muele-marlin/Marlin/temperature.h

115 lines
4.5 KiB
C
Raw Normal View History

2011-11-05 19:21:09 +00:00
/*
temperature.h - temperature controller
Part of Marlin
Copyright (c) 2011 Erik van der Zalm
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef temperature_h
#define temperature_h
#include "Marlin.h"
#include "fastio.h"
2011-11-05 19:21:09 +00:00
#ifdef PID_ADD_EXTRUSION_RATE
#include "stepper.h"
#endif
// public functions
void tp_init(); //initialise the heating
void manage_heater(); //it is critical that this is called periodically.
enum TempSensor {TEMPSENSOR_HOTEND_0=0,TEMPSENSOR_BED=1, TEMPSENSOR_HOTEND_1=2};
//low leven conversion routines
// do not use this routines and variables outsie of temperature.cpp
2011-11-05 19:21:09 +00:00
int temp2analog(int celsius);
int temp2analogBed(int celsius);
float analog2temp(int raw);
float analog2tempBed(int raw);
extern int target_raw[3];
extern int current_raw[3];
extern float Kp,Ki,Kd,Kc;
#ifdef PIDTEMP
2011-11-06 14:10:29 +00:00
extern float pid_setpoint ;
#endif
#ifdef WATCHPERIOD
extern int watch_raw[3] ;
extern unsigned long watchmillis;
#endif
//high level conversion routines, for use outside of temperature.cpp
//inline so that there is no performance decrease.
//deg=degreeCelsius
2011-11-05 19:21:09 +00:00
2011-11-27 15:04:58 +00:00
FORCE_INLINE float degHotend0(){ return analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);};
FORCE_INLINE float degHotend1(){ return analog2temp(current_raw[TEMPSENSOR_HOTEND_1]);};
FORCE_INLINE float degBed() { return analog2tempBed(current_raw[TEMPSENSOR_BED]);};
2011-11-28 20:51:44 +00:00
FORCE_INLINE float degHotend(uint8_t extruder){
2011-11-26 16:33:25 +00:00
if(extruder == 0) return analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);
if(extruder == 1) return analog2temp(current_raw[TEMPSENSOR_HOTEND_1]);
};
2011-11-27 15:04:58 +00:00
FORCE_INLINE float degTargetHotend0() { return analog2temp(target_raw[TEMPSENSOR_HOTEND_0]);};
FORCE_INLINE float degTargetHotend1() { return analog2temp(target_raw[TEMPSENSOR_HOTEND_1]);};
2011-11-28 21:11:17 +00:00
FORCE_INLINE float degTargetHotend(uint8_t extruder){
2011-11-26 16:33:25 +00:00
if(extruder == 0) return analog2temp(target_raw[TEMPSENSOR_HOTEND_0]);
if(extruder == 1) return analog2temp(target_raw[TEMPSENSOR_HOTEND_1]);
};
2011-11-28 20:51:44 +00:00
FORCE_INLINE float degTargetBed() { return analog2tempBed(target_raw[TEMPSENSOR_BED]);};
2011-11-27 15:04:58 +00:00
FORCE_INLINE void setTargetHotend0(const float &celsius)
{
target_raw[TEMPSENSOR_HOTEND_0]=temp2analog(celsius);
#ifdef PIDTEMP
pid_setpoint = celsius;
#endif //PIDTEMP
};
2011-11-27 15:04:58 +00:00
FORCE_INLINE void setTargetHotend1(const float &celsius) { target_raw[TEMPSENSOR_HOTEND_1]=temp2analog(celsius);};
2011-11-28 20:51:44 +00:00
FORCE_INLINE float setTargetHotend(const float &celcius, uint8_t extruder){
2011-11-26 16:33:25 +00:00
if(extruder == 0) setTargetHotend0(celcius);
if(extruder == 1) setTargetHotend1(celcius);
};
2011-11-28 20:51:44 +00:00
FORCE_INLINE void setTargetBed(const float &celsius) { target_raw[TEMPSENSOR_BED ]=temp2analogBed(celsius);};
2011-11-27 15:04:58 +00:00
FORCE_INLINE bool isHeatingHotend0() {return target_raw[TEMPSENSOR_HOTEND_0] > current_raw[TEMPSENSOR_HOTEND_0];};
FORCE_INLINE bool isHeatingHotend1() {return target_raw[TEMPSENSOR_HOTEND_1] > current_raw[TEMPSENSOR_HOTEND_1];};
2011-11-28 20:51:44 +00:00
FORCE_INLINE float isHeatingHotend(uint8_t extruder){
2011-11-26 16:33:25 +00:00
if(extruder == 0) return target_raw[TEMPSENSOR_HOTEND_0] > current_raw[TEMPSENSOR_HOTEND_0];
if(extruder == 1) return target_raw[TEMPSENSOR_HOTEND_1] > current_raw[TEMPSENSOR_HOTEND_1];
};
2011-11-28 20:51:44 +00:00
FORCE_INLINE bool isHeatingBed() {return target_raw[TEMPSENSOR_BED] > current_raw[TEMPSENSOR_BED];};
2011-11-27 15:04:58 +00:00
FORCE_INLINE bool isCoolingHotend0() {return target_raw[TEMPSENSOR_HOTEND_0] < current_raw[TEMPSENSOR_HOTEND_0];};
FORCE_INLINE bool isCoolingHotend1() {return target_raw[TEMPSENSOR_HOTEND_1] < current_raw[TEMPSENSOR_HOTEND_1];};
2011-11-28 20:51:44 +00:00
FORCE_INLINE float isCoolingHotend(uint8_t extruder){
2011-11-26 16:33:25 +00:00
if(extruder == 0) return target_raw[TEMPSENSOR_HOTEND_0] < current_raw[TEMPSENSOR_HOTEND_0];
if(extruder == 1) return target_raw[TEMPSENSOR_HOTEND_1] < current_raw[TEMPSENSOR_HOTEND_1];
};
2011-11-28 20:51:44 +00:00
FORCE_INLINE bool isCoolingBed() {return target_raw[TEMPSENSOR_BED] < current_raw[TEMPSENSOR_BED];};
2011-11-06 14:10:29 +00:00
void disable_heater();
void setWatch();
void updatePID();
2011-11-06 14:10:29 +00:00
#endif