S);
if U /= 0 then
raise Data_Error;
end if;
end W_AS;
---------
-- W_B --
---------
procedure W_B (Stream : not null access RST; Item : Boolean) is
begin
if Item then
W_SSU (Stream, 1);
else
W_SSU (Stream, 0);
end if;
end W_B;
---------
-- W_C --
---------
procedure W_C (Stream : not null access RST; Item : Character) is
S : XDR_S_C;
pragma Assert (C_L = 1);
begin
-- Use Ada requirements on Character representation clause
S (1) := SE (Character'Pos (Item));
Ada.Streams.Write (Stream.all, S);
end W_C;
---------
-- W_F --
---------
procedure W_F (Stream : not null access RST; Item : Float) is
I : constant Precision := Single;
E_Size : Integer renames Fields (I).E_Size;
E_Bias : Integer renames Fields (I).E_Bias;
E_Bytes : SEO renames Fields (I).E_Bytes;
F_Bytes : SEO renames Fields (I).F_Bytes;
F_Size : Integer renames Fields (I).F_Size;
F_Mask : SE renames Fields (I).F_Mask;
Exponent : Long_Unsigned;
Fraction : Long_Unsigned;
Is_Positive : Boolean;
E : Integer;
F : Float;
S : SEA (1 .. F_L) := (others => 0);
begin
if not Item'Valid then
raise Constraint_Error;
end if;
-- Compute Sign
Is_Positive := (0.0 <= Item);
F := abs (Item);
-- Signed zero
if F = 0.0 then
Exponent := 0;
Fraction := 0;
else
E := Float'Exponent (F) - 1;
-- Denormalized float
if E <= -E_Bias then
F := Float'Scaling (F, F_Size + E_Bias - 1);
E := -E_Bias;
else
F := Float'Scaling (Float'Fraction (F), F_Size + 1);
end if;
-- Compute Exponent and Fraction
Exponent := Long_Unsigned (E + E_Bias);
Fraction := Long_Unsigned (F * 2.0) / 2;
end if;
-- Store Fraction
for I in reverse F_L - F_Bytes + 1 .. F_L loop
S (I) := SE (Fraction mod BB);
Fraction := Fraction / BB;
end loop;
-- Remove implicit bit
S (F_L - F_Bytes + 1) := S (F_L - F_Bytes + 1) and F_Mask;
-- Store Exponent (not always at the beginning of a byte)
Exponent := Shift_Left (Exponent, Integer (E_Bytes) * SU - E_Size - 1);
for N in reverse 1 .. E_Bytes loop
S (N) := SE (Exponent mod BB) + S (N);
Exponent := Exponent / BB;
end loop;
-- Store Sign
if not Is_Positive then
S (1) := S (1) + BS;
end if;
Ada.Streams.Write (Stream.all, S);
end W_F;
---------
-- W_I --
---------
procedure W_I (Stream : not null access RST; Item : Integer) is
S : XDR_S_I;
U : XDR_U;
begin
if Optimize_Integers then
S := Integer_To_XDR_S_I (Item);
else
-- Test sign and apply two complement notation
U := (if Item < 0
then XDR_U'Last xor XDR_U (-(Item + 1))
else XDR_U (Item));
for N in reverse S'Range loop
S (N) := SE (U mod BB);
U := U / BB;
end loop;
if U /= 0 then
raise Data_Error;
end if;
end if;
Ada.Streams.Write (Stream.all, S);
end W_I;
----------
-- W_LF --
----------
procedure W_LF (Stream : not null access RST; Item : Long_Float) is
I : constant Precision := Double;
E_Size : Integer renames Fields (I).E_Size;
E_Bias : Integer renames Fields (I).E_Bias;
E_Bytes : SEO renames Fields (I).E_Bytes;
F_Bytes : SEO renames Fields (I).F_Bytes;
F_Size : Integer renames Fields (I).F_Size;
F_Mask : SE renames Fields (I).F_Mask;
Exponent : Long_Unsigned;
Fraction : Long_Long_Unsigned;
Is_Positive : Boolean;
E : Integer;
F : Long_Float;
S : SEA (1 .. LF_L) := (others => 0);
begin
if not Item'Valid then
raise Constraint_Error;
end if;
-- Compute Sign
Is_Positive := (0.0 <= Item);
F := abs (Item);
-- Signed zero
if F = 0.0 then
Exponent := 0;
Fraction := 0;
else
E := Long_Float'Exponent (F) - 1;
