muele-marlin/Marlin/src/gcode/feature/L6470/M906.cpp

260 lines
8.8 KiB
C++
Raw Normal View History

2019-01-24 01:06:54 +00:00
/**
* Marlin 3D Printer Firmware
2019-02-12 21:06:53 +00:00
* Copyright (C) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
2019-01-24 01:06:54 +00:00
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if HAS_DRIVER(L6470)
#include "../../gcode.h"
#include "../../../libs/L6470/L6470_Marlin.h"
#include "../../../module/stepper_indirection.h"
#include "../../../module/planner.h"
/**
*
* M906: report or set KVAL_HOLD which sets the maximum effective voltage provided by the
* PWMs to the steppers
*
* J - select which driver(s) to monitor on multi-driver axis
* 0 - (default) monitor all drivers on the axis or E0
* 1 - monitor only X, Y, Z or E1
* 2 - monitor only X2, Y2, Z2 or E2
* 3 - monitor only Z3 or E3
* 4 - monitor only E4
* 5 - monitor only E5
* Xxxx, Yxxx, Zxxx, Exxx - axis to be monitored with displacement
* xxx (1-255) is distance moved on either side of current position
*
* I - over current threshold
* optional - will report current value from driver if not specified
*
* K - value for KVAL_HOLD (0 - 255) (optional)
* optional - will report current value from driver if not specified
*
*/
/**
* Sets KVAL_HOLD wich affects the current being driven through the stepper.
*
* L6470 is used in the STEP-CLOCK mode. KVAL_HOLD is the only KVAL_xxx
* that affects the effective voltage seen by the stepper.
*
*/
/**
* MACRO to fetch information on the items associated with current limiting
* and maximum voltage output.
*
* L6470 can be setup to shutdown if either current threshold is exceeded.
*
* L6470 output current can not be set directly. It is set indirectly by
* setting the maximum effective output voltage.
*
* Effective output voltage is set by PWM duty cycle.
*
* Maximum effective output voltage is affected by MANY variables. The main ones are:
* KVAL_HOLD
* KVAL_RUN
* KVAL_ACC
* KVAL_DEC
* Vs compensation (if enabled)
*/
void L6470_report_current(L6470 &motor, const uint8_t axis) {
if (L6470.spi_abort) return; // don't do anything if set_directions() has occurred
const uint16_t status = motor.getStatus() ;
const uint8_t overcurrent_threshold = (uint8_t)motor.GetParam(L6470_OCD_TH),
stall_threshold = (uint8_t)motor.GetParam(L6470_STALL_TH),
motor_status = (status & (STATUS_MOT_STATUS)) >> 13,
adc_out = motor.GetParam(L6470_ADC_OUT),
adc_out_limited = constrain(adc_out, 8, 24);
const float comp_coef = 1600.0f / adc_out_limited;
const int microsteps = _BV(motor.GetParam(L6470_STEP_MODE) & 0x07);
char temp_buf[80];
L6470.say_axis(axis);
#if ENABLED(L6470_CHITCHAT)
sprintf_P(temp_buf, PSTR(" status: %4x "), status);
SERIAL_ECHO(temp_buf);
print_bin(status);
#endif
sprintf_P(temp_buf, PSTR("\n...OverCurrent Threshold: %2d (%4d mA)"), overcurrent_threshold, (overcurrent_threshold + 1) * 375);
SERIAL_ECHO(temp_buf);
sprintf_P(temp_buf, PSTR(" Stall Threshold: %2d (%7.2f mA)"), stall_threshold, (stall_threshold + 1) * 31.25);
SERIAL_ECHO(temp_buf);
SERIAL_ECHOPGM(" Motor Status: ");
const char * const stat_str;
switch (motor_status) {
default:
case 0: stat_str = PSTR("stopped"); break;
case 1: stat_str = PSTR("accelerating"); break;
case 2: stat_str = PSTR("decelerating"); break;
case 3: stat_str = PSTR("at constant speed"); break;
}
serialprintPGM(stat_str);
SERIAL_EOL();
SERIAL_ECHOPAIR("...microsteps: ", microsteps);
SERIAL_ECHOPAIR(" ADC_OUT: ", adc_out);
SERIAL_ECHOPGM(" Vs_compensation: ");
serialprintPGM((motor.GetParam(L6470_CONFIG) & CONFIG_EN_VSCOMP) ? PSTR("ENABLED ") : PSTR("DISABLED"));
sprintf_P(temp_buf, PSTR(" Compensation coefficient: ~%4.2f\n"), comp_coef * 0.01f);
SERIAL_ECHO(temp_buf);
