Merge pull request #1899 from thinkyhead/squash_fixups

Several fixups
This commit is contained in:
Scott Lahteine 2015-04-12 23:31:31 -07:00
commit 0908c41156
14 changed files with 335 additions and 370 deletions

View file

@ -31,6 +31,10 @@
#define TEST(n,b) (((n)&BIT(b))!=0) #define TEST(n,b) (((n)&BIT(b))!=0)
#define RADIANS(d) ((d)*M_PI/180.0) #define RADIANS(d) ((d)*M_PI/180.0)
#define DEGREES(r) ((d)*180.0/M_PI) #define DEGREES(r) ((d)*180.0/M_PI)
#define NOLESS(v,n) do{ if (v < n) v = n; }while(0)
#define NOMORE(v,n) do{ if (v > n) v = n; }while(0)
typedef unsigned long millis_t;
// Arduino < 1.0.0 does not define this, so we need to do it ourselves // Arduino < 1.0.0 does not define this, so we need to do it ourselves
#ifndef analogInputToDigitalPin #ifndef analogInputToDigitalPin
@ -223,14 +227,14 @@ extern bool Running;
inline bool IsRunning() { return Running; } inline bool IsRunning() { return Running; }
inline bool IsStopped() { return !Running; } inline bool IsStopped() { return !Running; }
bool enquecommand(const char *cmd); //put a single ASCII command at the end of the current buffer or return false when it is full bool enqueuecommand(const char *cmd); //put a single ASCII command at the end of the current buffer or return false when it is full
void enquecommands_P(const char *cmd); //put one or many ASCII commands at the end of the current buffer, read from flash void enqueuecommands_P(const char *cmd); //put one or many ASCII commands at the end of the current buffer, read from flash
void prepare_arc_move(char isclockwise); void prepare_arc_move(char isclockwise);
void clamp_to_software_endstops(float target[3]); void clamp_to_software_endstops(float target[3]);
extern unsigned long previous_millis_cmd; extern millis_t previous_cmd_ms;
inline void refresh_cmd_timeout() { previous_millis_cmd = millis(); } inline void refresh_cmd_timeout() { previous_cmd_ms = millis(); }
#ifdef FAST_PWM_FAN #ifdef FAST_PWM_FAN
void setPwmFrequency(uint8_t pin, int val); void setPwmFrequency(uint8_t pin, int val);
@ -305,8 +309,8 @@ extern int fanSpeed;
extern float retract_recover_length, retract_recover_length_swap, retract_recover_feedrate; extern float retract_recover_length, retract_recover_length_swap, retract_recover_feedrate;
#endif #endif
extern unsigned long starttime; extern millis_t starttime;
extern unsigned long stoptime; extern millis_t stoptime;
// Handling multiple extruders pins // Handling multiple extruders pins
extern uint8_t active_extruder; extern uint8_t active_extruder;

View file

@ -244,11 +244,11 @@ static char *strchr_pointer; ///< A pointer to find chars in the command string
const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */ const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42 const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
// Inactivity shutdown // Inactivity shutdown
unsigned long previous_millis_cmd = 0; millis_t previous_cmd_ms = 0;
static unsigned long max_inactive_time = 0; static millis_t max_inactive_time = 0;
static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l; static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
unsigned long starttime = 0; ///< Print job start time millis_t starttime = 0; ///< Print job start time
unsigned long stoptime = 0; ///< Print job stop time millis_t stoptime = 0; ///< Print job stop time
static uint8_t target_extruder; static uint8_t target_extruder;
bool CooldownNoWait = true; bool CooldownNoWait = true;
bool target_direction; bool target_direction;
@ -425,7 +425,7 @@ static bool drain_queued_commands_P() {
char c; char c;
while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
cmd[i] = '\0'; cmd[i] = '\0';
if (enquecommand(cmd)) { // buffer was not full (else we will retry later) if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
if (c) if (c)
queued_commands_P += i + 1; // move to next command queued_commands_P += i + 1; // move to next command
else else
@ -437,7 +437,7 @@ static bool drain_queued_commands_P() {
//Record one or many commands to run from program memory. //Record one or many commands to run from program memory.
//Aborts the current queue, if any. //Aborts the current queue, if any.
//Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
void enquecommands_P(const char* pgcode) { void enqueuecommands_P(const char* pgcode) {
queued_commands_P = pgcode; queued_commands_P = pgcode;
drain_queued_commands_P(); // first command executed asap (when possible) drain_queued_commands_P(); // first command executed asap (when possible)
} }
@ -446,7 +446,7 @@ void enquecommands_P(const char* pgcode) {
//that is really done in a non-safe way. //that is really done in a non-safe way.
//needs overworking someday //needs overworking someday
//Returns false if it failed to do so //Returns false if it failed to do so
bool enquecommand(const char *cmd) bool enqueuecommand(const char *cmd)
{ {
if(*cmd==';') if(*cmd==';')
return false; return false;
@ -666,33 +666,30 @@ void loop() {
lcd_update(); lcd_update();
} }
void get_command() void get_command() {
{
if (drain_queued_commands_P()) // priority is given to non-serial commands
return;
while( MYSERIAL.available() > 0 && buflen < BUFSIZE) { if (drain_queued_commands_P()) return; // priority is given to non-serial commands
while (MYSERIAL.available() > 0 && buflen < BUFSIZE) {
serial_char = MYSERIAL.read(); serial_char = MYSERIAL.read();
if(serial_char == '\n' || if (serial_char == '\n' || serial_char == '\r' ||
serial_char == '\r' || serial_count >= (MAX_CMD_SIZE - 1)
serial_count >= (MAX_CMD_SIZE - 1) ) ) {
{
// end of line == end of comment // end of line == end of comment
comment_mode = false; comment_mode = false;
if(!serial_count) { if (!serial_count) return; // shortcut for empty lines
// short cut for empty lines
return; cmdbuffer[bufindw][serial_count] = 0; // terminate string
}
cmdbuffer[bufindw][serial_count] = 0; //terminate string
#ifdef SDSUPPORT #ifdef SDSUPPORT
fromsd[bufindw] = false; fromsd[bufindw] = false;
#endif //!SDSUPPORT #endif
if(strchr(cmdbuffer[bufindw], 'N') != NULL)
{ if (strchr(cmdbuffer[bufindw], 'N') != NULL) {
strchr_pointer = strchr(cmdbuffer[bufindw], 'N'); strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
gcode_N = (strtol(strchr_pointer + 1, NULL, 10)); gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) { if (gcode_N != gcode_LastN + 1 && strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) {
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORPGM(MSG_ERR_LINE_NO); SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
SERIAL_ERRORLN(gcode_LastN); SERIAL_ERRORLN(gcode_LastN);
@ -702,14 +699,13 @@ void get_command()
return; return;
} }
if(strchr(cmdbuffer[bufindw], '*') != NULL) if (strchr(cmdbuffer[bufindw], '*') != NULL) {
{
byte checksum = 0; byte checksum = 0;
byte count = 0; byte count = 0;
while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++]; while (cmdbuffer[bufindw][count] != '*') checksum ^= cmdbuffer[bufindw][count++];
strchr_pointer = strchr(cmdbuffer[bufindw], '*'); strchr_pointer = strchr(cmdbuffer[bufindw], '*');
if(strtol(strchr_pointer + 1, NULL, 10) != checksum) { if (strtol(strchr_pointer + 1, NULL, 10) != checksum) {
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH); SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
SERIAL_ERRORLN(gcode_LastN); SERIAL_ERRORLN(gcode_LastN);
@ -719,8 +715,7 @@ void get_command()
} }
//if no errors, continue parsing //if no errors, continue parsing
} }
else else {
{
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM); SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
SERIAL_ERRORLN(gcode_LastN); SERIAL_ERRORLN(gcode_LastN);
@ -732,10 +727,8 @@ void get_command()
gcode_LastN = gcode_N; gcode_LastN = gcode_N;
//if no errors, continue parsing //if no errors, continue parsing
} }
else // if we don't receive 'N' but still see '*' else { // if we don't receive 'N' but still see '*'
{ if ((strchr(cmdbuffer[bufindw], '*') != NULL)) {
if((strchr(cmdbuffer[bufindw], '*') != NULL))
{
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM); SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
SERIAL_ERRORLN(gcode_LastN); SERIAL_ERRORLN(gcode_LastN);
@ -743,9 +736,10 @@ void get_command()
return; return;
} }
} }
if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
if (strchr(cmdbuffer[bufindw], 'G') != NULL) {
strchr_pointer = strchr(cmdbuffer[bufindw], 'G'); strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
