muele-marlin/Marlin/configuration_store.cpp

948 lines
30 KiB
C++
Raw Normal View History

/**
2016-03-24 18:01:20 +00:00
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
2015-04-26 04:04:54 +00:00
* configuration_store.cpp
*
* Configuration and EEPROM storage
*
2015-04-03 23:38:05 +00:00
* IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
* in the functions below, also increment the version number. This makes sure that
* the default values are used whenever there is a change to the data, to prevent
* wrong data being written to the variables.
*
* ALSO: Variables in the Store and Retrieve sections must be in the same order.
* If a feature is disabled, some data must still be written that, when read,
* either sets a Sane Default, or results in No Change to the existing value.
*
*/
#define EEPROM_VERSION "V23"
2015-04-03 23:38:05 +00:00
/**
* V23 EEPROM Layout:
*
* 100 Version (char x4)
*
2016-04-28 01:06:32 +00:00
* 104 M92 XYZE planner.axis_steps_per_unit (float x4)
* 120 M203 XYZE planner.max_feedrate (float x4)
* 136 M201 XYZE planner.max_acceleration_units_per_sq_second (uint32_t x4)
* 152 M204 P planner.acceleration (float)
* 156 M204 R planner.retract_acceleration (float)
* 160 M204 T planner.travel_acceleration (float)
* 164 M205 S planner.min_feedrate (float)
* 168 M205 T planner.min_travel_feedrate (float)
* 172 M205 B planner.min_segment_time (ulong)
* 176 M205 X planner.max_xy_jerk (float)
* 180 M205 Z planner.max_z_jerk (float)
* 184 M205 E planner.max_e_jerk (float)
* 188 M206 XYZ home_offset (float x3)
*
2015-03-15 22:18:11 +00:00
* Mesh bed leveling:
* 200 M420 S active (bool)
* 201 z_offset (float) (added in V23)
* 205 mesh_num_x (uint8 as set in firmware)
* 206 mesh_num_y (uint8 as set in firmware)
* 207 M421 XYZ z_values[][] (float x9, by default)
*
* AUTO BED LEVELING
* 243 M851 zprobe_zoffset (float)
2015-03-15 22:18:11 +00:00
*
* DELTA:
* 247 M666 XYZ endstop_adj (float x3)
* 259 M665 R delta_radius (float)
* 263 M665 L delta_diagonal_rod (float)
* 267 M665 S delta_segments_per_second (float)
* 271 M665 A delta_diagonal_rod_trim_tower_1 (float)
* 275 M665 B delta_diagonal_rod_trim_tower_2 (float)
* 279 M665 C delta_diagonal_rod_trim_tower_3 (float)
*
* Z_DUAL_ENDSTOPS:
* 283 M666 Z z_endstop_adj (float)
*
* ULTIPANEL:
* 287 M145 S0 H plaPreheatHotendTemp (int)
* 289 M145 S0 B plaPreheatHPBTemp (int)
* 291 M145 S0 F plaPreheatFanSpeed (int)
* 293 M145 S1 H absPreheatHotendTemp (int)
* 295 M145 S1 B absPreheatHPBTemp (int)
* 297 M145 S1 F absPreheatFanSpeed (int)
*
* PIDTEMP:
* 299 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
* 315 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
* 331 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
* 347 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
* 363 M301 L lpq_len (int)
*
2015-04-03 23:38:05 +00:00
* PIDTEMPBED:
2016-04-29 01:18:13 +00:00
* 365 M304 PID thermalManager.bedKp, thermalManager.bedKi, thermalManager.bedKd (float x3)
2015-04-03 23:38:05 +00:00
*
* DOGLCD:
* 377 M250 C lcd_contrast (int)
*
* SCARA:
* 379 M365 XYZ axis_scaling (float x3)
*
* FWRETRACT:
* 391 M209 S autoretract_enabled (bool)
* 392 M207 S retract_length (float)
* 396 M207 W retract_length_swap (float)
* 400 M207 F retract_feedrate (float)
* 404 M207 Z retract_zlift (float)
* 408 M208 S retract_recover_length (float)
* 412 M208 W retract_recover_length_swap (float)
* 416 M208 F retract_recover_feedrate (float)
*
* Volumetric Extrusion:
* 420 M200 D volumetric_enabled (bool)
* 421 M200 T D filament_size (float x4) (T0..3)
*
* 437 This Slot is Available!
