muele-marlin/Marlin/src/gcode/calibrate/G76_M871.cpp

334 lines
12 KiB
C++
Raw Normal View History

/**
* Marlin 3D Printer Firmware
2020-02-03 14:00:57 +00:00
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* G76_M871.cpp - Temperature calibration/compensation for z-probing
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(PROBE_TEMP_COMPENSATION)
#include "../gcode.h"
#include "../../module/motion.h"
#include "../../module/planner.h"
#include "../../module/probe.h"
#include "../../feature/bedlevel/bedlevel.h"
#include "../../module/temperature.h"
#include "../../module/probe.h"
2020-03-13 21:29:29 +00:00
#include "../../feature/probe_temp_comp.h"
/**
* G76: calibrate probe and/or bed temperature offsets
* Notes:
* - When calibrating probe, bed temperature is held constant.
* Compensation values are deltas to first probe measurement at probe temp. = 30°C.
* - When calibrating bed, probe temperature is held constant.
* Compensation values are deltas to first probe measurement at bed temp. = 60°C.
* - The hotend will not be heated at any time.
* - On my Prusa MK3S clone I put a piece of paper between the probe and the hotend
* so the hotend fan would not cool my probe constantly. Alternativly you could just
* make sure the fan is not running while running the calibration process.
*
* Probe calibration:
* - Moves probe to cooldown point.
* - Heats up bed to 100°C.
* - Moves probe to probing point (1mm above heatbed).
* - Waits until probe reaches target temperature (30°C).
* - Does a z-probing (=base value) and increases target temperature by 5°C.
* - Waits until probe reaches increased target temperature.
* - Does a z-probing (delta to base value will be a compensation value) and increases target temperature by 5°C.
* - Repeats last two steps until max. temperature reached or timeout (i.e. probe does not heat up any further).
* - Compensation values of higher temperatures will be extrapolated (using linear regression first).
* While this is not exact by any means it is still better than simply using the last compensation value.
*
* Bed calibration:
* - Moves probe to cooldown point.
* - Heats up bed to 60°C.
* - Moves probe to probing point (1mm above heatbed).
* - Waits until probe reaches target temperature (30°C).
* - Does a z-probing (=base value) and increases bed temperature by 5°C.
* - Moves probe to cooldown point.
* - Waits until probe is below 30°C and bed has reached target temperature.
* - Moves probe to probing point and waits until it reaches target temperature (30°C).
* - Does a z-probing (delta to base value will be a compensation value) and increases bed temperature by 5°C.
* - Repeats last four points until max. bed temperature reached (110°C) or timeout.
* - Compensation values of higher temperatures will be extrapolated (using linear regression first).
* While this is not exact by any means it is still better than simply using the last compensation value.
*
* G76 [B | P]
* - no flag - Both calibration procedures will be run.
* - `B` - Run bed temperature calibration.
* - `P` - Run probe temperature calibration.
*/
void GcodeSuite::G76() {
// Check if heated bed is available and z-homing is done with probe
#if TEMP_SENSOR_BED == 0 || !(HOMING_Z_WITH_PROBE)
return;
#endif
2020-02-28 04:47:44 +00:00
auto report_temps = [](millis_t &ntr, millis_t timeout=0) {
idle_no_sleep();
const millis_t ms = millis();
if (ELAPSED(ms, ntr)) {
ntr = ms + 1000;
thermalManager.print_heater_states(active_extruder);
}
return (timeout && ELAPSED(ms, timeout));
};
auto wait_for_temps = [&](const float tb, const float tp, millis_t &ntr, const millis_t timeout=0) {
SERIAL_ECHOLNPGM("Waiting for bed and probe temperature.");
while (fabs(thermalManager.degBed() - tb) > 0.1f || thermalManager.degProbe() > tp)
