outfly/assets/shaders/jupiters_rings.wgsl

221 lines
8.3 KiB
WebGPU Shading Language
Raw Normal View History

#import bevy_pbr::{
mesh_view_bindings::globals,
forward_io::VertexOutput,
}
@group(2) @binding(0) var<uniform> ring_radius: f32;
@group(2) @binding(1) var<uniform> jupiter_radius: f32;
2024-04-01 01:12:59 +00:00
const jupiter_radius_Mm: f32 = 71.492;
//fn ring_density(r: f32) -> f32 {
// // r is in terms of megameters.
//// if r < 92 {
//// return 0.0;
//// }
//// if r > 226 {
//// return 0.0;
//// }
//
// let B0: f32 = 1.0;
// let d0: f32 = 71492.0;
// let lambda: f32 = 5000.0;
// let alpha: f32 = 0.1;
// let beta: f32 = 0.001;
// let dist = r * 400;
//
// let brightness: f32 = B0 * exp(-(dist - d0) / lambda) * (1.0 + alpha * sin(beta * (dist - d0)));
// return brightness * 1;
//}
//fn ring_density(r: f32) -> f32 {
// if r < jupiter_radius_Mm {
// return 0.0;
// }
// if r > jupiter_radius_Mm * 3 {
// return 0.0;
// }
// let radius = (r - jupiter_radius_Mm) / (jupiter_radius_Mm * 2) + 1;
// // Constants representing the approximate normalized start, peak, and end radii of the rings
// let halo_start: f32 = 1.1;
// let halo_peak: f32 = 1.2;
// let halo_end: f32 = 1.3;
//
// let main_start: f32 = 1.4;
// let main_peak: f32 = 1.5;
// let main_end: f32 = 1.6;
//
// let gossamer_start: f32 = 1.7;
// let gossamer_peak: f32 = 1.8;
// let gossamer_end: f32 = 1.9;
//
// // Piecewise linear function for density approximation
// if (radius >= halo_start && radius < halo_peak) {
// return 1.0;
// //return (radius - halo_start) / (halo_peak - halo_start);
// } else if (radius >= halo_peak && radius <= halo_end) {
// return 1.0 - (radius - halo_peak) / (halo_end - halo_peak);
// } else if (radius >= main_start && radius < main_peak) {
// return (radius - main_start) / (main_peak - main_start);
// } else if (radius >= main_peak && radius <= main_end) {
// return 1.0 - (radius - main_peak) / (main_end - main_peak);
// } else if (radius >= gossamer_start && radius < gossamer_peak) {
// return (radius - gossamer_start) / (gossamer_peak - gossamer_start);
// } else if (radius >= gossamer_peak && radius <= gossamer_end) {
// return 1.0 - (radius - gossamer_peak) / (gossamer_end - gossamer_peak);
// }
//
// return 0.0; // Outside of rings, density is 0
//}
//fn ring_density(radius: f32) -> f32 {
// // Define key radii for Jupiter's rings and gaps
// let inner_radius: f32 = 1.806e5; // Inner boundary of the Halo ring
// let halo_main_gap: f32 = 1.22e5; // Gap between Halo and Main rings
// let main_amalthea_gap: f32 = 1.8e5; // Gap between Main and Amalthea Gossamer ring
// let amalthea_thebe_gap: f32 = 2.24e5; // Gap between Amalthea and Thebe Gossamer rings
// let outer_radius: f32 = 2.2e5; // Outer boundary of Thebe Gossamer ring
// let metis_notch_inner: f32 = 1.28e5; // Inner boundary of Metis notch
// let metis_notch_outer: f32 = 1.29e5; // Outer boundary of Metis notch
//
// // Density function
// if radius > outer_radius {
// return 0.0; // Beyond rings, density is zero
// } else if radius > metis_notch_inner && radius < metis_notch_outer {
// return 0.2; // Notch at the orbit of Metis
// } else if radius > halo_main_gap && radius < main_amalthea_gap {
// return 1.0; // Highest density in Main ring
// } else if radius > amalthea_thebe_gap {
// return 0.5; // Lower density in Thebe Gossamer ring
// } else {
// return 0.75; // Moderate density in other areas
// }
//}
// Smooth step function for edge smoothing
fn smooth_edge(start: f32, end: f32, value: f32, smooth_factor: f32) -> f32 {
var x = ((value - start) / (end - start));
if x < 0 {
return 0.0;
}
if x > 1 {
return 1.0;
}
return pow(x, smooth_factor) * (3.0 - 2.0 * x);
}
fn ring_density(radius: f32) -> f32 {
let halo_inner: f32 = 92.0;
let halo_outer: f32 = 122.5;
let main_inner: f32 = 122.5;
let main_outer: f32 = 129.0;
let amalthea_inner: f32 = 129.0;
let amalthea_outer: f32 = 182.0;
let thebe_inner: f32 = 129.0;