*
*/
#include "Marlin.h"
#include "language.h"
#include "planner.h"
#include "temperature.h"
#include "ultralcd.h"
2015-04-26 04:04:54 +00:00
#include "configuration_store.h"
#if ENABLED(MESH_BED_LEVELING)
#include "mesh_bed_leveling.h"
#endif
2015-03-15 22:18:11 +00:00
void _EEPROM_writeData(int &pos, uint8_t* value, uint8_t size) {
uint8_t c;
while (size--) {
eeprom_write_byte((unsigned char*)pos, *value);
2015-01-29 06:27:15 +00:00
c = eeprom_read_byte((unsigned char*)pos);
if (c != *value) {
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
}
pos++;
value++;
};
}
void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size) {
do {
*value = eeprom_read_byte((unsigned char*)pos);
pos++;
value++;
} while (--size);
}
#define EEPROM_WRITE_VAR(pos, value) _EEPROM_writeData(pos, (uint8_t*)&value, sizeof(value))
#define EEPROM_READ_VAR(pos, value) _EEPROM_readData(pos, (uint8_t*)&value, sizeof(value))
/**
* Store Configuration Settings - M500
*/
#define DUMMY_PID_VALUE 3000.0f
#define EEPROM_OFFSET 100
#if ENABLED(EEPROM_SETTINGS)
/**
* Store Configuration Settings - M500
*/
void Config_StoreSettings() {
float dummy = 0.0f;
char ver[4] = "000";
int i = EEPROM_OFFSET;
EEPROM_WRITE_VAR(i, ver); // invalidate data first
2016-04-28 01:06:32 +00:00
EEPROM_WRITE_VAR(i, planner.axis_steps_per_unit);
EEPROM_WRITE_VAR(i, planner.max_feedrate);
EEPROM_WRITE_VAR(i, planner.max_acceleration_units_per_sq_second);
EEPROM_WRITE_VAR(i, planner.acceleration);
EEPROM_WRITE_VAR(i, planner.retract_acceleration);
EEPROM_WRITE_VAR(i, planner.travel_acceleration);
EEPROM_WRITE_VAR(i, planner.min_feedrate);
EEPROM_WRITE_VAR(i, planner.min_travel_feedrate);
EEPROM_WRITE_VAR(i, planner.min_segment_time);
EEPROM_WRITE_VAR(i, planner.max_xy_jerk);
EEPROM_WRITE_VAR(i, planner.max_z_jerk);
EEPROM_WRITE_VAR(i, planner.max_e_jerk);
EEPROM_WRITE_VAR(i, home_offset);
uint8_t mesh_num_x = 3;
uint8_t mesh_num_y = 3;
#if ENABLED(MESH_BED_LEVELING)
// Compile time test that sizeof(mbl.z_values) is as expected
2016-03-13 06:38:55 +00:00
typedef char c_assert[(sizeof(mbl.z_values) == (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS) * sizeof(dummy)) ? 1 : -1];
mesh_num_x = MESH_NUM_X_POINTS;
mesh_num_y = MESH_NUM_Y_POINTS;
2015-03-15 22:18:11 +00:00
EEPROM_WRITE_VAR(i, mbl.active);
EEPROM_WRITE_VAR(i, mbl.z_offset);
EEPROM_WRITE_VAR(i, mesh_num_x);
EEPROM_WRITE_VAR(i, mesh_num_y);
2015-03-15 22:18:11 +00:00
EEPROM_WRITE_VAR(i, mbl.z_values);
#else
uint8_t dummy_uint8 = 0;
dummy = 0.0f;
EEPROM_WRITE_VAR(i, dummy_uint8);
EEPROM_WRITE_VAR(i, dummy);
EEPROM_WRITE_VAR(i, mesh_num_x);
EEPROM_WRITE_VAR(i, mesh_num_y);
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_WRITE_VAR(i, dummy);
#endif // MESH_BED_LEVELING
#if DISABLED(AUTO_BED_LEVELING_FEATURE)
float zprobe_zoffset = 0;
#endif
EEPROM_WRITE_VAR(i, zprobe_zoffset);
2015-03-15 22:18:11 +00:00
#if ENABLED(DELTA)
EEPROM_WRITE_VAR(i, endstop_adj); // 3 floats
EEPROM_WRITE_VAR(i, delta_radius); // 1 float
EEPROM_WRITE_VAR(i, delta_diagonal_rod); // 1 float
EEPROM_WRITE_VAR(i, delta_segments_per_second); // 1 float
EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_1); // 1 float
EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_2); // 1 float
EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_3); // 1 float
#elif ENABLED(Z_DUAL_ENDSTOPS)
EEPROM_WRITE_VAR(i, z_endstop_adj); // 1 float