if (report_temps(ntr, timeout)) return true;
return false;
};
auto g76_probe = [](const TempSensorID sid, uint16_t &targ, const xy_pos_t &nozpos) {
2020-02-28 04:47:44 +00:00
do_blocking_move_to_z(5.0); // Raise nozzle before probing
const float measured_z = probe.probe_at_point(nozpos, PROBE_PT_NONE, 0, false); // verbose=0, probe_relative=false
2020-02-28 04:47:44 +00:00
if (isnan(measured_z))
SERIAL_ECHOLNPGM("!Received NAN. Aborting.");
else {
2020-02-28 04:47:44 +00:00
SERIAL_ECHOLNPAIR_F("Measured: ", measured_z);
if (targ == cali_info_init[sid].start_temp)
temp_comp.prepare_new_calibration(measured_z);
else
temp_comp.push_back_new_measurement(sid, measured_z);
targ += cali_info_init[sid].temp_res;
}
2020-02-28 04:47:44 +00:00
return measured_z;
};
#if ENABLED(BLTOUCH)
// Make sure any BLTouch error condition is cleared
bltouch_command(BLTOUCH_RESET, BLTOUCH_RESET_DELAY);
set_bltouch_deployed(false);
#endif
2020-02-27 12:44:01 +00:00
bool do_bed_cal = parser.boolval('B'), do_probe_cal = parser.boolval('P');
if (!do_bed_cal && !do_probe_cal) do_bed_cal = do_probe_cal = true;
// Synchronize with planner
planner.synchronize();
const xyz_pos_t parkpos = temp_comp.park_point,
probe_pos_xyz = temp_comp.measure_point + xyz_pos_t({ 0.0f, 0.0f, 0.5f }),
noz_pos_xyz = probe_pos_xyz - probe.offset_xy; // Nozzle position based on probe position
if (do_bed_cal || do_probe_cal) {
// Ensure park position is reachable
2020-02-28 04:47:44 +00:00
bool reachable = position_is_reachable(parkpos) || WITHIN(parkpos.z, Z_MIN_POS - fslop, Z_MAX_POS + fslop);
if (!reachable)
SERIAL_ECHOLNPGM("!Park");
else {
// Ensure probe position is reachable
reachable = probe.can_reach(probe_pos_xyz);
2020-02-28 04:47:44 +00:00
if (!reachable) SERIAL_ECHOLNPGM("!Probe");
}
2020-02-28 04:47:44 +00:00
if (!reachable) {
SERIAL_ECHOLNPGM(" position unreachable - aborting.");
return;
}
2020-02-27 12:44:20 +00:00
process_subcommands_now_P(PSTR("G28"));
}
2020-02-28 04:47:44 +00:00
remember_feedrate_scaling_off();
/******************************************
* Calibrate bed temperature offsets
******************************************/
2020-02-28 04:47:44 +00:00
// Report temperatures every second and handle heating timeouts
millis_t next_temp_report = millis() + 1000;
auto report_targets = [&](const uint16_t tb, const uint16_t tp) {
SERIAL_ECHOLNPAIR("Target Bed:", tb, " Probe:", tp);
};
if (do_bed_cal) {
uint16_t target_bed = cali_info_init[TSI_BED].start_temp,
target_probe = temp_comp.bed_calib_probe_temp;
2020-02-27 12:44:01 +00:00
SERIAL_ECHOLNPGM("Waiting for cooling.");
2020-02-28 04:47:44 +00:00
while (thermalManager.degBed() > target_bed || thermalManager.degProbe() > target_probe)
report_temps(next_temp_report);
// Disable leveling so it won't mess with us
#if HAS_LEVELING
set_bed_leveling_enabled(false);
#endif
2020-02-27 12:44:01 +00:00
for (;;) {
thermalManager.setTargetBed(target_bed);
report_targets(target_bed, target_probe);
// Park nozzle
2020-02-28 04:47:44 +00:00
do_blocking_move_to(parkpos);
// Wait for heatbed to reach target temp and probe to cool below target temp
2020-04-04 00:49:45 +00:00
if (wait_for_temps(target_bed, target_probe, next_temp_report, millis() + MIN_TO_MS(15))) {
2020-02-28 04:47:44 +00:00
SERIAL_ECHOLNPGM("!Bed heating timeout.");
break;
}
2020-02-27 12:18:27 +00:00
// Move the nozzle to the probing point and wait for the probe to reach target temp
do_blocking_move_to(noz_pos_xyz);
SERIAL_ECHOLNPGM("Waiting for probe heating.");
2020-02-28 04:47:44 +00:00
while (thermalManager.degProbe() < target_probe)
report_temps(next_temp_report);
const float measured_z = g76_probe(TSI_BED, target_bed, noz_pos_xyz);
if (isnan(measured_z) || target_bed > BED_MAXTEMP - 10) break;
}