switch(strtol(strchr_pointer + 1, NULL, 10)){ switch (strtol(strchr_pointer + 1, NULL, 10)) {
case 0: case 0:
case 1: case 1:
case 2: case 2:
@ -758,96 +752,83 @@ void get_command()
default: default:
break; break;
} }
} }
//If command was e-stop process now // If command was e-stop process now
if(strcmp(cmdbuffer[bufindw], "M112") == 0) if (strcmp(cmdbuffer[bufindw], "M112") == 0) kill();
kill();
bufindw = (bufindw + 1)%BUFSIZE; bufindw = (bufindw + 1) % BUFSIZE;
buflen += 1; buflen += 1;
serial_count = 0; //clear buffer serial_count = 0; //clear buffer
} }
else if(serial_char == '\\') { //Handle escapes else if (serial_char == '\\') { // Handle escapes
if (MYSERIAL.available() > 0 && buflen < BUFSIZE) {
if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
// if we have one more character, copy it over // if we have one more character, copy it over
serial_char = MYSERIAL.read(); serial_char = MYSERIAL.read();
cmdbuffer[bufindw][serial_count++] = serial_char; cmdbuffer[bufindw][serial_count++] = serial_char;
} }
// otherwise do nothing
//otherwise do nothing
} }
else { // its not a newline, carriage return or escape char else { // its not a newline, carriage return or escape char
if(serial_char == ';') comment_mode = true; if (serial_char == ';') comment_mode = true;
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char; if (!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
} }
} }
#ifdef SDSUPPORT
if(!card.sdprinting || serial_count!=0){
return;
}
//'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible #ifdef SDSUPPORT
if (!card.sdprinting || serial_count) return;
// '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
// if it occurs, stop_buffering is triggered and the buffer is ran dry. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
// this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
static bool stop_buffering=false; static bool stop_buffering = false;
if(buflen==0) stop_buffering=false; if (buflen == 0) stop_buffering = false;
while( !card.eof() && buflen < BUFSIZE && !stop_buffering) { while (!card.eof() && buflen < BUFSIZE && !stop_buffering) {
int16_t n=card.get(); int16_t n = card.get();
serial_char = (char)n; serial_char = (char)n;
if(serial_char == '\n' || if (serial_char == '\n' || serial_char == '\r' ||
serial_char == '\r' || ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
(serial_char == '#' && comment_mode == false) || serial_count >= (MAX_CMD_SIZE - 1) || n == -1
(serial_char == ':' && comment_mode == false) || ) {
serial_count >= (MAX_CMD_SIZE - 1)||n==-1) if (card.eof()) {
{
if(card.eof()){
SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED); SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
stoptime=millis(); stoptime = millis();
char time[30]; char time[30];
unsigned long t=(stoptime-starttime)/1000; millis_t t = (stoptime - starttime) / 1000;
int hours, minutes; int hours = t / 60 / 60, minutes = (t / 60) % 60;
minutes=(t/60)%60; sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
hours=t/60/60;
sprintf_P(time, PSTR("%i "MSG_END_HOUR" %i "MSG_END_MINUTE),hours, minutes);
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLN(time); SERIAL_ECHOLN(time);
lcd_setstatus(time, true); lcd_setstatus(time, true);
card.printingHasFinished(); card.printingHasFinished();
card.checkautostart(true); card.checkautostart(true);
} }
if(serial_char=='#') if (serial_char == '#') stop_buffering = true;
stop_buffering=true;
if(!serial_count) if (!serial_count) {
{
comment_mode = false; //for new command comment_mode = false; //for new command
return; //if empty line return; //if empty line
} }
cmdbuffer[bufindw][serial_count] = 0; //terminate string cmdbuffer[bufindw][serial_count] = 0; //terminate string
// if(!comment_mode){ // if (!comment_mode) {
fromsd[bufindw] = true; fromsd[bufindw] = true;
buflen += 1; buflen += 1;
bufindw = (bufindw + 1)%BUFSIZE; bufindw = (bufindw + 1)%BUFSIZE;
// } // }
comment_mode = false; //for new command comment_mode = false; //for new command
serial_count = 0; //clear buffer serial_count = 0; //clear buffer
} }
else else {
{ if (serial_char == ';') comment_mode = true;
