muele-marlin/Marlin/src/gcode/calibrate/G34_M422.cpp

287 lines
8.7 KiB
C++
Raw Normal View History

/**
* Marlin 3D Printer Firmware
2019-02-12 21:06:53 +00:00
* Copyright (C) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(Z_STEPPER_AUTO_ALIGN)
#include "../gcode.h"
#include "../../module/delta.h"
#include "../../module/motion.h"
#include "../../module/stepper.h"
#include "../../module/endstops.h"
#if HOTENDS > 1
#include "../../module/tool_change.h"
#endif
#if HAS_BED_PROBE
#include "../../module/probe.h"
#endif
#if HAS_LEVELING
#include "../../feature/bedlevel/bedlevel.h"
#endif
float z_auto_align_xpos[Z_STEPPER_COUNT] = Z_STEPPER_ALIGN_X,
z_auto_align_ypos[Z_STEPPER_COUNT] = Z_STEPPER_ALIGN_Y;
inline void set_all_z_lock(const bool lock) {
stepper.set_z_lock(lock);
stepper.set_z2_lock(lock);
#if ENABLED(Z_TRIPLE_STEPPER_DRIVERS)
stepper.set_z3_lock(lock);
#endif
}
/**
* G34: Z-Stepper automatic alignment
*
* Parameters: I<iterations> T<accuracy> A<amplification>
*/
void GcodeSuite::G34() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOLNPGM(">>> G34");
log_machine_info();
}
#endif
do { // break out on error
if (!TEST(axis_known_position, X_AXIS) || !TEST(axis_known_position, Y_AXIS)) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> XY homing required.");
#endif
break;
}
const int8_t z_auto_align_iterations = parser.intval('I', Z_STEPPER_ALIGN_ITERATIONS);
if (!WITHIN(z_auto_align_iterations, 1, 30)) {
SERIAL_ECHOLNPGM("?(I)teration out of bounds (1-30).");
break;
}
const float z_auto_align_accuracy = parser.floatval('T', Z_STEPPER_ALIGN_ACC);
if (!WITHIN(z_auto_align_accuracy, 0.01f, 1.0f)) {
SERIAL_ECHOLNPGM("?(T)arget accuracy out of bounds (0.01-1.0).");
break;
}
const float z_auto_align_amplification = parser.floatval('A', Z_STEPPER_ALIGN_AMP);
if (!WITHIN(ABS(z_auto_align_amplification), 0.5f, 2.0f)) {
SERIAL_ECHOLNPGM("?(A)mplification out of bounds (0.5-2.0).");
break;
}
// Wait for planner moves to finish!
planner.synchronize();
// Disable the leveling matrix before auto-aligning
#if HAS_LEVELING
#if ENABLED(RESTORE_LEVELING_AFTER_G34)
const bool leveling_was_active = planner.leveling_active;
#endif
set_bed_leveling_enabled(false);
#endif
#if ENABLED(CNC_WORKSPACE_PLANES)
workspace_plane = PLANE_XY;
#endif
#if ENABLED(BLTOUCH)
bltouch_command(BLTOUCH_RESET);
set_bltouch_deployed(false);
#endif
// Always home with tool 0 active
#if HOTENDS > 1
const uint8_t old_tool_index = active_extruder;
tool_change(0, 0, true);
#endif
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
extruder_duplication_enabled = false;
#endif
// Remember corrections to determine errors on each iteration
float last_z_align_move[Z_STEPPER_COUNT] = ARRAY_N(Z_STEPPER_COUNT, 10000.0f, 10000.0f, 10000.0f),
z_measured[Z_STEPPER_COUNT] = { 0 };
bool err_break = false;
for (uint8_t iteration = 0; iteration < z_auto_align_iterations; ++iteration) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> probing all positions.");
#endif
// Reset minimum value
float z_measured_min = 100000.0f;
// For each iteration go through all probe positions (one per Z-Stepper)
for (uint8_t zstepper = 0; zstepper < Z_STEPPER_COUNT; ++zstepper) {
// Probe a Z height for each stepper
z_measured[zstepper] = probe_pt(z_auto_align_xpos[zstepper], z_auto_align_ypos[zstepper], PROBE_PT_RAISE, 0, false);
// Stop on error