SERIAL_ECHOPAIR("...KVAL_HOLD: ", motor.GetParam(L6470_KVAL_HOLD));
SERIAL_ECHOPAIR(" KVAL_RUN : ", motor.GetParam(L6470_KVAL_RUN));
SERIAL_ECHOPAIR(" KVAL_ACC: ", motor.GetParam(L6470_KVAL_ACC));
SERIAL_ECHOPAIR(" KVAL_DEC: ", motor.GetParam(L6470_KVAL_DEC));
SERIAL_ECHOPGM(" V motor max = ");
switch (motor_status) {
case 0: sprintf_P(temp_buf, PSTR(" %4.1f%% (KVAL_HOLD)\n"), float(motor.GetParam(L6470_KVAL_HOLD)) * 100 / 256); break;
case 1: sprintf_P(temp_buf, PSTR(" %4.1f%% (KVAL_RUN) \n"), float(motor.GetParam(L6470_KVAL_RUN)) * 100 / 256); break;
case 2: sprintf_P(temp_buf, PSTR(" %4.1f%% (KVAL_ACC) \n"), float(motor.GetParam(L6470_KVAL_ACC)) * 100 / 256); break;
case 3: sprintf_P(temp_buf, PSTR(" %4.1f%% (KVAL_DEC) \n"), float(motor.GetParam(L6470_KVAL_DEC)) * 100 / 256); break;
}
SERIAL_ECHO(temp_buf);
}
void GcodeSuite::M906() {
#define L6470_SET_KVAL_HOLD(Q) stepper##Q.SetParam(L6470_KVAL_HOLD, value)
L6470_ECHOLNPGM("M906");
bool report_current = true;
#if HAS_DRIVER(L6470)
const uint8_t index = parser.byteval('I');
#endif
LOOP_XYZE(i) if (uint8_t value = parser.byteval(axis_codes[i])) {
report_current = false;
if (planner.has_blocks_queued() || planner.cleaning_buffer_counter) {
SERIAL_ECHOLNPGM("ERROR - can't set KVAL_HOLD while steppers are moving");
return;
}
switch (i) {
case X_AXIS:
#if AXIS_DRIVER_TYPE_X(L6470)
if (index == 0) L6470_SET_KVAL_HOLD(X);
#endif
#if AXIS_DRIVER_TYPE_X2(L6470)
if (index == 1) L6470_SET_KVAL_HOLD(X2);
#endif
break;
case Y_AXIS:
#if AXIS_DRIVER_TYPE_Y(L6470)
if (index == 0) L6470_SET_KVAL_HOLD(Y);
#endif
#if AXIS_DRIVER_TYPE_Y2(L6470)
if (index == 1) L6470_SET_KVAL_HOLD(Y2);
#endif
break;
case Z_AXIS:
#if AXIS_DRIVER_TYPE_Z(L6470)
if (index == 0) L6470_SET_KVAL_HOLD(Z);
#endif
#if AXIS_DRIVER_TYPE_Z2(L6470)
if (index == 1) L6470_SET_KVAL_HOLD(Z2);
#endif
#if AXIS_DRIVER_TYPE_Z3(L6470)
if (index == 2) L6470_SET_KVAL_HOLD(Z3);
#endif
break;
case E_AXIS: {
const int8_t target_extruder = get_target_extruder_from_command();
if (target_extruder < 0) return;
switch (target_extruder) {
#if AXIS_DRIVER_TYPE_E0(L6470)
case 0: L6470_SET_KVAL_HOLD(E0); break;
#endif
#if AXIS_DRIVER_TYPE_E1(L6470)
case 1: L6470_SET_KVAL_HOLD(E1); break;
#endif
#if AXIS_DRIVER_TYPE_E2(L6470)
case 2: L6470_SET_KVAL_HOLD(E2); break;
#endif
#if AXIS_DRIVER_TYPE_E3(L6470)
case 3: L6470_SET_KVAL_HOLD(E3); break;
#endif
#if AXIS_DRIVER_TYPE_E4(L6470)
case 4: L6470_SET_KVAL_HOLD(E4); break;
#endif
#if AXIS_DRIVER_TYPE_E5(L6470)
case 5: L6470_SET_KVAL_HOLD(E5); break;
#endif
}
} break;
}
}
if (report_current) {
#define L6470_REPORT_CURRENT(Q) L6470_report_current(stepper##Q, Q)
L6470.spi_active = true; // let set_directions() know we're in the middle of a series of SPI transfers
#if AXIS_DRIVER_TYPE_X(L6470)
L6470_REPORT_CURRENT(X);
#endif
#if AXIS_DRIVER_TYPE_X2(L6470)
L6470_REPORT_CURRENT(X2);
#endif
#if AXIS_DRIVER_TYPE_Y(L6470)
L6470_REPORT_CURRENT(Y);
#endif
#if AXIS_DRIVER_TYPE_Y2(L6470)
L6470_REPORT_CURRENT(Y2);
#endif
#if AXIS_DRIVER_TYPE_Z(L6470)
L6470_REPORT_CURRENT(Z);
#endif
#if AXIS_DRIVER_TYPE_Z2(L6470)
L6470_REPORT_CURRENT(Z2);
#endif
#if AXIS_DRIVER_TYPE_Z3(L6470)
L6470_REPORT_CURRENT(Z3);
#endif
#if AXIS_DRIVER_TYPE_E0(L6470)
L6470_REPORT_CURRENT(E0);
#endif
#if AXIS_DRIVER_TYPE_E1(L6470)
L6470_REPORT_CURRENT(E1);
#endif
#if AXIS_DRIVER_TYPE_E2(L6470)
L6470_REPORT_CURRENT(E2);
#endif
#if AXIS_DRIVER_TYPE_E3(L6470)
L6470_REPORT_CURRENT(E3);
#endif
#if AXIS_DRIVER_TYPE_E4(L6470)
L6470_REPORT_CURRENT(E4);
#endif
#if AXIS_DRIVER_TYPE_E5(L6470)
L6470_REPORT_CURRENT(E5);
#endif
L6470.spi_active = false; // done with all SPI transfers - clear handshake flags
L6470.spi_abort = false;
}
}
#endif // HAS_DRIVER(L6470)