SERIAL_ECHOLNPAIR("Retrieved measurements: ", temp_comp.get_index());
if (temp_comp.finish_calibration(TSI_BED))
SERIAL_ECHOLNPGM("Successfully calibrated bed.");
else
2020-02-27 12:44:01 +00:00
SERIAL_ECHOLNPGM("!Failed to calibrate bed. Values reset.");
// Cleanup
thermalManager.setTargetBed(0);
#if HAS_LEVELING
set_bed_leveling_enabled(true);
#endif
} // do_bed_cal
/********************************************
* Calibrate probe temperature offsets
********************************************/
if (do_probe_cal) {
// Park nozzle
2020-02-28 04:47:44 +00:00
do_blocking_move_to(parkpos);
// Initialize temperatures
2020-02-27 12:44:01 +00:00
const uint16_t target_bed = temp_comp.probe_calib_bed_temp;
thermalManager.setTargetBed(target_bed);
2020-02-27 12:44:01 +00:00
uint16_t target_probe = cali_info_init[TSI_PROBE].start_temp;
report_targets(target_bed, target_probe);
2020-02-27 12:44:01 +00:00
2020-02-28 04:47:44 +00:00
// Wait for heatbed to reach target temp and probe to cool below target temp
wait_for_temps(target_bed, target_probe, next_temp_report);
// Disable leveling so it won't mess with us
#if HAS_LEVELING
set_bed_leveling_enabled(false);
#endif
bool timeout = false;
2020-02-27 12:44:01 +00:00
for (;;) {
// Move probe to probing point and wait for it to reach target temperature
do_blocking_move_to(noz_pos_xyz);
2020-02-27 12:44:01 +00:00
SERIAL_ECHOLNPAIR("Waiting for probe heating. Bed:", target_bed, " Probe:", target_probe);
const millis_t probe_timeout_ms = millis() + 900UL * 1000UL;
while (thermalManager.degProbe() < target_probe) {
2020-02-28 04:47:44 +00:00
if (report_temps(next_temp_report, probe_timeout_ms)) {
2020-02-27 12:44:01 +00:00
SERIAL_ECHOLNPGM("!Probe heating timed out.");
timeout = true;
break;
}
}
if (timeout) break;
const float measured_z = g76_probe(TSI_PROBE, target_probe, noz_pos_xyz);
if (isnan(measured_z) || target_probe > cali_info_init[TSI_PROBE].end_temp) break;
}
SERIAL_ECHOLNPAIR("Retrieved measurements: ", temp_comp.get_index());
if (temp_comp.finish_calibration(TSI_PROBE))
2020-02-27 12:44:01 +00:00
SERIAL_ECHOPGM("Successfully calibrated");
else
2020-02-27 12:44:01 +00:00
SERIAL_ECHOPGM("!Failed to calibrate");
SERIAL_ECHOLNPGM(" probe.");
// Cleanup
thermalManager.setTargetBed(0);
#if HAS_LEVELING
set_bed_leveling_enabled(true);
#endif
SERIAL_ECHOLNPGM("Final compensation values:");
temp_comp.print_offsets();
} // do_probe_cal
2020-02-28 04:47:44 +00:00
restore_feedrate_and_scaling();
}
/**
* M871: Report / reset temperature compensation offsets.
* Note: This does not affect values in EEPROM until M500.
*
* M871 [ R | B | P | E ]
*
* No Parameters - Print current offset values.
*
* Select only one of these flags:
* R - Reset all offsets to zero (i.e., disable compensation).
* B - Manually set offset for bed
* P - Manually set offset for probe
* E - Manually set offset for extruder
*
* With B, P, or E:
* I[index] - Index in the array
* V[value] - Adjustment in µm
*/
void GcodeSuite::M871() {
if (parser.seen('R')) {
// Reset z-probe offsets to factory defaults
temp_comp.clear_all_offsets();
SERIAL_ECHOLNPGM("Offsets reset to default.");
}
else if (parser.seen("BPE")) {
if (!parser.seenval('V')) return;
const int16_t val = parser.value_int();
if (!parser.seenval('I')) return;
const int16_t idx = parser.value_int();
const TempSensorID mod = (parser.seen('B') ? TSI_BED :
#if ENABLED(USE_TEMP_EXT_COMPENSATION)
parser.seen('E') ? TSI_EXT :
#endif
TSI_PROBE
);
if (idx > 0 && temp_comp.set_offset(mod, idx - 1, val))
SERIAL_ECHOLNPAIR("Set value: ", val);
else
SERIAL_ECHOLNPGM("!Invalid index. Failed to set value (note: value at index 0 is constant).");
}
else // Print current Z-probe adjustments. Note: Values in EEPROM might differ.
temp_comp.print_offsets();
}
#endif // PROBE_TEMP_COMPENSATION