// ▄████████▄ + ███ + ▄█████████ ███ + // ███▀ ▀███ + + ███ ███▀ + ███ + + // ███ + ███ ███ ███ █████████ ███ ███ ███ ███ // ███ +███ ███ ███ ███ ███▐██████ ███ ███ ███ // ███ + ███ ███+ ███ +███ ███ + ███ ███ + ███ // ███▄ ▄███ ███▄ ███ ███ + ███ + ███ ███▄ ███ // ▀████████▀ + ▀███████ ███▄ ███▄ ▀████ ▀███████ // + + + ███ // + ▀████████████████████████████████████████████████████▀ // // This module manages the messy, impure parts of our universe. use crate::prelude::*; use std::time::SystemTime; pub const OXYGEN_USE_KG_PER_S: f32 = 1e-5; pub const OXY_S: f32 = OXYGEN_USE_KG_PER_S; pub const OXY_M: f32 = OXYGEN_USE_KG_PER_S * 60.0; pub const OXY_H: f32 = OXYGEN_USE_KG_PER_S * 60.0 * 60.0; pub const OXY_D: f32 = OXYGEN_USE_KG_PER_S * 60.0 * 60.0 * 24.0; pub const LIGHTYEAR2METER: f64 = 9_460_730_472_580_800.0; pub const PARSEC2METER: f64 = 3.0857e16; pub const DIST_JUPTER_SUN: f64 = 778479.0e6; pub const EARTH_GRAVITY: f32 = 9.81; pub const C: f64 = 299792458.0; // m/s pub const G: f64 = 6.6743015e-11; // Gravitational constant in Nm²/kg² pub const SOL_RADIUS: f64 = 696_300_000.0; pub const JUPITER_RADIUS: f64 = 71_492_000.0; pub const JUPITER_RING_RADIUS: f64 = 229_000_000.0; pub const EARTH_RADIUS: f64 = 6_371_000.0; pub const SOL_MASS: f64 = 1.9885e30; pub const JUPITER_MASS: f64 = 1.8982e27; pub const EARTH_MASS: f64 = 5.972168e24; // Arbitrary offset to time epoch, to generate more interesting orbital arrangements: pub const ORBIT_TIME_OFFSET: f64 = 614533234154.0; // Each star's values: (x, y, z, magnitude, color index, distance, name) pub const STARS: &[(f32, f32, f32, f32, f32, f32, &str)] = &include!("data/stars.in"); pub fn star_color_index_to_rgb(color_index: f32) -> (f32, f32, f32) { let temperature = 4600.0 * ((1.0 / (0.92 * color_index + 1.7)) + (1.0 / (0.92 * color_index + 0.62))); let (red, green, blue) = if temperature <= 6600.0 { let red = 255.0; let green = 99.4708025861 * (temperature / 100.0).ln() - 161.1195681661; let blue = if temperature <= 2000.0 { 0.0 } else { 138.5177312231 * ((temperature / 100.0) - 10.0).ln() - 305.0447927307 }; (red, green, blue) } else { let red = 329.698727446 * ((temperature / 100.0 - 60.0).powf(-0.1332047592)); let green = 288.1221695283 * ((temperature / 100.0 - 60.0).powf(-0.0755148492)); let blue = 255.0; (red, green, blue) }; let clamp = |x: f32| -> f32 { (x / 255.0).max(0.0).min(1.0) }; return (clamp(red), clamp(green), clamp(blue)); } fn smooth_edge(start: f32, end: f32, value: f32) -> f32 { let x: f32 = (value - start) / (end - start); return 4.0 * x * x * (1.0 - x * x); } pub fn ring_density(radius: f32) -> f32 { // NOTE: Keep this in sync with assets/shaders/jupiters_rings.wgsl // Input: distance to center of jupiter in million meters // Output: relative brightness of the ring let halo_inner: f32 = 92.0; let halo_outer: f32 = 122.5; let main_inner: f32 = 122.5; let main_outer: f32 = 129.0; let amalthea_inner: f32 = 129.0; let amalthea_outer: f32 = 182.0; let thebe_inner: f32 = 129.0; let thebe_outer: f32 = 229.0; let metis_notch_center: f32 = 128.0; let metis_notch_width: f32 = 0.1; let halo_brightness: f32 = 0.75; let main_brightness: f32 = 1.0; let almathea_brightness: f32 = 0.5; let thebe_brightness: f32 = 0.5; let mut density: f32 = 0.0; if radius >= halo_inner && radius <= halo_outer { density = halo_brightness * smooth_edge(halo_inner, halo_outer, radius); } else if radius >= main_inner && radius <= main_outer { let mut metis_notch_effect: f32 = 1.0; if radius > metis_notch_center - metis_notch_width * 0.5 && radius < metis_notch_center + metis_notch_width * 0.5 { metis_notch_effect = 0.8 * (1.0 - smooth_edge( metis_notch_center - metis_notch_width * 0.5, metis_notch_center + metis_notch_width * 0.5, radius, )); } density = main_brightness * metis_notch_effect * smooth_edge(main_inner, main_outer, radius); } else { if radius >= amalthea_inner && radius <= amalthea_outer { density = almathea_brightness * smooth_edge(amalthea_inner, amalthea_outer, radius); } if radius >= thebe_inner && radius <= thebe_outer { density += thebe_brightness * smooth_edge(thebe_inner, thebe_outer, radius); } } return density; } pub fn readable_distance(distance: f64) -> String { let abs_distance = distance.abs(); if abs_distance > LIGHTYEAR2METER * 0.01 { let lightyears = distance / LIGHTYEAR2METER; return format!