let thebe_outer: f32 = 229.0;
let metis_notch_center: f32 = 128.0;
let metis_notch_width: f32 = 0.6;
let halo_brightness: f32 = 0.4;
let main_brightness: f32 = 1.0;
let almathea_brightness: f32 = 0.3;
let thebe_brightness: f32 = 0.2;
let smooth_factor: f32 = 2.0; // Smooth edges
if radius < halo_inner || radius > thebe_outer {
return 0.0;
} else if radius >= halo_inner && radius <= halo_outer {
return halo_brightness * smooth_edge(halo_inner, halo_outer, radius, smooth_factor);
} else if radius >= main_inner && radius <= main_outer {
var metis_notch_effect = 1.0;
if radius > metis_notch_center - metis_notch_width * 0.5 && radius < metis_notch_center + metis_notch_width * 0.5 {
metis_notch_effect = 0.5 * (1.0 - smooth_edge(metis_notch_center - metis_notch_width * 0.5, metis_notch_center + metis_notch_width * 0.5, radius, smooth_factor));
}
return main_brightness * metis_notch_effect * smooth_edge(main_inner, main_outer, radius, smooth_factor);
} else if radius >= amalthea_inner && radius <= amalthea_outer {
return almathea_brightness * smooth_edge(amalthea_inner, amalthea_outer, radius, smooth_factor);
} else if radius >= thebe_inner && radius <= thebe_outer {
return thebe_brightness * smooth_edge(thebe_inner, thebe_outer, radius, smooth_factor);
}
return 0.0;
}
2024-04-01 01:45:32 +00:00
fn smooth_edge2(start: f32, end: f32, value: f32) -> f32 {
var x: f32 = (value - start) / (end - start);
return 4 * x * x * (1 - x * x);
}
fn ring_density2(radius: f32) -> f32 {
let halo_inner: f32 = 92.0;
let halo_outer: f32 = 122.5;
let main_inner: f32 = 122.5;
let main_outer: f32 = 129.0;
let amalthea_inner: f32 = 129.0;
let amalthea_outer: f32 = 182.0;
let thebe_inner: f32 = 129.0;
let thebe_outer: f32 = 229.0;
let metis_notch_center: f32 = 128.0;
let metis_notch_width: f32 = 0.6;
let halo_brightness: f32 = 0.3;
let main_brightness: f32 = 1.0;
let almathea_brightness: f32 = 0.2;
let thebe_brightness: f32 = 0.2;
let inner_smooth_factor: f32 = 2.0; // Smooth inner edges
let outer_smooth_factor: f32 = 1.5; // Rougher outer edges
var density: f32 = 0.0;
if (radius >= halo_inner && radius <= halo_outer) {
density = halo_brightness * smooth_edge2(halo_inner, halo_outer, radius);
} else if (radius >= main_inner && radius <= main_outer) {
var metis_notch_effect: f32 = 1.0;
if (radius > metis_notch_center - metis_notch_width * 0.5 && radius < metis_notch_center + metis_notch_width * 0.5) {
metis_notch_effect = 0.5 * (1.0 - smooth_edge2(metis_notch_center - metis_notch_width * 0.5, metis_notch_center + metis_notch_width * 0.5, radius));
}
density = main_brightness * metis_notch_effect * smooth_edge2(main_inner, main_outer, radius);
} else {
if (radius >= amalthea_inner && radius <= amalthea_outer) {
density = almathea_brightness * smooth_edge2(amalthea_inner, amalthea_outer, radius);
}
if (radius >= thebe_inner && radius <= thebe_outer) {
density += thebe_brightness * smooth_edge2(thebe_inner, thebe_outer, radius);
}
}
return density;
}
@fragment
fn fragment(in: VertexOutput) -> @location(0) vec4<f32> {
let jupiter_percent = jupiter_radius / ring_radius;
let color = vec3<f32>(0.3, 0.3, 0.3);
2024-04-01 01:12:59 +00:00
var alpha = 0.04;
let r_uv = 2 * distance(in.uv, vec2<f32>(0.5));
let r = r_uv * ring_radius / jupiter_radius * jupiter_radius_Mm;
2024-04-01 01:45:32 +00:00
alpha *= ring_density2(r);
2024-04-01 01:12:59 +00:00
if alpha <= 0.0 {
return vec4<f32>(color, alpha);
}
2024-04-01 01:12:59 +00:00
//alpha *= (sin(11*r / 0.71 * 3.1415) + 1) / 2;
//alpha *= (cos(r / 0.72 * 3.1415) + 1) / 2;
if in.uv[0] < 0.5 {
let dist = (0.5 - in.uv[0]) * 2.0; // 0.0=jupiter's center, 1.0=edge of the ring
let side_dist = abs(in.uv[1] - 0.5);
let cutoff = 0.5 * jupiter_percent * cos(dist);
if side_dist < cutoff {
return vec4<f32>(color, 0.0);
}
let fuzzy_boundary = 0.01;
if side_dist < cutoff + fuzzy_boundary {
return vec4<f32>(color, alpha * (side_dist - cutoff) / fuzzy_boundary);
}
}
return vec4<f32>(color, alpha);
}