-- Denormalized float
if E <= -E_Bias then
E := -E_Bias;
F := Long_Float'Scaling (F, F_Size + E_Bias - 1);
else
F := Long_Float'Scaling (F, F_Size - E);
end if;
-- Compute Exponent and Fraction
Exponent := Long_Unsigned (E + E_Bias);
Fraction := Long_Long_Unsigned (F * 2.0) / 2;
end if;
-- Store Fraction
for I in reverse LF_L - F_Bytes + 1 .. LF_L loop
S (I) := SE (Fraction mod BB);
Fraction := Fraction / BB;
end loop;
-- Remove implicit bit
S (LF_L - F_Bytes + 1) := S (LF_L - F_Bytes + 1) and F_Mask;
-- Store Exponent (not always at the beginning of a byte)
Exponent := Shift_Left (Exponent, Integer (E_Bytes) * SU - E_Size - 1);
for N in reverse 1 .. E_Bytes loop
S (N) := SE (Exponent mod BB) + S (N);
Exponent := Exponent / BB;
end loop;
-- Store Sign
if not Is_Positive then
S (1) := S (1) + BS;
end if;
Ada.Streams.Write (Stream.all, S);
end W_LF;
----------
-- W_LI --
----------
procedure W_LI (Stream : not null access RST; Item : Long_Integer) is
S : XDR_S_LI;
U : Unsigned;
X : Long_Unsigned;
begin
if Optimize_Integers then
S := Long_Long_Integer_To_XDR_S_LI (Long_Long_Integer (Item));
else
-- Test sign and apply two complement notation
if Item < 0 then
X := Long_Unsigned'Last xor Long_Unsigned (-(Item + 1));
else
X := Long_Unsigned (Item);
end if;
-- Compute using machine unsigned rather than long_unsigned
for N in reverse S'Range loop
-- We have filled an unsigned
if (LU_L - N) mod UB = 0 then
U := Unsigned (X and UL);
X := Shift_Right (X, US);
end if;
S (N) := SE (U mod BB);
U := U / BB;
end loop;
if U /= 0 then
raise Data_Error;
end if;
end if;
Ada.Streams.Write (Stream.all, S);
end W_LI;
-----------
-- W_LLF --
-----------
procedure W_LLF (Stream : not null access RST; Item : Long_Long_Float) is
I : constant Precision := Quadruple;
E_Size : Integer renames Fields (I).E_Size;
E_Bias : Integer renames Fields (I).E_Bias;
E_Bytes : SEO renames Fields (I).E_Bytes;
F_Bytes : SEO renames Fields (I).F_Bytes;
F_Size : Integer renames Fields (I).F_Size;
HFS : constant Integer := F_Size / 2;
Exponent : Long_Unsigned;
Fraction_1 : Long_Long_Unsigned;
Fraction_2 : Long_Long_Unsigned;
Is_Positive : Boolean;
E : Integer;
F : Long_Long_Float := Item;
S : SEA (1 .. LLF_L) := (others => 0);
begin
if not Item'Valid then
raise Constraint_Error;
end if;
-- Compute Sign
Is_Positive := (0.0 <= Item);
if F < 0.0 then
F := -Item;
end if;
-- Signed zero
if F = 0.0 then
Exponent := 0;
Fraction_1 := 0;
Fraction_2 := 0;
else
E := Long_Long_Float'Exponent (F) - 1;
-- Denormalized float
if E <= -E_Bias then
F := Long_Long_Float'Scaling (F, E_Bias - 1);
E := -E_Bias;
else
F := Long_Long_Float'Scaling
(Long_Long_Float'Fraction (F), 1);
end if;
-- Compute Exponent and Fraction
Exponent := Long_Unsigned (E + E_Bias);
F := Long_Long_Float'Scaling (F, F_Size - HFS);
Fraction_1 := Long_Long_Unsigned (Long_Long_Float'Floor (F));
F := F - Long_Long_Float (Fraction_1);
F := Long_Long_Float'Scaling (F, HFS);
Fraction_2 := Long_Long_Unsigned (Long_Long_Float'Floor (F));
end if;
-- Store Fraction_1
for I in reverse LLF_L - F_Bytes + 1 .. LLF_L - 7 loop
S (I) := SE (Fraction_1 mod BB);
Fraction_1 := Fraction_1 / BB;
end loop;
-- Store Fraction_2
for I in reverse LLF_L - 6 .. LLF_L loop
S (SEO (I)) := SE (Fraction_2 mod BB);
Fraction_2 := Fraction_2 / BB;
end loop;
-- Store Exponent (not always at the beginning of a byte)