("{lightyears:.2} ly"); } if abs_distance >= 1.0e10 { let gigameters = distance * 1.0e-9; return format!("{gigameters:.1}Gm"); } if abs_distance >= 1.0e7 { let megameters = distance * 1.0e-6; return format!("{megameters:.1}Mm"); } if abs_distance >= 1.0e4 { let kilometers = distance * 1.0e-3; return format!("{kilometers:.1}km"); } return format!("{distance:.1}m"); } pub fn readable_speed(speed: f64) -> String { let abs = speed.abs(); if abs > C * 0.0005 { let lightyears = abs / C; return format!("{lightyears:.4} c"); } else { let kmh = abs * 1.0e-3 * 3600.0; return format!("{kmh:.0} km/h"); } } pub fn lorentz_factor(speed: f64) -> f64 { (1.0 - (speed.powf(2.0) / C.powf(2.0))).powf(-0.5) } pub fn lorentz_factor_custom_c(speed: f64, c: f64) -> f64 { (1.0 - (speed.powf(2.0) / c.powf(2.0))).powf(-0.5) } pub fn inverse_lorentz_factor(speed: f64) -> f64 { (1.0 - (speed.powf(2.0) / C.powf(2.0))).sqrt() } pub fn inverse_lorentz_factor_custom_c(speed: f64, c: f64) -> f64 { (1.0 - (speed.powf(2.0) / c.powf(2.0))).sqrt() } /// Calculates orbit duration in seconds, with given parameters, assuming circular orbit. pub fn simple_orbital_period(mass: f64, distance: f64) -> f64 { return 2.0 * PI * (distance.powf(3.0) / (G * mass)).sqrt(); } /// Calculates the orbital velocity with given parameters, assuming prograde circular orbit. pub fn orbital_velocity(coords: DVec3, mass: f64) -> DVec3 { let r = coords.length(); let speed = (G * mass / r).sqrt(); // This generates a perpendicular orbital vector in the prograde direction let perpendicular = DVec3::new(coords.z, 0.0, -coords.x).normalize(); return perpendicular * speed; } /// Calculates the acceleration towards a mass in m/s pub fn gravitational_acceleration(coords: DVec3, mass: f64) -> DVec3 { let r_squared = coords.length_squared(); let acceleration_magnitude = G * mass / r_squared; return -acceleration_magnitude * (coords / r_squared.sqrt()); } #[test] fn test_gravitational_acceleration() { let coords = DVec3::new(EARTH_RADIUS, 0.0, 0.0); let mass = EARTH_MASS; let g = gravitational_acceleration(coords, mass); let g_rounded = (g * 10.0).round() / 10.0; assert_eq!(g_rounded, DVec3::new(-9.8, 0.0, 0.0)); } pub fn phase_dist_to_coords(phase_radians: f64, distance: f64) -> DVec3 { return DVec3::new( distance * phase_radians.cos(), 0.0, distance * phase_radians.sin(), ); } pub fn pos_offset_for_orbiting_body( orbit_distance: f64, orbited_mass: Option, phase_offset: Option, ) -> DVec3 { let r = orbit_distance; let mut phase_radians = 0.0f64; if let Some(phase_offset) = phase_offset { phase_radians += phase_offset } if let Some(mass) = orbited_mass { if let Ok(epoch) = SystemTime::now().duration_since(SystemTime::UNIX_EPOCH) { let orbital_period = simple_orbital_period(mass, r); let now = epoch.as_secs_f64() + ORBIT_TIME_OFFSET; phase_radians += PI * 2.0 * (now % orbital_period) / orbital_period; } else { eprintln!("WARNING: Can't determine current time in calculate_position_offset_for_orbiting_body()."); } } return phase_dist_to_coords(-phase_radians, r); } /// Assumes the "front" (as seen in blender) is pointing at the orbited mass pub fn rotation_for_orbiting_body(orbit_distance: f64, mass: f64) -> f64 { if let Ok(epoch) = SystemTime::now().duration_since(SystemTime::UNIX_EPOCH) { let orbital_period = nature::simple_orbital_period(mass, orbit_distance); let now = epoch.as_secs_f64() + ORBIT_TIME_OFFSET; PI * 2.0 * (now % orbital_period) / orbital_period - PI * 0.5 } else { eprintln!("WARNING: Can't determine current time in calculate_position_offset_for_orbiting_body()."); 0.0 } }