Neaten up EEPROM read/write functions

This commit is contained in:
Scott Lahteine 2016-07-24 10:19:49 -07:00
parent e4816293a8
commit 060dc6d95a

View file

@ -185,8 +185,10 @@ void Config_Postprocess() {
#if ENABLED(EEPROM_SETTINGS) #if ENABLED(EEPROM_SETTINGS)
#define DUMMY_PID_VALUE 3000.0f #define DUMMY_PID_VALUE 3000.0f
#define EEPROM_WRITE_VAR(pos, value) _EEPROM_writeData(pos, (uint8_t*)&value, sizeof(value)) #define EEPROM_START() int eeprom_index = EEPROM_OFFSET
#define EEPROM_READ_VAR(pos, value) _EEPROM_readData(pos, (uint8_t*)&value, sizeof(value)) #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
#define EEPROM_WRITE(VAR) _EEPROM_writeData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
#define EEPROM_READ(VAR) _EEPROM_readData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
/** /**
* M500 - Store Configuration * M500 - Store Configuration
@ -194,26 +196,27 @@ void Config_Postprocess() {
void Config_StoreSettings() { void Config_StoreSettings() {
float dummy = 0.0f; float dummy = 0.0f;
char ver[4] = "000"; char ver[4] = "000";
int i = EEPROM_OFFSET;
EEPROM_WRITE_VAR(i, ver); // invalidate data first EEPROM_START();
i += sizeof(eeprom_checksum); // Skip the checksum slot
EEPROM_WRITE(ver); // invalidate data first
EEPROM_SKIP(eeprom_checksum); // Skip the checksum slot
eeprom_checksum = 0; // clear before first "real data" eeprom_checksum = 0; // clear before first "real data"
EEPROM_WRITE_VAR(i, planner.axis_steps_per_mm); EEPROM_WRITE(planner.axis_steps_per_mm);
EEPROM_WRITE_VAR(i, planner.max_feedrate_mm_s); EEPROM_WRITE(planner.max_feedrate_mm_s);
EEPROM_WRITE_VAR(i, planner.max_acceleration_mm_per_s2); EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
EEPROM_WRITE_VAR(i, planner.acceleration); EEPROM_WRITE(planner.acceleration);
EEPROM_WRITE_VAR(i, planner.retract_acceleration); EEPROM_WRITE(planner.retract_acceleration);
EEPROM_WRITE_VAR(i, planner.travel_acceleration); EEPROM_WRITE(planner.travel_acceleration);
EEPROM_WRITE_VAR(i, planner.min_feedrate_mm_s); EEPROM_WRITE(planner.min_feedrate_mm_s);
EEPROM_WRITE_VAR(i, planner.min_travel_feedrate_mm_s); EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
EEPROM_WRITE_VAR(i, planner.min_segment_time); EEPROM_WRITE(planner.min_segment_time);
EEPROM_WRITE_VAR(i, planner.max_xy_jerk); EEPROM_WRITE(planner.max_xy_jerk);
EEPROM_WRITE_VAR(i, planner.max_z_jerk); EEPROM_WRITE(planner.max_z_jerk);
EEPROM_WRITE_VAR(i, planner.max_e_jerk); EEPROM_WRITE(planner.max_e_jerk);
EEPROM_WRITE_VAR(i, home_offset); EEPROM_WRITE(home_offset);
#if ENABLED(MESH_BED_LEVELING) #if ENABLED(MESH_BED_LEVELING)
// Compile time test that sizeof(mbl.z_values) is as expected // Compile time test that sizeof(mbl.z_values) is as expected
@ -221,45 +224,45 @@ void Config_StoreSettings() {