dummy = 0.0f;
for (uint8_t q = 8; q--;) EEPROM_WRITE_VAR(i, dummy);
#else
dummy = 0.0f;
for (uint8_t q = 9; q--;) EEPROM_WRITE_VAR(i, dummy);
#endif
#if DISABLED(ULTIPANEL)
int plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP, plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP, plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED,
absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP, absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP, absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
#endif // !ULTIPANEL
EEPROM_WRITE_VAR(i, plaPreheatHotendTemp);
EEPROM_WRITE_VAR(i, plaPreheatHPBTemp);
EEPROM_WRITE_VAR(i, plaPreheatFanSpeed);
EEPROM_WRITE_VAR(i, absPreheatHotendTemp);
EEPROM_WRITE_VAR(i, absPreheatHPBTemp);
EEPROM_WRITE_VAR(i, absPreheatFanSpeed);
for (uint8_t e = 0; e < 4; e++) {
#if ENABLED(PIDTEMP)
if (e < EXTRUDERS) {
EEPROM_WRITE_VAR(i, PID_PARAM(Kp, e));
EEPROM_WRITE_VAR(i, PID_PARAM(Ki, e));
EEPROM_WRITE_VAR(i, PID_PARAM(Kd, e));
#if ENABLED(PID_ADD_EXTRUSION_RATE)
EEPROM_WRITE_VAR(i, PID_PARAM(Kc, e));
#else
dummy = 1.0f; // 1.0 = default kc
2015-02-06 22:43:58 +00:00
EEPROM_WRITE_VAR(i, dummy);
#endif
}
2015-04-03 23:38:05 +00:00
else
#endif // !PIDTEMP
2015-04-03 23:38:05 +00:00
{
dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
2016-04-29 01:18:13 +00:00
EEPROM_WRITE_VAR(i, dummy); // Kp
dummy = 0.0f;
2016-04-29 01:18:13 +00:00
for (uint8_t q = 3; q--;) EEPROM_WRITE_VAR(i, dummy); // Ki, Kd, Kc
}
} // Extruders Loop
2015-08-31 02:04:30 +00:00
#if DISABLED(PID_ADD_EXTRUSION_RATE)
int lpq_len = 20;
#endif
EEPROM_WRITE_VAR(i, lpq_len);
#if DISABLED(PIDTEMPBED)
2016-04-29 01:18:13 +00:00
dummy = DUMMY_PID_VALUE;
for (uint8_t q = 3; q--;) EEPROM_WRITE_VAR(i, dummy);
#else
EEPROM_WRITE_VAR(i, thermalManager.bedKp);
EEPROM_WRITE_VAR(i, thermalManager.bedKi);
EEPROM_WRITE_VAR(i, thermalManager.bedKd);
2015-04-03 23:38:05 +00:00
#endif
#if DISABLED(HAS_LCD_CONTRAST)
const int lcd_contrast = 32;
#endif
EEPROM_WRITE_VAR(i, lcd_contrast);
#if ENABLED(SCARA)
EEPROM_WRITE_VAR(i, axis_scaling); // 3 floats
#else
dummy = 1.0f;
EEPROM_WRITE_VAR(i, dummy);
#endif
#if ENABLED(FWRETRACT)
EEPROM_WRITE_VAR(i, autoretract_enabled);
EEPROM_WRITE_VAR(i, retract_length);
#if EXTRUDERS > 1
EEPROM_WRITE_VAR(i, retract_length_swap);
#else
dummy = 0.0f;
EEPROM_WRITE_VAR(i, dummy);
#endif
EEPROM_WRITE_VAR(i, retract_feedrate);
EEPROM_WRITE_VAR(i, retract_zlift);
EEPROM_WRITE_VAR(i, retract_recover_length);
#if EXTRUDERS > 1
EEPROM_WRITE_VAR(i, retract_recover_length_swap);
#else
dummy = 0.0f;
EEPROM_WRITE_VAR(i, dummy);
#endif
EEPROM_WRITE_VAR(i, retract_recover_feedrate);
#endif // FWRETRACT
EEPROM_WRITE_VAR(i, volumetric_enabled);
// Save filament sizes
for (uint8_t q = 0; q < 4; q++) {
if (q < EXTRUDERS) dummy = filament_size[q];
EEPROM_WRITE_VAR(i, dummy);
}
char ver2[4] = EEPROM_VERSION;
int j = EEPROM_OFFSET;
EEPROM_WRITE_VAR(j, ver2); // validate data
// Report storage size
SERIAL_ECHO_START;
2016-04-07 05:40:45 +00:00
SERIAL_ECHOPAIR("Settings Stored (", i);
SERIAL_ECHOLNPGM(" bytes)");
}
/**
* Retrieve Configuration Settings - M501
*/
void Config_RetrieveSettings() {
int i = EEPROM_OFFSET;
char stored_ver[4];
char ver[4] = EEPROM_VERSION;
EEPROM_READ_VAR(i, stored_ver); //read stored version
// SERIAL_ECHOLN("Version: [" << ver << "] Stored version: [" << stored_ver << "]");
