search-mastodon/mastodon-get-posts.org

71 lines
1.8 KiB
Org Mode
Raw Normal View History

2023-08-08 05:58:15 +00:00
* Import
#+begin_src python
2023-08-08 06:02:02 +00:00
import json # to parse data
import requests # to get data
2023-08-08 06:08:17 +00:00
import pandas as pd # work with data
2023-08-08 05:58:15 +00:00
from mastodon import Mastodon # to get the user id
from datetime import date # to get the current date
import subprocess # for getting access token from pass
from bs4 import BeautifulSoup # to more easily read the html output
#+end_src
* Get/refresh data
- I used [[https://jrashford.com/2023/02/13/how-to-scrape-mastodon-timelines-using-python-and-pandas/][this]] setup.
2023-08-08 06:02:02 +00:00
- Only have to be refreshed (run) every now and then
2023-08-08 05:58:15 +00:00
#+begin_src python
# Get access token
personal_access_token=subprocess.check_output(["pass", 'mastodon/access_token']).strip().decode('utf-8')
# Set up access
instance = "https://social.edu.nl"
mastodon = Mastodon(api_base_url=instance, access_token=personal_access_token)
# Get user's info
me = mastodon.me()
my_id = me["id"]
URL = f'{instance}/api/v1/accounts/{my_id}/statuses'
params = {
'limit': 40
}
results = []
while True:
r = requests.get(URL, params=params)
toots = json.loads(r.text)
if len(toots) == 0:
break
results.extend(toots)
max_id = toots[-1]['id']
params['max_id'] = max_id
df = pd.DataFrame(results)
current_date = date.today()
current_dir="/".join(inspect.getfile(inspect.currentframe()).split("/")[:-1])
file_name_save=f'{current_dir}/mydata_{current_date}.csv'
df.to_csv(file_name_save, index=False)
#+end_src
* Use/search data
2023-08-08 06:02:02 +00:00
- You don't have to load all data for every search.
2023-08-08 05:58:15 +00:00
#+begin_src python
df=pd.read_csv(file_name_save)
query="test"
# Search for words
for i in df['content']:
if isinstance(i,str):
if query in i:
soup = BeautifulSoup(i, 'html.parser')
readable_text = soup.get_text(separator=' ', strip=True)
print(readable_text)
print("----")
#+end_src