Exponent := Shift_Left (Exponent, Integer (E_Bytes) * SU - E_Size - 1);
for N in reverse 1 .. E_Bytes loop
S (N) := SE (Exponent mod BB) + S (N);
Exponent := Exponent / BB;
end loop;
-- Store Sign
if not Is_Positive then
S (1) := S (1) + BS;
end if;
Ada.Streams.Write (Stream.all, S);
end W_LLF;
-----------
-- W_LLI --
-----------
procedure W_LLI
(Stream : not null access RST;
Item : Long_Long_Integer)
is
S : XDR_S_LLI;
U : Unsigned;
X : Long_Long_Unsigned;
begin
if Optimize_Integers then
S := Long_Long_Integer_To_XDR_S_LLI (Item);
else
-- Test sign and apply two complement notation
if Item < 0 then
X := Long_Long_Unsigned'Last xor Long_Long_Unsigned (-(Item + 1));
else
X := Long_Long_Unsigned (Item);
end if;
-- Compute using machine unsigned rather than long_long_unsigned
for N in reverse S'Range loop
-- We have filled an unsigned
if (LLU_L - N) mod UB = 0 then
U := Unsigned (X and UL);
X := Shift_Right (X, US);
end if;
S (N) := SE (U mod BB);
U := U / BB;
end loop;
if U /= 0 then
raise Data_Error;
end if;
end if;
Ada.Streams.Write (Stream.all, S);
end W_LLI;
-----------
-- W_LLU --
-----------
procedure W_LLU
(Stream : not null access RST;
Item : Long_Long_Unsigned)
is
S : XDR_S_LLU;
U : Unsigned;
X : Long_Long_Unsigned := Item;
begin
if Optimize_Integers then
S := Long_Long_Unsigned_To_XDR_S_LLU (Item);
else
-- Compute using machine unsigned rather than long_long_unsigned
for N in reverse S'Range loop
-- We have filled an unsigned
if (LLU_L - N) mod UB = 0 then
U := Unsigned (X and UL);
X := Shift_Right (X, US);
end if;
S (N) := SE (U mod BB);
U := U / BB;
end loop;
if U /= 0 then
raise Data_Error;
end if;
end if;
Ada.Streams.Write (Stream.all, S);
end W_LLU;
----------
-- W_LU --
----------
procedure W_LU (Stream : not null access RST; Item : Long_Unsigned) is
S : XDR_S_LU;
U : Unsigned;
X : Long_Unsigned := Item;
begin
if Optimize_Integers then
S := Long_Long_Unsigned_To_XDR_S_LU (Long_Long_Unsigned (Item));
else
-- Compute using machine unsigned rather than long_unsigned
for N in reverse S'Range loop
-- We have filled an unsigned
if (LU_L - N) mod UB = 0 then
U := Unsigned (X and UL);
X := Shift_Right (X, US);
end if;
S (N) := SE (U mod BB);
U := U / BB;
end loop;
if U /= 0 then
raise Data_Error;
end if;
end if;
Ada.Streams.Write (Stream.all, S);
end W_LU;
----------
-- W_SF --
----------
procedure W_SF (Stream : not null access RST; Item : Short_Float) is
I : constant Precision := Single;
E_Size : Integer renames Fields (I).E_Size;
E_Bias : Integer renames Fields (I).E_Bias;
E_Bytes : SEO renames Fields (I).E_Bytes;
F_Bytes : SEO renames Fields (I).F_Bytes;
F_Size : Integer renames Fields (I).F_Size;
F_Mask : SE renames Fields (I).F_Mask;
Exponent : Long_Unsigned;
Fraction : Long_Unsigned;
Is_Positive : Boolean;
E : Integer;
F : Short_Float;
S : SEA (1 .. SF_L) := (others => 0);
begin
if not Item'Valid then
raise Constraint_Error;
end if;
-- Compute Sign
Is_Positive := (0.0 <= Item);
F := abs (Item);
-- Signed zero
if F = 0.0 then
Exponent := 0;
Fraction := 0;
else
E := Short_Float'Exponent (F) - 1;
-- Denormalized float
if E <= -E_Bias then
E := -E_Bias;
F := Short_Float'Scaling (F, F_Size + E_Bias - 1);
else
F := Short_Float'Scaling (F, F_Size - E);
end if;
-- Compute Exponent and Fraction
Exponent := Long_Unsigned (E + E_Bias);
Fraction := Long_Unsigned (F * 2.0) / 2;
end if;
-- Store Fraction