if (strncmp(ver, stored_ver, 3) != 0) {
Config_ResetDefault();
}
else {
float dummy = 0;
// version number match
2016-04-28 01:06:32 +00:00
EEPROM_READ_VAR(i, planner.axis_steps_per_unit);
EEPROM_READ_VAR(i, planner.max_feedrate);
EEPROM_READ_VAR(i, planner.max_acceleration_units_per_sq_second);
2015-03-15 22:18:11 +00:00
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
2016-04-28 01:06:32 +00:00
planner.reset_acceleration_rates();
EEPROM_READ_VAR(i, planner.acceleration);
EEPROM_READ_VAR(i, planner.retract_acceleration);
EEPROM_READ_VAR(i, planner.travel_acceleration);
EEPROM_READ_VAR(i, planner.min_feedrate);
EEPROM_READ_VAR(i, planner.min_travel_feedrate);
EEPROM_READ_VAR(i, planner.min_segment_time);
EEPROM_READ_VAR(i, planner.max_xy_jerk);
EEPROM_READ_VAR(i, planner.max_z_jerk);
EEPROM_READ_VAR(i, planner.max_e_jerk);
EEPROM_READ_VAR(i, home_offset);
2015-04-27 04:06:04 +00:00
uint8_t dummy_uint8 = 0, mesh_num_x = 0, mesh_num_y = 0;
EEPROM_READ_VAR(i, dummy_uint8);
EEPROM_READ_VAR(i, dummy);
2015-04-27 04:06:04 +00:00
EEPROM_READ_VAR(i, mesh_num_x);
EEPROM_READ_VAR(i, mesh_num_y);
#if ENABLED(MESH_BED_LEVELING)
2015-04-27 04:06:04 +00:00
mbl.active = dummy_uint8;
mbl.z_offset = dummy;
2015-04-27 04:06:04 +00:00
if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) {
EEPROM_READ_VAR(i, mbl.z_values);
2015-04-27 04:06:04 +00:00
} else {
mbl.reset();
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ_VAR(i, dummy);
}
#else
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ_VAR(i, dummy);
2015-04-27 04:06:04 +00:00
#endif // MESH_BED_LEVELING
2015-03-15 22:18:11 +00:00
#if DISABLED(AUTO_BED_LEVELING_FEATURE)
float zprobe_zoffset = 0;
#endif
EEPROM_READ_VAR(i, zprobe_zoffset);
#if ENABLED(DELTA)
EEPROM_READ_VAR(i, endstop_adj); // 3 floats
EEPROM_READ_VAR(i, delta_radius); // 1 float
EEPROM_READ_VAR(i, delta_diagonal_rod); // 1 float
EEPROM_READ_VAR(i, delta_segments_per_second); // 1 float
EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_1); // 1 float
EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_2); // 1 float
EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_3); // 1 float
recalc_delta_settings(delta_radius, delta_diagonal_rod);
#elif ENABLED(Z_DUAL_ENDSTOPS)
EEPROM_READ_VAR(i, z_endstop_adj);
dummy = 0.0f;
for (uint8_t q=8; q--;) EEPROM_READ_VAR(i, dummy);
#else
dummy = 0.0f;
for (uint8_t q=9; q--;) EEPROM_READ_VAR(i, dummy);
#endif
#if DISABLED(ULTIPANEL)
int plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed,
absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed;
#endif
EEPROM_READ_VAR(i, plaPreheatHotendTemp);
EEPROM_READ_VAR(i, plaPreheatHPBTemp);
EEPROM_READ_VAR(i, plaPreheatFanSpeed);
EEPROM_READ_VAR(i, absPreheatHotendTemp);
EEPROM_READ_VAR(i, absPreheatHPBTemp);
EEPROM_READ_VAR(i, absPreheatFanSpeed);
#if ENABLED(PIDTEMP)
for (uint8_t e = 0; e < 4; e++) { // 4 = max extruders currently supported by Marlin
2015-04-03 23:38:05 +00:00
EEPROM_READ_VAR(i, dummy); // Kp
if (e < EXTRUDERS && dummy != DUMMY_PID_VALUE) {
// do not need to scale PID values as the values in EEPROM are already scaled
PID_PARAM(Kp, e) = dummy;
EEPROM_READ_VAR(i, PID_PARAM(Ki, e));
EEPROM_READ_VAR(i, PID_PARAM(Kd, e));
#if ENABLED(PID_ADD_EXTRUSION_RATE)
EEPROM_READ_VAR(i, PID_PARAM(Kc, e));
#else
EEPROM_READ_VAR(i, dummy);
#endif
}
else {
for (uint8_t q=3; q--;) EEPROM_READ_VAR(i, dummy); // Ki, Kd, Kc