uint8_t mesh_num_x = MESH_NUM_X_POINTS, uint8_t mesh_num_x = MESH_NUM_X_POINTS,
mesh_num_y = MESH_NUM_Y_POINTS, mesh_num_y = MESH_NUM_Y_POINTS,
dummy_uint8 = mbl.status & _BV(MBL_STATUS_HAS_MESH_BIT); dummy_uint8 = mbl.status & _BV(MBL_STATUS_HAS_MESH_BIT);
EEPROM_WRITE_VAR(i, dummy_uint8); EEPROM_WRITE(dummy_uint8);
EEPROM_WRITE_VAR(i, mbl.z_offset); EEPROM_WRITE(mbl.z_offset);
EEPROM_WRITE_VAR(i, mesh_num_x); EEPROM_WRITE(mesh_num_x);
EEPROM_WRITE_VAR(i, mesh_num_y); EEPROM_WRITE(mesh_num_y);
EEPROM_WRITE_VAR(i, mbl.z_values); EEPROM_WRITE(mbl.z_values);
#else #else
// For disabled MBL write a default mesh // For disabled MBL write a default mesh
uint8_t mesh_num_x = 3, uint8_t mesh_num_x = 3,
mesh_num_y = 3, mesh_num_y = 3,
dummy_uint8 = 0; dummy_uint8 = 0;
dummy = 0.0f; dummy = 0.0f;
EEPROM_WRITE_VAR(i, dummy_uint8); EEPROM_WRITE(dummy_uint8);
EEPROM_WRITE_VAR(i, dummy); EEPROM_WRITE(dummy);
EEPROM_WRITE_VAR(i, mesh_num_x); EEPROM_WRITE(mesh_num_x);
EEPROM_WRITE_VAR(i, mesh_num_y); EEPROM_WRITE(mesh_num_y);
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_WRITE_VAR(i, dummy); for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_WRITE(dummy);
#endif // MESH_BED_LEVELING #endif // MESH_BED_LEVELING
#if !HAS_BED_PROBE #if !HAS_BED_PROBE
float zprobe_zoffset = 0; float zprobe_zoffset = 0;
#endif #endif
EEPROM_WRITE_VAR(i, zprobe_zoffset); EEPROM_WRITE(zprobe_zoffset);
// 9 floats for DELTA / Z_DUAL_ENDSTOPS // 9 floats for DELTA / Z_DUAL_ENDSTOPS
#if ENABLED(DELTA) #if ENABLED(DELTA)
EEPROM_WRITE_VAR(i, endstop_adj); // 3 floats EEPROM_WRITE(endstop_adj); // 3 floats
EEPROM_WRITE_VAR(i, delta_radius); // 1 float EEPROM_WRITE(delta_radius); // 1 float
EEPROM_WRITE_VAR(i, delta_diagonal_rod); // 1 float EEPROM_WRITE(delta_diagonal_rod); // 1 float
EEPROM_WRITE_VAR(i, delta_segments_per_second); // 1 float EEPROM_WRITE(delta_segments_per_second); // 1 float
EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_1); // 1 float EEPROM_WRITE(delta_diagonal_rod_trim_tower_1); // 1 float
EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_2); // 1 float EEPROM_WRITE(delta_diagonal_rod_trim_tower_2); // 1 float
EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_3); // 1 float EEPROM_WRITE(delta_diagonal_rod_trim_tower_3); // 1 float
#elif ENABLED(Z_DUAL_ENDSTOPS) #elif ENABLED(Z_DUAL_ENDSTOPS)
EEPROM_WRITE_VAR(i, z_endstop_adj); // 1 float EEPROM_WRITE(z_endstop_adj); // 1 float
dummy = 0.0f; dummy = 0.0f;
for (uint8_t q = 8; q--;) EEPROM_WRITE_VAR(i, dummy); for (uint8_t q = 8; q--;) EEPROM_WRITE(dummy);
#else #else
dummy = 0.0f; dummy = 0.0f;
for (uint8_t q = 9; q--;) EEPROM_WRITE_VAR(i, dummy); for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
#endif #endif
#if DISABLED(ULTIPANEL) #if DISABLED(ULTIPANEL)
@ -267,34 +270,34 @@ void Config_StoreSettings() {