for I in reverse SF_L - F_Bytes + 1 .. SF_L loop
S (I) := SE (Fraction mod BB);
Fraction := Fraction / BB;
end loop;
-- Remove implicit bit
S (SF_L - F_Bytes + 1) := S (SF_L - F_Bytes + 1) and F_Mask;
-- Store Exponent (not always at the beginning of a byte)
Exponent := Shift_Left (Exponent, Integer (E_Bytes) * SU - E_Size - 1);
for N in reverse 1 .. E_Bytes loop
S (N) := SE (Exponent mod BB) + S (N);
Exponent := Exponent / BB;
end loop;
-- Store Sign
if not Is_Positive then
S (1) := S (1) + BS;
end if;
Ada.Streams.Write (Stream.all, S);
end W_SF;
----------
-- W_SI --
----------
procedure W_SI (Stream : not null access RST; Item : Short_Integer) is
S : XDR_S_SI;
U : XDR_SU;
begin
if Optimize_Integers then
S := Short_Integer_To_XDR_S_SI (Item);
else
-- Test sign and apply two complement's notation
U := (if Item < 0
then XDR_SU'Last xor XDR_SU (-(Item + 1))
else XDR_SU (Item));
for N in reverse S'Range loop
S (N) := SE (U mod BB);
U := U / BB;
end loop;
if U /= 0 then
raise Data_Error;
end if;
end if;
Ada.Streams.Write (Stream.all, S);
end W_SI;
-----------
-- W_SSI --
-----------
procedure W_SSI
(Stream : not null access RST;
Item : Short_Short_Integer)
is
S : XDR_S_SSI;
U : XDR_SSU;
begin
if Optimize_Integers then
S := Short_Short_Integer_To_XDR_S_SSI (Item);
else
-- Test sign and apply two complement's notation
U := (if Item < 0
then XDR_SSU'Last xor XDR_SSU (-(Item + 1))
else XDR_SSU (Item));
S (1) := SE (U);
end if;
Ada.Streams.Write (Stream.all, S);
end W_SSI;
-----------
-- W_SSU --
-----------
procedure W_SSU
(Stream : not null access RST;
Item : Short_Short_Unsigned)
is
U : constant XDR_SSU := XDR_SSU (Item);
S : XDR_S_SSU;
begin
S (1) := SE (U);
Ada.Streams.Write (Stream.all, S);
end W_SSU;
----------
-- W_SU --
----------
procedure W_SU (Stream : not null access RST; Item : Short_Unsigned) is
S : XDR_S_SU;
U : XDR_SU := XDR_SU (Item);
begin
if Optimize_Integers then
S := Short_Unsigned_To_XDR_S_SU (Item);
else
for N in reverse S'Range loop
S (N) := SE (U mod BB);
U := U / BB;
end loop;
if U /= 0 then
raise Data_Error;
end if;
end if;
Ada.Streams.Write (Stream.all, S);
end W_SU;
---------
-- W_U --
---------
procedure W_U (Stream : not null access RST; Item : Unsigned) is
S : XDR_S_U;
U : XDR_U := XDR_U (Item);
begin
if Optimize_Integers then
S := Unsigned_To_XDR_S_U (Item);
else
for N in reverse S'Range loop
S (N) := SE (U mod BB);
U := U / BB;
end loop;
if U /= 0 then
raise Data_Error;
end if;
end if;
Ada.Streams.Write (Stream.all, S);
end W_U;
----------
-- W_WC --
----------
procedure W_WC (Stream : not null access RST; Item : Wide_Character) is
S : XDR_S_WC;
U : XDR_WC;
begin
-- Use Ada requirements on Wide_Character representation clause
U := XDR_WC (Wide_Character'Pos (Item));
for N in reverse S'Range loop
S (N) := SE (U mod BB);
U := U / BB;
end loop;
Ada.Streams.Write (Stream.all, S);
if U /= 0 then
raise Data_Error;
end if;
end W_WC;
-----------
-- W_WWC --
-----------
procedure W_WWC
(Stream : not null access RST; Item : Wide_Wide_Character)
is
S : XDR_S_WWC;
U : XDR_WWC;
begin
-- Use Ada requirements on Wide_Wide_Character representation clause
U := XDR_WWC (Wide_Wide_Character'Pos (Item));
for N in reverse S'Range loop
S (N) := SE (U mod BB);
U := U / BB;
end loop;
Ada.Streams.Write (Stream.all, S);
if U /= 0 then
raise Data_Error;
end if;
end W_WWC;
end System.Stream_Attributes;