}
}
#else // !PIDTEMP
// 4 x 4 = 16 slots for PID parameters
for (uint8_t q=16; q--;) EEPROM_READ_VAR(i, dummy); // 4x Kp, Ki, Kd, Kc
#endif // !PIDTEMP
2015-08-31 02:04:30 +00:00
#if DISABLED(PID_ADD_EXTRUSION_RATE)
int lpq_len;
#endif
EEPROM_READ_VAR(i, lpq_len);
2016-04-29 01:18:13 +00:00
#if ENABLED(PIDTEMPBED)
EEPROM_READ_VAR(i, dummy); // bedKp
if (dummy != DUMMY_PID_VALUE) {
thermalManager.bedKp = dummy;
EEPROM_READ_VAR(i, thermalManager.bedKi);
EEPROM_READ_VAR(i, thermalManager.bedKd);
}
#else
for (uint8_t q=3; q--;) EEPROM_READ_VAR(i, dummy); // bedKp, bedKi, bedKd
2015-04-03 23:38:05 +00:00
#endif
#if DISABLED(HAS_LCD_CONTRAST)
int lcd_contrast;
#endif
EEPROM_READ_VAR(i, lcd_contrast);
#if ENABLED(SCARA)
EEPROM_READ_VAR(i, axis_scaling); // 3 floats
#else
EEPROM_READ_VAR(i, dummy);
#endif
#if ENABLED(FWRETRACT)
EEPROM_READ_VAR(i, autoretract_enabled);
EEPROM_READ_VAR(i, retract_length);
#if EXTRUDERS > 1
EEPROM_READ_VAR(i, retract_length_swap);
#else
EEPROM_READ_VAR(i, dummy);
#endif
EEPROM_READ_VAR(i, retract_feedrate);
EEPROM_READ_VAR(i, retract_zlift);
EEPROM_READ_VAR(i, retract_recover_length);
#if EXTRUDERS > 1
EEPROM_READ_VAR(i, retract_recover_length_swap);
#else
EEPROM_READ_VAR(i, dummy);
#endif
EEPROM_READ_VAR(i, retract_recover_feedrate);
#endif // FWRETRACT
EEPROM_READ_VAR(i, volumetric_enabled);
for (uint8_t q = 0; q < 4; q++) {
EEPROM_READ_VAR(i, dummy);
if (q < EXTRUDERS) filament_size[q] = dummy;
}
calculate_volumetric_multipliers();
2016-04-29 01:18:13 +00:00
// Call thermalManager.updatePID (similar to when we have processed M301)
thermalManager.updatePID();
// Report settings retrieved and length
SERIAL_ECHO_START;
SERIAL_ECHO(ver);
2016-04-07 05:40:45 +00:00
SERIAL_ECHOPAIR(" stored settings retrieved (", i);
SERIAL_ECHOLNPGM(" bytes)");
}
#if ENABLED(EEPROM_CHITCHAT)
Config_PrintSettings();
#endif
}
#endif // EEPROM_SETTINGS
/**
* Reset Configuration Settings - M502
*/
void Config_ResetDefault() {
float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT;
float tmp2[] = DEFAULT_MAX_FEEDRATE;
long tmp3[] = DEFAULT_MAX_ACCELERATION;
2015-08-11 16:38:26 +00:00
for (uint8_t i = 0; i < NUM_AXIS; i++) {
2016-04-28 01:06:32 +00:00
planner.axis_steps_per_unit[i] = tmp1[i];
planner.max_feedrate[i] = tmp2[i];
planner.max_acceleration_units_per_sq_second[i] = tmp3[i];
#if ENABLED(SCARA)
2015-07-22 22:50:20 +00:00
if (i < COUNT(axis_scaling))
axis_scaling[i] = 1;
#endif
}
// steps per sq second need to be updated to agree with the units per sq second
2016-04-28 01:06:32 +00:00
planner.reset_acceleration_rates();
planner.acceleration = DEFAULT_ACCELERATION;
planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
planner.min_feedrate = DEFAULT_MINIMUMFEEDRATE;
planner.min_segment_time = DEFAULT_MINSEGMENTTIME;
planner.min_travel_feedrate = DEFAULT_MINTRAVELFEEDRATE;
planner.max_xy_jerk = DEFAULT_XYJERK;
planner.max_z_jerk = DEFAULT_ZJERK;
planner.max_e_jerk = DEFAULT_EJERK;
home_offset[X_AXIS] = home_offset[Y_AXIS] = home_offset[Z_AXIS] = 0;
#if ENABLED(MESH_BED_LEVELING)
2016-04-13 08:25:17 +00:00
mbl.active = false;
2015-03-26 06:06:33 +00:00
#endif
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
2015-03-26 06:06:33 +00:00
#endif
2015-03-15 22:18:11 +00:00
#if ENABLED(DELTA)
endstop_adj[X_AXIS] = endstop_adj[Y_AXIS] = endstop_adj[Z_AXIS] = 0;
delta_radius = DELTA_RADIUS;