if (isnan(z_measured[zstepper])) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> PROBING FAILED!");
#endif
err_break = true;
break;
}
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("> Z", int(zstepper + 1));
SERIAL_ECHOLNPAIR(" measured position is ", z_measured[zstepper]);
}
#endif
// Remember the maximum position to calculate the correction
z_measured_min = MIN(z_measured_min, z_measured[zstepper]);
}
if (err_break) break;
// Remember the current z position to return to
float z_original_position = current_position[Z_AXIS];
// Iterations can stop early if all corrections are below required accuracy
bool success_break = true;
// Correct stepper offsets and re-iterate
for (uint8_t zstepper = 0; zstepper < Z_STEPPER_COUNT; ++zstepper) {
stepper.set_separate_multi_axis(true);
set_all_z_lock(true); // Steppers will be enabled separately
// Calculate current stepper move
const float z_align_move = z_measured[zstepper] - z_measured_min,
z_align_abs = ABS(z_align_move);
// Check for lost accuracy compared to last move
if (last_z_align_move[zstepper] < z_align_abs - 1.0) {
// Stop here
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> detected decreasing accuracy.");
#endif
err_break = true;
break;
}
else
last_z_align_move[zstepper] = z_align_abs;
// Only stop early if all measured points achieve accuracy target
if (z_align_abs > z_auto_align_accuracy) success_break = false;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("> Z", int(zstepper + 1));
SERIAL_ECHOLNPAIR(" corrected by ", z_align_move);
}
#endif
switch (zstepper) {
case 0: stepper.set_z_lock(false); break;
case 1: stepper.set_z2_lock(false); break;
#if ENABLED(Z_TRIPLE_STEPPER_DRIVERS)
case 2: stepper.set_z3_lock(false); break;
#endif
}
// This will lose home position and require re-homing
do_blocking_move_to_z(z_auto_align_amplification * z_align_move + current_position[Z_AXIS]);
}
if (err_break) break;
// Move Z back to previous position
set_all_z_lock(true);
do_blocking_move_to_z(z_original_position);
set_all_z_lock(false);
stepper.set_separate_multi_axis(false);
if (success_break) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> achieved target accuracy.");
#endif
break;
}
}
if (err_break) break;
// Restore the active tool after homing
#if HOTENDS > 1
tool_change(old_tool_index, 0,
#if ENABLED(PARKING_EXTRUDER)
false // Fetch the previous toolhead
#else
true
#endif
);
#endif
#if HAS_LEVELING
#if ENABLED(RESTORE_LEVELING_AFTER_G34)
set_bed_leveling_enabled(leveling_was_active);
#endif
#endif
// After this operation the z position needs correction
set_axis_is_not_at_home(Z_AXIS);
gcode.G28(false);
} while(0);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< G34");
#endif
}
/**
* M422: Z-Stepper automatic alignment parameter selection
*/
void GcodeSuite::M422() {
const int8_t zstepper = parser.intval('S') - 1;
if (!WITHIN(zstepper, 0, Z_STEPPER_COUNT - 1)) {
SERIAL_ECHOLNPGM("?(S) Z-Stepper index invalid.");
return;
}
const float x_pos = parser.floatval('X', z_auto_align_xpos[zstepper]);
if (!WITHIN(x_pos, X_MIN_POS, X_MAX_POS)) {
SERIAL_ECHOLNPGM("?(X) out of bounds.");
return;
}
const float y_pos = parser.floatval('Y', z_auto_align_ypos[zstepper]);
if (!WITHIN(y_pos, Y_MIN_POS, Y_MAX_POS)) {
SERIAL_ECHOLNPGM("?(Y) out of bounds.");
return;
}
z_auto_align_xpos[zstepper] = x_pos;
z_auto_align_ypos[zstepper] = y_pos;
}
#endif // Z_STEPPER_AUTO_ALIGN