if(serial_char == ';') comment_mode = true; if (!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
} }
} }
#endif //SDSUPPORT #endif // SDSUPPORT
} }
float code_has_value() { float code_has_value() {
@ -923,7 +904,7 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1 static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
static bool active_extruder_parked = false; // used in mode 1 & 2 static bool active_extruder_parked = false; // used in mode 1 & 2
static float raised_parked_position[NUM_AXIS]; // used in mode 1 static float raised_parked_position[NUM_AXIS]; // used in mode 1
static unsigned long delayed_move_time = 0; // used in mode 1 static millis_t delayed_move_time = 0; // used in mode 1
static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2 static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
static float duplicate_extruder_temp_offset = 0; // used in mode 2 static float duplicate_extruder_temp_offset = 0; // used in mode 2
bool extruder_duplication_enabled = false; // used in mode 2 bool extruder_duplication_enabled = false; // used in mode 2
@ -1111,7 +1092,7 @@ inline void set_destination_to_current() { memcpy(destination, current_position,
// move down slowly until you find the bed // move down slowly until you find the bed
feedrate = homing_feedrate[Z_AXIS] / 4; feedrate = homing_feedrate[Z_AXIS] / 4;
destination[Z_AXIS] = -10; destination[Z_AXIS] = -10;
prepare_move_raw(); prepare_move_raw(); // this will also set_current_to_destination
st_synchronize(); st_synchronize();
endstops_hit_on_purpose(); // clear endstop hit flags endstops_hit_on_purpose(); // clear endstop hit flags
@ -1157,7 +1138,8 @@ inline void set_destination_to_current() { memcpy(destination, current_position,
} }
/** /**
* * Plan a move to (X, Y, Z) and set the current_position
* The final current_position may not be the one that was requested
*/ */
static void do_blocking_move_to(float x, float y, float z) { static void do_blocking_move_to(float x, float y, float z) {
float oldFeedRate = feedrate; float oldFeedRate = feedrate;
@ -1169,7 +1151,7 @@ inline void set_destination_to_current() { memcpy(destination, current_position,
destination[X_AXIS] = x; destination[X_AXIS] = x;
destination[Y_AXIS] = y; destination[Y_AXIS] = y;
destination[Z_AXIS] = z; destination[Z_AXIS] = z;
prepare_move_raw(); prepare_move_raw(); // this will also set_current_to_destination
st_synchronize(); st_synchronize();
#else #else
@ -1233,17 +1215,17 @@ inline void set_destination_to_current() { memcpy(destination, current_position,
destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X; destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y; destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z; destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
prepare_move_raw(); prepare_move_raw(); // this will also set_current_to_destination
// Home X to touch the belt // Home X to touch the belt
feedrate = homing_feedrate[X_AXIS]/10; feedrate = homing_feedrate[X_AXIS]/10;
destination[X_AXIS] = 0; destination[X_AXIS] = 0;
prepare_move_raw(); prepare_move_raw(); // this will also set_current_to_destination
// Home Y for safety // Home Y for safety
feedrate = homing_feedrate[X_AXIS]/2; feedrate = homing_feedrate[X_AXIS]/2;
destination[Y_AXIS] = 0; destination[Y_AXIS] = 0;
prepare_move_raw(); prepare_move_raw(); // this will also set_current_to_destination
st_synchronize(); st_synchronize();
@ -1275,7 +1257,7 @@ inline void set_destination_to_current() { memcpy(destination, current_position,
if (servo_endstops[Z_AXIS] >= 0) { if (servo_endstops[Z_AXIS] >= 0) {
#if Z_RAISE_AFTER_PROBING > 0 #if Z_RAISE_AFTER_PROBING > 0
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // this also updates current_position
st_synchronize(); st_synchronize();
#endif #endif
@ -1296,29 +1278,29 @@ inline void set_destination_to_current() { memcpy(destination, current_position,
// Move up for safety // Move up for safety
feedrate = homing_feedrate[X_AXIS]; feedrate = homing_feedrate[X_AXIS];
destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING; destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
prepare_move_raw(); prepare_move_raw(); // this will also set_current_to_destination