delta_diagonal_rod = DELTA_DIAGONAL_ROD;
delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
recalc_delta_settings(delta_radius, delta_diagonal_rod);
#elif ENABLED(Z_DUAL_ENDSTOPS)
z_endstop_adj = 0;
#endif
#if ENABLED(ULTIPANEL)
plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP;
plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP;
plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED;
absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP;
absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP;
absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
#endif
#if ENABLED(HAS_LCD_CONTRAST)
lcd_contrast = DEFAULT_LCD_CONTRAST;
#endif
#if ENABLED(PIDTEMP)
#if ENABLED(PID_PARAMS_PER_EXTRUDER)
for (uint8_t e = 0; e < EXTRUDERS; e++)
#else
int e = 0; UNUSED(e); // only need to write once
#endif
{
PID_PARAM(Kp, e) = DEFAULT_Kp;
PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
#if ENABLED(PID_ADD_EXTRUSION_RATE)
PID_PARAM(Kc, e) = DEFAULT_Kc;
#endif
}
2015-08-31 02:04:30 +00:00
#if ENABLED(PID_ADD_EXTRUSION_RATE)
lpq_len = 20; // default last-position-queue size
#endif
2016-04-29 01:18:13 +00:00
// call thermalManager.updatePID (similar to when we have processed M301)
thermalManager.updatePID();
#endif // PIDTEMP
#if ENABLED(PIDTEMPBED)
2016-04-29 01:18:13 +00:00
thermalManager.bedKp = DEFAULT_bedKp;
thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
2015-04-03 23:38:05 +00:00
#endif
#if ENABLED(FWRETRACT)
autoretract_enabled = false;
retract_length = RETRACT_LENGTH;
#if EXTRUDERS > 1
retract_length_swap = RETRACT_LENGTH_SWAP;
#endif
retract_feedrate = RETRACT_FEEDRATE;
retract_zlift = RETRACT_ZLIFT;
retract_recover_length = RETRACT_RECOVER_LENGTH;
#if EXTRUDERS > 1
retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
#endif
retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
#endif
volumetric_enabled = false;
for (uint8_t q = 0; q < COUNT(filament_size); q++)
2015-07-24 01:08:06 +00:00
filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
calculate_volumetric_multipliers();
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
}
#if DISABLED(DISABLE_M503)
/**
* Print Configuration Settings - M503
*/
#define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START; }while(0)
void Config_PrintSettings(bool forReplay) {
// Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Steps per unit:");
CONFIG_ECHO_START;
}
2016-04-28 01:06:32 +00:00
SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_unit[X_AXIS]);
SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_unit[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_unit[Z_AXIS]);
SERIAL_ECHOPAIR(" E", planner.axis_steps_per_unit[E_AXIS]);
SERIAL_EOL;
CONFIG_ECHO_START;
#if ENABLED(SCARA)
if (!forReplay) {
SERIAL_ECHOLNPGM("Scaling factors:");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M365 X", axis_scaling[X_AXIS]);
SERIAL_ECHOPAIR(" Y", axis_scaling[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", axis_scaling[Z_AXIS]);
SERIAL_EOL;
CONFIG_ECHO_START;
#endif // SCARA
if (!forReplay) {
SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
CONFIG_ECHO_START;
}
2016-04-28 01:06:32 +00:00
SERIAL_ECHOPAIR(" M203 X", planner.max_feedrate[X_AXIS]);
SERIAL_ECHOPAIR(" Y", planner.max_feedrate[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", planner.max_feedrate[Z_AXIS]);
SERIAL_ECHOPAIR(" E", planner.max_feedrate[E_AXIS]);
