2011-11-05 19:21:09 +00:00
|
|
|
/*
|
|
|
|
temperature.h - temperature controller
|
|
|
|
Part of Marlin
|
|
|
|
|
|
|
|
Copyright (c) 2011 Erik van der Zalm
|
|
|
|
|
|
|
|
Grbl is free software: you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
Grbl is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef temperature_h
|
|
|
|
#define temperature_h
|
|
|
|
|
|
|
|
#include "Marlin.h"
|
2011-11-06 13:03:41 +00:00
|
|
|
#include "fastio.h"
|
2011-11-05 19:21:09 +00:00
|
|
|
#ifdef PID_ADD_EXTRUSION_RATE
|
|
|
|
#include "stepper.h"
|
|
|
|
#endif
|
2011-11-06 13:03:41 +00:00
|
|
|
|
2011-11-06 18:23:08 +00:00
|
|
|
// public functions
|
2011-11-06 13:03:41 +00:00
|
|
|
void tp_init(); //initialise the heating
|
|
|
|
void manage_heater(); //it is critical that this is called periodically.
|
|
|
|
|
2011-11-06 18:23:08 +00:00
|
|
|
|
2011-11-06 13:03:41 +00:00
|
|
|
enum TempSensor {TEMPSENSOR_HOTEND_0=0,TEMPSENSOR_BED=1, TEMPSENSOR_HOTEND_1=2};
|
|
|
|
|
|
|
|
//low leven conversion routines
|
|
|
|
// do not use this routines and variables outsie of temperature.cpp
|
2011-11-05 19:21:09 +00:00
|
|
|
int temp2analog(int celsius);
|
|
|
|
int temp2analogBed(int celsius);
|
|
|
|
float analog2temp(int raw);
|
|
|
|
float analog2tempBed(int raw);
|
2011-11-06 13:03:41 +00:00
|
|
|
extern int target_raw[3];
|
|
|
|
extern int current_raw[3];
|
|
|
|
extern float Kp,Ki,Kd,Kc;
|
2011-11-06 18:23:08 +00:00
|
|
|
|
2011-11-06 13:03:41 +00:00
|
|
|
#ifdef PIDTEMP
|
2011-11-06 14:10:29 +00:00
|
|
|
extern float pid_setpoint ;
|
2011-11-06 13:03:41 +00:00
|
|
|
#endif
|
2011-11-06 18:23:08 +00:00
|
|
|
|
2011-11-06 13:03:41 +00:00
|
|
|
#ifdef WATCHPERIOD
|
|
|
|
extern int watch_raw[3] ;
|
|
|
|
extern unsigned long watchmillis;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//high level conversion routines, for use outside of temperature.cpp
|
|
|
|
//inline so that there is no performance decrease.
|
|
|
|
//deg=degreeCelsius
|
2011-11-05 19:21:09 +00:00
|
|
|
|
2011-11-06 13:03:41 +00:00
|
|
|
inline float degHotend0(){ return analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);};
|
|
|
|
inline float degHotend1(){ return analog2temp(current_raw[TEMPSENSOR_HOTEND_1]);};
|
|
|
|
inline float degBed() { return analog2tempBed(current_raw[TEMPSENSOR_BED]);};
|
2011-11-26 16:33:25 +00:00
|
|
|
inline float degHotend(uint8_t extruder){
|
|
|
|
if(extruder == 0) return analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);
|
|
|
|
if(extruder == 1) return analog2temp(current_raw[TEMPSENSOR_HOTEND_1]);
|
|
|
|
};
|
2011-11-06 13:03:41 +00:00
|
|
|
|
|
|
|
inline float degTargetHotend0() { return analog2temp(target_raw[TEMPSENSOR_HOTEND_0]);};
|
|
|
|
inline float degTargetHotend1() { return analog2temp(target_raw[TEMPSENSOR_HOTEND_1]);};