// Move to the start position to initiate retraction // Move to the start position to initiate retraction
destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_X; destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_X;
destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Y; destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Y;
destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Z; destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Z;
prepare_move_raw(); prepare_move_raw(); // this will also set_current_to_destination
// Move the nozzle down to push the probe into retracted position // Move the nozzle down to push the probe into retracted position
feedrate = homing_feedrate[Z_AXIS]/10; feedrate = homing_feedrate[Z_AXIS]/10;
destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_STOW_DEPTH; destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_STOW_DEPTH;
prepare_move_raw(); prepare_move_raw(); // this will also set_current_to_destination
// Move up for safety // Move up for safety
feedrate = homing_feedrate[Z_AXIS]/2; feedrate = homing_feedrate[Z_AXIS]/2;
destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_STOW_DEPTH * 2; destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_STOW_DEPTH * 2;
prepare_move_raw(); prepare_move_raw(); // this will also set_current_to_destination
// Home XY for safety // Home XY for safety
feedrate = homing_feedrate[X_AXIS]/2; feedrate = homing_feedrate[X_AXIS]/2;
destination[X_AXIS] = 0; destination[X_AXIS] = 0;
destination[Y_AXIS] = 0; destination[Y_AXIS] = 0;
prepare_move_raw(); prepare_move_raw(); // this will also set_current_to_destination
st_synchronize(); st_synchronize();
@ -1352,8 +1334,8 @@ inline void set_destination_to_current() { memcpy(destination, current_position,
// Probe bed height at position (x,y), returns the measured z value // Probe bed height at position (x,y), returns the measured z value
static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeDeployAndStow, int verbose_level=1) { static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeDeployAndStow, int verbose_level=1) {
// move to right place // move to right place
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); // this also updates current_position
do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); // this also updates current_position
#if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY) #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
if (retract_action & ProbeDeploy) deploy_z_probe(); if (retract_action & ProbeDeploy) deploy_z_probe();
@ -1364,7 +1346,7 @@ inline void set_destination_to_current() { memcpy(destination, current_position,
#if Z_RAISE_BETWEEN_PROBINGS > 0 #if Z_RAISE_BETWEEN_PROBINGS > 0
if (retract_action == ProbeStay) { if (retract_action == ProbeStay) {
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); // this also updates current_position
st_synchronize(); st_synchronize();
} }
#endif #endif
@ -1643,12 +1625,12 @@ static void homeaxis(AxisEnum axis) {
} }
if (dock) { if (dock) {
do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], current_position[Z_AXIS]); do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], current_position[Z_AXIS]); // this also updates current_position
digitalWrite(SERVO0_PIN, LOW); // turn off magnet digitalWrite(SERVO0_PIN, LOW); // turn off magnet
} else { } else {
float z_loc = current_position[Z_AXIS]; float z_loc = current_position[Z_AXIS];
if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING; if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc); do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc); // this also updates current_position
digitalWrite(SERVO0_PIN, HIGH); // turn on magnet digitalWrite(SERVO0_PIN, HIGH); // turn on magnet
} }
} }
@ -1700,7 +1682,7 @@ inline void gcode_G2_G3(bool clockwise) {
* G4: Dwell S<seconds> or P<milliseconds> * G4: Dwell S<seconds> or P<milliseconds>
*/ */
inline void gcode_G4() { inline void gcode_G4() {
unsigned long codenum = 0; millis_t codenum = 0;
LCD_MESSAGEPGM(MSG_DWELL); LCD_MESSAGEPGM(MSG_DWELL);
@ -1709,7 +1691,7 @@ inline void gcode_G4() {
st_synchronize(); st_synchronize();
refresh_cmd_timeout(); refresh_cmd_timeout();