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
CONFIG_ECHO_START;
}
2016-04-28 01:06:32 +00:00
SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_units_per_sq_second[X_AXIS]);
SERIAL_ECHOPAIR(" Y", planner.max_acceleration_units_per_sq_second[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", planner.max_acceleration_units_per_sq_second[Z_AXIS]);
SERIAL_ECHOPAIR(" E", planner.max_acceleration_units_per_sq_second[E_AXIS]);
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
CONFIG_ECHO_START;
}
2016-04-28 01:06:32 +00:00
SERIAL_ECHOPAIR(" M204 P", planner.acceleration);
SERIAL_ECHOPAIR(" R", planner.retract_acceleration);
SERIAL_ECHOPAIR(" T", planner.travel_acceleration);
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
CONFIG_ECHO_START;
}
2016-04-28 01:06:32 +00:00
SERIAL_ECHOPAIR(" M205 S", planner.min_feedrate);
SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate);
SERIAL_ECHOPAIR(" B", planner.min_segment_time);
SERIAL_ECHOPAIR(" X", planner.max_xy_jerk);
SERIAL_ECHOPAIR(" Z", planner.max_z_jerk);
SERIAL_ECHOPAIR(" E", planner.max_e_jerk);
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Home offset (mm):");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS]);
SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]);
SERIAL_EOL;
#if ENABLED(MESH_BED_LEVELING)
if (!forReplay) {
SERIAL_ECHOLNPGM("Mesh bed leveling:");
CONFIG_ECHO_START;
}
2016-04-07 05:40:45 +00:00
SERIAL_ECHOPAIR(" M420 S", mbl.active);
SERIAL_ECHOPAIR(" X", MESH_NUM_X_POINTS);
SERIAL_ECHOPAIR(" Y", MESH_NUM_Y_POINTS);
SERIAL_EOL;
2016-05-22 00:38:14 +00:00
for (uint8_t py = 0; py < MESH_NUM_Y_POINTS; py++) {
for (uint8_t px = 0; px < MESH_NUM_X_POINTS; px++) {
CONFIG_ECHO_START;
2016-05-22 00:38:14 +00:00
SERIAL_ECHOPAIR(" M421 X", mbl.get_probe_x(px));
SERIAL_ECHOPAIR(" Y", mbl.get_probe_y(py));
SERIAL_ECHOPGM(" Z");
2016-05-22 00:38:14 +00:00
SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
SERIAL_EOL;
}
}
#endif
#if ENABLED(DELTA)
CONFIG_ECHO_START;
if (!forReplay) {
2015-04-09 09:04:06 +00:00
SERIAL_ECHOLNPGM("Endstop adjustment (mm):");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS]);
SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS]);
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Delta settings: L=diagonal_rod, R=radius, S=segments_per_second, ABC=diagonal_rod_trim_tower_[123]");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod);
SERIAL_ECHOPAIR(" R", delta_radius);
SERIAL_ECHOPAIR(" S", delta_segments_per_second);
SERIAL_ECHOPAIR(" A", delta_diagonal_rod_trim_tower_1);
SERIAL_ECHOPAIR(" B", delta_diagonal_rod_trim_tower_2);
SERIAL_ECHOPAIR(" C", delta_diagonal_rod_trim_tower_3);
SERIAL_EOL;
#elif ENABLED(Z_DUAL_ENDSTOPS)
CONFIG_ECHO_START;
if (!forReplay) {
2015-04-09 09:04:06 +00:00
SERIAL_ECHOLNPGM("Z2 Endstop adjustment (mm):");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M666 Z", z_endstop_adj);
SERIAL_EOL;
#endif // DELTA
#if ENABLED(ULTIPANEL)
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Material heatup parameters:");
CONFIG_ECHO_START;
}
2016-04-07 05:40:45 +00:00
SERIAL_ECHOPAIR(" M145 S0 H", plaPreheatHotendTemp);
SERIAL_ECHOPAIR(" B", plaPreheatHPBTemp);
SERIAL_ECHOPAIR(" F", plaPreheatFanSpeed);
SERIAL_EOL;
CONFIG_ECHO_START;
2016-04-07 05:40:45 +00:00
SERIAL_ECHOPAIR(" M145 S1 H", absPreheatHotendTemp);