preheatHotendTemp2 = PREHEAT_2_TEMP_HOTEND, preheatBedTemp2 = PREHEAT_2_TEMP_BED, preheatFanSpeed2 = PREHEAT_2_FAN_SPEED; preheatHotendTemp2 = PREHEAT_2_TEMP_HOTEND, preheatBedTemp2 = PREHEAT_2_TEMP_BED, preheatFanSpeed2 = PREHEAT_2_FAN_SPEED;
#endif // !ULTIPANEL #endif // !ULTIPANEL
EEPROM_WRITE_VAR(i, preheatHotendTemp1); EEPROM_WRITE(preheatHotendTemp1);
EEPROM_WRITE_VAR(i, preheatBedTemp1); EEPROM_WRITE(preheatBedTemp1);
EEPROM_WRITE_VAR(i, preheatFanSpeed1); EEPROM_WRITE(preheatFanSpeed1);
EEPROM_WRITE_VAR(i, preheatHotendTemp2); EEPROM_WRITE(preheatHotendTemp2);
EEPROM_WRITE_VAR(i, preheatBedTemp2); EEPROM_WRITE(preheatBedTemp2);
EEPROM_WRITE_VAR(i, preheatFanSpeed2); EEPROM_WRITE(preheatFanSpeed2);
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) { for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
#if ENABLED(PIDTEMP) #if ENABLED(PIDTEMP)
if (e < HOTENDS) { if (e < HOTENDS) {
EEPROM_WRITE_VAR(i, PID_PARAM(Kp, e)); EEPROM_WRITE(PID_PARAM(Kp, e));
EEPROM_WRITE_VAR(i, PID_PARAM(Ki, e)); EEPROM_WRITE(PID_PARAM(Ki, e));
EEPROM_WRITE_VAR(i, PID_PARAM(Kd, e)); EEPROM_WRITE(PID_PARAM(Kd, e));
#if ENABLED(PID_ADD_EXTRUSION_RATE) #if ENABLED(PID_ADD_EXTRUSION_RATE)
EEPROM_WRITE_VAR(i, PID_PARAM(Kc, e)); EEPROM_WRITE(PID_PARAM(Kc, e));
#else #else
dummy = 1.0f; // 1.0 = default kc dummy = 1.0f; // 1.0 = default kc
EEPROM_WRITE_VAR(i, dummy); EEPROM_WRITE(dummy);
#endif #endif
} }
else else
#endif // !PIDTEMP #endif // !PIDTEMP
{ {
dummy = DUMMY_PID_VALUE; // When read, will not change the existing value dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
EEPROM_WRITE_VAR(i, dummy); // Kp EEPROM_WRITE(dummy); // Kp
dummy = 0.0f; dummy = 0.0f;
for (uint8_t q = 3; q--;) EEPROM_WRITE_VAR(i, dummy); // Ki, Kd, Kc for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
} }
} // Hotends Loop } // Hotends Loop
@ -302,67 +305,68 @@ void Config_StoreSettings() {
#if DISABLED(PID_ADD_EXTRUSION_RATE) #if DISABLED(PID_ADD_EXTRUSION_RATE)
int lpq_len = 20; int lpq_len = 20;
#endif #endif
EEPROM_WRITE_VAR(i, lpq_len); EEPROM_WRITE(lpq_len);
#if DISABLED(PIDTEMPBED) #if DISABLED(PIDTEMPBED)
dummy = DUMMY_PID_VALUE; dummy = DUMMY_PID_VALUE;
for (uint8_t q = 3; q--;) EEPROM_WRITE_VAR(i, dummy); for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
#else #else
EEPROM_WRITE_VAR(i, thermalManager.bedKp); EEPROM_WRITE(thermalManager.bedKp);
EEPROM_WRITE_VAR(i, thermalManager.bedKi); EEPROM_WRITE(thermalManager.bedKi);
EEPROM_WRITE_VAR(i, thermalManager.bedKd); EEPROM_WRITE(thermalManager.bedKd);
#endif #endif
#if !HAS_LCD_CONTRAST #if !HAS_LCD_CONTRAST
const int lcd_contrast = 32; const int lcd_contrast = 32;
#endif #endif
EEPROM_WRITE_VAR(i, lcd_contrast); EEPROM_WRITE(lcd_contrast);
#if ENABLED(SCARA) #if ENABLED(SCARA)
EEPROM_WRITE_VAR(i, axis_scaling); // 3 floats EEPROM_WRITE(axis_scaling); // 3 floats
#else #else