|
2011-11-26 16:33:25 +00:00
|
|
|
inline float degTargetHotend(uint8_t extruder){
|
|
|
|
if(extruder == 0) return analog2temp(target_raw[TEMPSENSOR_HOTEND_0]);
|
|
|
|
if(extruder == 1) return analog2temp(target_raw[TEMPSENSOR_HOTEND_1]);
|
|
|
|
};
|
|
|
|
|
2011-11-06 13:03:41 +00:00
|
|
|
inline float degTargetBed() { return analog2tempBed(target_raw[TEMPSENSOR_BED]);};
|
|
|
|
|
2011-11-06 18:23:08 +00:00
|
|
|
inline void setTargetHotend0(const float &celsius)
|
2011-11-06 13:03:41 +00:00
|
|
|
{
|
|
|
|
target_raw[TEMPSENSOR_HOTEND_0]=temp2analog(celsius);
|
|
|
|
#ifdef PIDTEMP
|
|
|
|
pid_setpoint = celsius;
|
|
|
|
#endif //PIDTEMP
|
|
|
|
};
|
2011-11-06 18:23:08 +00:00
|
|
|
inline void setTargetHotend1(const float &celsius) { target_raw[TEMPSENSOR_HOTEND_1]=temp2analog(celsius);};
|
2011-11-26 16:33:25 +00:00
|
|
|
inline float setTargetHotend(const float &celcius, uint8_t extruder){
|
|
|
|
if(extruder == 0) setTargetHotend0(celcius);
|
|
|
|
if(extruder == 1) setTargetHotend1(celcius);
|
|
|
|
};
|
2011-11-06 18:23:08 +00:00
|
|
|
inline void setTargetBed(const float &celsius) { target_raw[TEMPSENSOR_BED ]=temp2analogBed(celsius);};
|
2011-11-06 13:03:41 +00:00
|
|
|
|
|
|
|
inline bool isHeatingHotend0() {return target_raw[TEMPSENSOR_HOTEND_0] > current_raw[TEMPSENSOR_HOTEND_0];};
|
|
|
|
inline bool isHeatingHotend1() {return target_raw[TEMPSENSOR_HOTEND_1] > current_raw[TEMPSENSOR_HOTEND_1];};
|
2011-11-26 16:33:25 +00:00
|
|
|
inline float isHeatingHotend(uint8_t extruder){
|
|
|
|
if(extruder == 0) return target_raw[TEMPSENSOR_HOTEND_0] > current_raw[TEMPSENSOR_HOTEND_0];
|
|
|
|
if(extruder == 1) return target_raw[TEMPSENSOR_HOTEND_1] > current_raw[TEMPSENSOR_HOTEND_1];
|
|
|
|
};
|
2011-11-06 13:03:41 +00:00
|
|
|
inline bool isHeatingBed() {return target_raw[TEMPSENSOR_BED] > current_raw[TEMPSENSOR_BED];};
|
|
|
|
|
|
|
|
inline bool isCoolingHotend0() {return target_raw[TEMPSENSOR_HOTEND_0] < current_raw[TEMPSENSOR_HOTEND_0];};
|
|
|
|
inline bool isCoolingHotend1() {return target_raw[TEMPSENSOR_HOTEND_1] < current_raw[TEMPSENSOR_HOTEND_1];};
|
2011-11-26 16:33:25 +00:00
|
|
|
inline float isCoolingHotend(uint8_t extruder){
|
|
|
|
if(extruder == 0) return target_raw[TEMPSENSOR_HOTEND_0] < current_raw[TEMPSENSOR_HOTEND_0];
|
|
|
|
if(extruder == 1) return target_raw[TEMPSENSOR_HOTEND_1] < current_raw[TEMPSENSOR_HOTEND_1];
|
|
|
|
};
|
2011-11-06 13:03:41 +00:00
|
|
|
inline bool isCoolingBed() {return target_raw[TEMPSENSOR_BED] < current_raw[TEMPSENSOR_BED];};
|
|
|
|
|
2011-11-06 14:10:29 +00:00
|
|
|
void disable_heater();
|
|
|
|
void setWatch();
|
2011-11-13 20:43:26 +00:00
|
|
|
void updatePID();
|
2011-11-06 14:10:29 +00:00
|
|
|
|
2011-11-06 13:03:41 +00:00
|
|
|
#endif
|
|
|
|
|