SERIAL_ECHOPAIR(" B", absPreheatHPBTemp);
SERIAL_ECHOPAIR(" F", absPreheatFanSpeed);
SERIAL_EOL;
#endif // ULTIPANEL
#if HAS_PID_HEATING
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("PID settings:");
}
#if ENABLED(PIDTEMP)
#if EXTRUDERS > 1
if (forReplay) {
for (uint8_t i = 0; i < EXTRUDERS; i++) {
CONFIG_ECHO_START;
2016-04-07 05:40:45 +00:00
SERIAL_ECHOPAIR(" M301 E", i);
SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, i));
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, i)));
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, i)));
#if ENABLED(PID_ADD_EXTRUSION_RATE)
SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, i));
2015-08-31 02:04:30 +00:00
if (i == 0) SERIAL_ECHOPAIR(" L", lpq_len);
#endif
SERIAL_EOL;
}
}
else
#endif // EXTRUDERS > 1
// !forReplay || EXTRUDERS == 1
{
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
#if ENABLED(PID_ADD_EXTRUSION_RATE)
SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
2015-08-31 02:04:30 +00:00
SERIAL_ECHOPAIR(" L", lpq_len);
#endif
SERIAL_EOL;
}
#endif // PIDTEMP
#if ENABLED(PIDTEMPBED)
CONFIG_ECHO_START;
2016-04-29 01:18:13 +00:00
SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
2015-04-03 23:38:05 +00:00
SERIAL_EOL;
#endif
#endif // PIDTEMP || PIDTEMPBED
#if ENABLED(HAS_LCD_CONTRAST)
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("LCD Contrast:");
CONFIG_ECHO_START;
}
2016-04-07 05:40:45 +00:00
SERIAL_ECHOPAIR(" M250 C", lcd_contrast);
SERIAL_EOL;
2015-04-03 23:38:05 +00:00
#endif
#if ENABLED(FWRETRACT)
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
CONFIG_ECHO_START;
}
2015-04-03 23:41:58 +00:00
SERIAL_ECHOPAIR(" M207 S", retract_length);
#if EXTRUDERS > 1
SERIAL_ECHOPAIR(" W", retract_length_swap);
#endif
SERIAL_ECHOPAIR(" F", retract_feedrate * 60);
SERIAL_ECHOPAIR(" Z", retract_zlift);
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
CONFIG_ECHO_START;
}
2015-04-03 23:41:58 +00:00
SERIAL_ECHOPAIR(" M208 S", retract_recover_length);
#if EXTRUDERS > 1
SERIAL_ECHOPAIR(" W", retract_recover_length_swap);
#endif
SERIAL_ECHOPAIR(" F", retract_recover_feedrate * 60);
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
CONFIG_ECHO_START;
}
2016-04-07 05:40:45 +00:00
SERIAL_ECHOPAIR(" M209 S", (autoretract_enabled ? 1 : 0));
SERIAL_EOL;
#endif // FWRETRACT
/**
* Volumetric extrusion M200
*/
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOPGM("Filament settings:");
if (volumetric_enabled)
SERIAL_EOL;
else
SERIAL_ECHOLNPGM(" Disabled");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
SERIAL_EOL;
#if EXTRUDERS > 1
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
SERIAL_EOL;
#if EXTRUDERS > 2
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
SERIAL_EOL;
#if EXTRUDERS > 3
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
SERIAL_EOL;
#endif
#endif
#endif
if (!volumetric_enabled) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM(" M200 D0");
}
/**
* Auto Bed Leveling
*/
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
#if ENABLED(CUSTOM_M_CODES)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
}
CONFIG_ECHO_START;
2015-06-07 21:36:23 +00:00
SERIAL_ECHOPAIR(" M" STRINGIFY(CUSTOM_M_CODE_SET_Z_PROBE_OFFSET) " Z", zprobe_zoffset);
#else
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOPAIR("Z-Probe Offset (mm):", zprobe_zoffset);
}
#endif
SERIAL_EOL;
#endif
}
#endif // !DISABLE_M503