dummy = 1.0f; dummy = 1.0f;
EEPROM_WRITE_VAR(i, dummy); EEPROM_WRITE(dummy);
#endif #endif
#if ENABLED(FWRETRACT) #if ENABLED(FWRETRACT)
EEPROM_WRITE_VAR(i, autoretract_enabled); EEPROM_WRITE(autoretract_enabled);
EEPROM_WRITE_VAR(i, retract_length); EEPROM_WRITE(retract_length);
#if EXTRUDERS > 1 #if EXTRUDERS > 1
EEPROM_WRITE_VAR(i, retract_length_swap); EEPROM_WRITE(retract_length_swap);
#else #else
dummy = 0.0f; dummy = 0.0f;
EEPROM_WRITE_VAR(i, dummy); EEPROM_WRITE(dummy);
#endif #endif
EEPROM_WRITE_VAR(i, retract_feedrate_mm_s); EEPROM_WRITE(retract_feedrate_mm_s);
EEPROM_WRITE_VAR(i, retract_zlift); EEPROM_WRITE(retract_zlift);
EEPROM_WRITE_VAR(i, retract_recover_length); EEPROM_WRITE(retract_recover_length);
#if EXTRUDERS > 1 #if EXTRUDERS > 1
EEPROM_WRITE_VAR(i, retract_recover_length_swap); EEPROM_WRITE(retract_recover_length_swap);
#else #else
dummy = 0.0f; dummy = 0.0f;
EEPROM_WRITE_VAR(i, dummy); EEPROM_WRITE(dummy);
#endif #endif
EEPROM_WRITE_VAR(i, retract_recover_feedrate_mm_s); EEPROM_WRITE(retract_recover_feedrate_mm_s);
#endif // FWRETRACT #endif // FWRETRACT
EEPROM_WRITE_VAR(i, volumetric_enabled); EEPROM_WRITE(volumetric_enabled);
// Save filament sizes // Save filament sizes
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) { for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
if (q < COUNT(filament_size)) dummy = filament_size[q]; if (q < COUNT(filament_size)) dummy = filament_size[q];
EEPROM_WRITE_VAR(i, dummy); EEPROM_WRITE(dummy);
} }
uint16_t final_checksum = eeprom_checksum; uint16_t final_checksum = eeprom_checksum,
eeprom_size = eeprom_index;
int j = EEPROM_OFFSET; eeprom_index = EEPROM_OFFSET;
EEPROM_WRITE_VAR(j, version); EEPROM_WRITE(version);
EEPROM_WRITE_VAR(j, final_checksum); EEPROM_WRITE(final_checksum);
// Report storage size // Report storage size
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPAIR("Settings Stored (", i); SERIAL_ECHOPAIR("Settings Stored (", eeprom_size);
SERIAL_ECHOLNPGM(" bytes)"); SERIAL_ECHOLNPGM(" bytes)");
} }
@ -370,11 +374,15 @@ void Config_StoreSettings() {
* M501 - Retrieve Configuration * M501 - Retrieve Configuration
*/ */
void Config_RetrieveSettings() { void Config_RetrieveSettings() {
int i = EEPROM_OFFSET;
EEPROM_START();
char stored_ver[4]; char stored_ver[4];
EEPROM_READ(stored_ver);
uint16_t stored_checksum; uint16_t stored_checksum;
EEPROM_READ_VAR(i, stored_ver); EEPROM_READ(stored_checksum);
EEPROM_READ_VAR(i, stored_checksum);
// SERIAL_ECHOPAIR("Version: [", ver); // SERIAL_ECHOPAIR("Version: [", ver);
// SERIAL_ECHOPAIR("] Stored version: [", stored_ver); // SERIAL_ECHOPAIR("] Stored version: [", stored_ver);
// SERIAL_ECHOLNPGM("]"); // SERIAL_ECHOLNPGM("]");
@ -388,63 +396,63 @@ void Config_RetrieveSettings() {
eeprom_checksum = 0; // clear before reading first "real data" eeprom_checksum = 0; // clear before reading first "real data"
// version number match // version number match
EEPROM_READ_VAR(i, planner.axis_steps_per_mm); EEPROM_READ(planner.axis_steps_per_mm);
EEPROM_READ_VAR(i, planner.max_feedrate_mm_s); EEPROM_READ(planner.max_feedrate_mm_s);
EEPROM_READ_VAR(i, planner.max_acceleration_mm_per_s2); EEPROM_READ(planner.max_acceleration_mm_per_s2);
EEPROM_READ_VAR(i, planner.acceleration); EEPROM_READ(planner.acceleration);
EEPROM_READ_VAR(i, planner.retract_acceleration); EEPROM_READ(planner.retract_acceleration);
EEPROM_READ_VAR(i, planner.travel_acceleration); EEPROM_READ(planner.travel_acceleration);
EEPROM_READ_VAR(i, planner.min_feedrate_mm_s); EEPROM_READ(planner.min_feedrate_mm_s);
EEPROM_READ_VAR(i, planner.min_travel_feedrate_mm_s); EEPROM_READ(planner.min_travel_feedrate_mm_s);
EEPROM_READ_VAR(i, planner.min_segment_time); EEPROM_READ(planner.min_segment_time);
EEPROM_READ_VAR(i, planner.max_xy_jerk); EEPROM_READ(planner.max_xy_jerk);
EEPROM_READ_VAR(i, planner.max_z_jerk); EEPROM_READ(planner.max_z_jerk);
EEPROM_READ_VAR(i, planner.max_e_jerk); EEPROM_READ(planner.max_e_jerk);
EEPROM_READ_VAR(i, home_offset); EEPROM_READ(home_offset);
uint8_t dummy_uint8 = 0, mesh_num_x = 0, mesh_num_y = 0; uint8_t dummy_uint8 = 0, mesh_num_x = 0, mesh_num_y = 0;
EEPROM_READ_VAR(i, dummy_uint8); EEPROM_READ(dummy_uint8);
EEPROM_READ_VAR(i, dummy); EEPROM_READ(dummy);
EEPROM_READ_VAR(i, mesh_num_x); EEPROM_READ(mesh_num_x);
EEPROM_READ_VAR(i, mesh_num_y); EEPROM_READ(mesh_num_y);
#if ENABLED(MESH_BED_LEVELING) #if ENABLED(MESH_BED_LEVELING)
mbl.status = dummy_uint8; mbl.status = dummy_uint8;
mbl.z_offset = dummy; mbl.z_offset = dummy;
if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) { if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) {
// EEPROM data fits the current mesh // EEPROM data fits the current mesh
EEPROM_READ_VAR(i, mbl.z_values); EEPROM_READ(mbl.z_values);
} }
else { else {
// EEPROM data is stale // EEPROM data is stale
mbl.reset(); mbl.reset();
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ_VAR(i, dummy); for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy);
} }
#else #else
// MBL is disabled - skip the stored data // MBL is disabled - skip the stored data
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ_VAR(i, dummy); for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy);
#endif // MESH_BED_LEVELING #endif // MESH_BED_LEVELING
#if !HAS_BED_PROBE #if !HAS_BED_PROBE
float zprobe_zoffset = 0; float zprobe_zoffset = 0;
#endif #endif
EEPROM_READ_VAR(i, zprobe_zoffset); EEPROM_READ(zprobe_zoffset);
#if ENABLED(DELTA) #if ENABLED(DELTA)
EEPROM_READ_VAR(i, endstop_adj); // 3 floats EEPROM_READ(endstop_adj); // 3 floats
EEPROM_READ_VAR(i, delta_radius); // 1 float EEPROM_READ(delta_radius); // 1 float
EEPROM_READ_VAR(i, delta_diagonal_rod); // 1 float EEPROM_READ(delta_diagonal_rod); // 1 float
EEPROM_READ_VAR(i, delta_segments_per_second); // 1 float EEPROM_READ(delta_segments_per_second); // 1 float
EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_1); // 1 float EEPROM_READ(delta_diagonal_rod_trim_tower_1); // 1 float
EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_2); // 1 float EEPROM_READ(delta_diagonal_rod_trim_tower_2); // 1 float
EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_3); // 1 float EEPROM_READ(delta_diagonal_rod_trim_tower_3); // 1 float
#elif ENABLED(Z_DUAL_ENDSTOPS) #elif ENABLED(Z_DUAL_ENDSTOPS)
EEPROM_READ_VAR(i, z_endstop_adj); EEPROM_READ(z_endstop_adj);
dummy = 0.0f; dummy = 0.0f;
for (uint8_t q=8; q--;) EEPROM_READ_VAR(i, dummy); for (uint8_t q=8; q--;) EEPROM_READ(dummy);
#else #else
dummy = 0.0f; dummy = 0.0f;
for (uint8_t q=9; q--;) EEPROM_READ_VAR(i, dummy); for (uint8_t q=9; q--;) EEPROM_READ(dummy);
#endif #endif
#if DISABLED(ULTIPANEL) #if DISABLED(ULTIPANEL)
@ -452,86 +460,86 @@ void Config_RetrieveSettings() {
preheatHotendTemp2, preheatBedTemp2, preheatFanSpeed2; preheatHotendTemp2, preheatBedTemp2, preheatFanSpeed2;
#endif #endif
EEPROM_READ_VAR(i, preheatHotendTemp1); EEPROM_READ(preheatHotendTemp1);
EEPROM_READ_VAR(i, preheatBedTemp1); EEPROM_READ(preheatBedTemp1);
EEPROM_READ_VAR(i, preheatFanSpeed1); EEPROM_READ(preheatFanSpeed1);
EEPROM_READ_VAR(i, preheatHotendTemp2); EEPROM_READ(preheatHotendTemp2);
EEPROM_READ_VAR(i, preheatBedTemp2); EEPROM_READ(preheatBedTemp2);
EEPROM_READ_VAR(i, preheatFanSpeed2); EEPROM_READ(preheatFanSpeed2);
#if ENABLED(PIDTEMP) #if ENABLED(PIDTEMP)
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) { for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
EEPROM_READ_VAR(i, dummy); // Kp EEPROM_READ(dummy); // Kp
if (e < HOTENDS && dummy != DUMMY_PID_VALUE) { if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
// do not need to scale PID values as the values in EEPROM are already scaled // do not need to scale PID values as the values in EEPROM are already scaled
PID_PARAM(Kp, e) = dummy; PID_PARAM(Kp, e) = dummy;
EEPROM_READ_VAR(i, PID_PARAM(Ki, e)); EEPROM_READ(PID_PARAM(Ki, e));
EEPROM_READ_VAR(i, PID_PARAM(Kd, e)); EEPROM_READ(PID_PARAM(Kd, e));
#if ENABLED(PID_ADD_EXTRUSION_RATE) #if ENABLED(PID_ADD_EXTRUSION_RATE)
EEPROM_READ_VAR(i, PID_PARAM(Kc, e)); EEPROM_READ(PID_PARAM(Kc, e));
#else #else
EEPROM_READ_VAR(i, dummy); EEPROM_READ(dummy);
#endif #endif
} }
else { else {
for (uint8_t q=3; q--;) EEPROM_READ_VAR(i, dummy); // Ki, Kd, Kc for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
} }
} }
#else // !PIDTEMP #else // !PIDTEMP
// 4 x 4 = 16 slots for PID parameters // 4 x 4 = 16 slots for PID parameters
for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ_VAR(i, dummy); // Kp, Ki, Kd, Kc for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
#endif // !PIDTEMP #endif // !PIDTEMP
#if DISABLED(PID_ADD_EXTRUSION_RATE) #if DISABLED(PID_ADD_EXTRUSION_RATE)
int lpq_len; int lpq_len;
#endif #endif
EEPROM_READ_VAR(i, lpq_len); EEPROM_READ(lpq_len);
#if ENABLED(PIDTEMPBED) #if ENABLED(PIDTEMPBED)
EEPROM_READ_VAR(i, dummy); // bedKp EEPROM_READ(dummy); // bedKp
if (dummy != DUMMY_PID_VALUE) { if (dummy != DUMMY_PID_VALUE) {
thermalManager.bedKp = dummy; thermalManager.bedKp = dummy;
EEPROM_READ_VAR(i, thermalManager.bedKi); EEPROM_READ(thermalManager.bedKi);
EEPROM_READ_VAR(i, thermalManager.bedKd); EEPROM_READ(thermalManager.bedKd);
} }
#else #else
for (uint8_t q=3; q--;) EEPROM_READ_VAR(i, dummy); // bedKp, bedKi, bedKd for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
#endif #endif
#if !HAS_LCD_CONTRAST #if !HAS_LCD_CONTRAST
int lcd_contrast; int lcd_contrast;
#endif #endif
EEPROM_READ_VAR(i, lcd_contrast); EEPROM_READ(lcd_contrast);
#if ENABLED(SCARA) #if ENABLED(SCARA)
EEPROM_READ_VAR(i, axis_scaling); // 3 floats EEPROM_READ(axis_scaling); // 3 floats
#else #else
EEPROM_READ_VAR(i, dummy); EEPROM_READ(dummy);
#endif #endif
#if ENABLED(FWRETRACT) #if ENABLED(FWRETRACT)
EEPROM_READ_VAR(i, autoretract_enabled); EEPROM_READ(autoretract_enabled);
EEPROM_READ_VAR(i, retract_length); EEPROM_READ(retract_length);
#if EXTRUDERS > 1 #if EXTRUDERS > 1
EEPROM_READ_VAR(i, retract_length_swap); EEPROM_READ(retract_length_swap);
#else #else
EEPROM_READ_VAR(i, dummy); EEPROM_READ(dummy);
#endif #endif
EEPROM_READ_VAR(i, retract_feedrate_mm_s); EEPROM_READ(retract_feedrate_mm_s);
EEPROM_READ_VAR(i, retract_zlift); EEPROM_READ(retract_zlift);
EEPROM_READ_VAR(i, retract_recover_length); EEPROM_READ(retract_recover_length);
#if EXTRUDERS > 1 #if EXTRUDERS > 1
EEPROM_READ_VAR(i, retract_recover_length_swap); EEPROM_READ(retract_recover_length_swap);
#else #else
EEPROM_READ_VAR(i, dummy); EEPROM_READ(dummy);
#endif #endif
EEPROM_READ_VAR(i, retract_recover_feedrate_mm_s); EEPROM_READ(retract_recover_feedrate_mm_s);
#endif // FWRETRACT #endif // FWRETRACT
EEPROM_READ_VAR(i, volumetric_enabled); EEPROM_READ(volumetric_enabled);
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) { for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
EEPROM_READ_VAR(i, dummy); EEPROM_READ(dummy);
if (q < COUNT(filament_size)) filament_size[q] = dummy; if (q < COUNT(filament_size)) filament_size[q] = dummy;
} }
@ -539,7 +547,7 @@ void Config_RetrieveSettings() {
Config_Postprocess(); Config_Postprocess();
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHO(version); SERIAL_ECHO(version);
SERIAL_ECHOPAIR(" stored settings retrieved (", i); SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index);
SERIAL_ECHOLNPGM(" bytes)"); SERIAL_ECHOLNPGM(" bytes)");
} }
else { else {