codenum += previous_millis_cmd; // keep track of when we started waiting codenum += previous_cmd_ms; // keep track of when we started waiting
while (millis() < codenum) { while (millis() < codenum) {
manage_heater(); manage_heater();
manage_inactivity(); manage_inactivity();
@ -2096,7 +2078,7 @@ inline void gcode_G28() {
case MeshStart: case MeshStart:
mbl.reset(); mbl.reset();
probe_point = 0; probe_point = 0;
enquecommands_P(PSTR("G28\nG29 S2")); enqueuecommands_P(PSTR("G28\nG29 S2"));
break; break;
case MeshNext: case MeshNext:
@ -2135,7 +2117,7 @@ inline void gcode_G28() {
SERIAL_PROTOCOLLNPGM("Mesh probing done."); SERIAL_PROTOCOLLNPGM("Mesh probing done.");
probe_point = -1; probe_point = -1;
mbl.active = 1; mbl.active = 1;
enquecommands_P(PSTR("G28")); enqueuecommands_P(PSTR("G28"));
} }
break; break;
@ -2517,7 +2499,7 @@ inline void gcode_G28() {
#endif #endif
#ifdef Z_PROBE_END_SCRIPT #ifdef Z_PROBE_END_SCRIPT
enquecommands_P(PSTR(Z_PROBE_END_SCRIPT)); enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
st_synchronize(); st_synchronize();
#endif #endif
} }
@ -2579,7 +2561,7 @@ inline void gcode_G92() {
inline void gcode_M0_M1() { inline void gcode_M0_M1() {
char *src = strchr_pointer + 2; char *src = strchr_pointer + 2;
unsigned long codenum = 0; millis_t codenum = 0;
bool hasP = false, hasS = false; bool hasP = false, hasS = false;
if (code_seen('P')) { if (code_seen('P')) {
codenum = code_value_short(); // milliseconds to wait codenum = code_value_short(); // milliseconds to wait
@ -2605,7 +2587,7 @@ inline void gcode_G92() {
st_synchronize(); st_synchronize();
refresh_cmd_timeout(); refresh_cmd_timeout();
if (codenum > 0) { if (codenum > 0) {
codenum += previous_millis_cmd; // keep track of when we started waiting codenum += previous_cmd_ms; // keep track of when we started waiting
while(millis() < codenum && !lcd_clicked()) { while(millis() < codenum && !lcd_clicked()) {
manage_heater(); manage_heater();
manage_inactivity(); manage_inactivity();
@ -2747,7 +2729,7 @@ inline void gcode_M17() {
*/ */
inline void gcode_M31() { inline void gcode_M31() {
stoptime = millis(); stoptime = millis();
unsigned long t = (stoptime - starttime) / 1000; millis_t t = (stoptime - starttime) / 1000;
int min = t / 60, sec = t % 60; int min = t / 60, sec = t % 60;
char time[30]; char time[30];
sprintf_P(time, PSTR("%i min, %i sec"), min, sec); sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
@ -2980,11 +2962,11 @@ inline void gcode_M42() {
if (deploy_probe_for_each_reading) stow_z_probe(); if (deploy_probe_for_each_reading) stow_z_probe();
for (uint8_t n=0; n < n_samples; n++) { for (uint8_t n=0; n < n_samples; n++) {
// Make sure we are at the probe location
do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
if (n_legs) { if (n_legs) {
unsigned long ms = millis(); millis_t ms = millis();
double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
theta = RADIANS(ms % 360L); theta = RADIANS(ms % 360L);
float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
@ -3011,11 +2993,12 @@ inline void gcode_M42() {
SERIAL_EOL; SERIAL_EOL;
} }
do_blocking_move_to(X_current, Y_current, Z_current); do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
} // n_legs loop } // n_legs loop
do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location // Go back to the probe location
do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
} // n_legs } // n_legs
@ -3221,7 +3204,7 @@ inline void gcode_M109() {
setWatch(); setWatch();
unsigned long timetemp = millis(); millis_t temp_ms = millis();
/* See if we are heating up or cooling down */ /* See if we are heating up or cooling down */
target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
@ -3229,26 +3212,26 @@ inline void gcode_M109() {
cancel_heatup = false; cancel_heatup = false;
#ifdef TEMP_RESIDENCY_TIME #ifdef TEMP_RESIDENCY_TIME
long residencyStart = -1; long residency_start_ms = -1;
/* continue to loop until we have reached the target temp /* continue to loop until we have reached the target temp
_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */ _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
while((!cancel_heatup)&&((residencyStart == -1) || while((!cancel_heatup)&&((residency_start_ms == -1) ||
(residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) (residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
#else #else
while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(CooldownNoWait==false)) ) while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(CooldownNoWait==false)) )
#endif //TEMP_RESIDENCY_TIME #endif //TEMP_RESIDENCY_TIME
{ // while loop { // while loop
if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
SERIAL_PROTOCOLPGM("T:"); SERIAL_PROTOCOLPGM("T:");
SERIAL_PROTOCOL_F(degHotend(target_extruder),1); SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
SERIAL_PROTOCOLPGM(" E:"); SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL((int)target_extruder); SERIAL_PROTOCOL((int)target_extruder);
#ifdef TEMP_RESIDENCY_TIME #ifdef TEMP_RESIDENCY_TIME
SERIAL_PROTOCOLPGM(" W:"); SERIAL_PROTOCOLPGM(" W:");
if (residencyStart > -1) { if (residency_start_ms > -1) {
timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL; temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
SERIAL_PROTOCOLLN( timetemp ); SERIAL_PROTOCOLLN(temp_ms);
} }
else { else {
SERIAL_PROTOCOLLNPGM("?"); SERIAL_PROTOCOLLNPGM("?");
@ -3256,7 +3239,7 @@ inline void gcode_M109() {
#else #else
SERIAL_EOL; SERIAL_EOL;
#endif #endif
timetemp = millis(); temp_ms = millis();
} }
manage_heater(); manage_heater();
manage_inactivity(); manage_inactivity();
@ -3264,18 +3247,18 @@ inline void gcode_M109() {
#ifdef TEMP_RESIDENCY_TIME #ifdef TEMP_RESIDENCY_TIME
// start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
// or when current temp falls outside the hysteresis after target temp was reached // or when current temp falls outside the hysteresis after target temp was reached
if ((residencyStart == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) || if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
(residencyStart == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) || (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
(residencyStart > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) ) (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
{ {
residencyStart = millis(); residency_start_ms = millis();
} }
#endif //TEMP_RESIDENCY_TIME #endif //TEMP_RESIDENCY_TIME
} }
LCD_MESSAGEPGM(MSG_HEATING_COMPLETE); LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
refresh_cmd_timeout(); refresh_cmd_timeout();
starttime = previous_millis_cmd; starttime = previous_cmd_ms;
} }
#if HAS_TEMP_BED #if HAS_TEMP_BED
@ -3290,15 +3273,15 @@ inline void gcode_M109() {
if (CooldownNoWait || code_seen('R')) if (CooldownNoWait || code_seen('R'))
setTargetBed(code_value()); setTargetBed(code_value());
unsigned long timetemp = millis(); millis_t temp_ms = millis();
cancel_heatup = false; cancel_heatup = false;
target_direction = isHeatingBed(); // true if heating, false if cooling target_direction = isHeatingBed(); // true if heating, false if cooling
while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) { while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
unsigned long ms = millis(); millis_t ms = millis();
if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
timetemp = ms; temp_ms = ms;
float tt = degHotend(active_extruder); float tt = degHotend(active_extruder);
SERIAL_PROTOCOLPGM("T:"); SERIAL_PROTOCOLPGM("T:");
SERIAL_PROTOCOL(tt); SERIAL_PROTOCOL(tt);
@ -3974,14 +3957,14 @@ inline void gcode_M226() {
#endif // NUM_SERVOS > 0 #endif // NUM_SERVOS > 0
#if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)) #if BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)
/** /**
* M300: Play beep sound S<frequency Hz> P<duration ms> * M300: Play beep sound S<frequency Hz> P<duration ms>
*/ */
inline void gcode_M300() { inline void gcode_M300() {
int beepS = code_seen('S') ? code_value() : 110; uint16_t beepS = code_seen('S') ? code_value_short() : 110;
int beepP = code_seen('P') ? code_value() : 1000; uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
if (beepS > 0) { if (beepS > 0) {
#if BEEPER > 0 #if BEEPER > 0
tone(BEEPER, beepS); tone(BEEPER, beepS);
@ -3998,7 +3981,7 @@ inline void gcode_M226() {
} }
} }
#endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER) #endif // BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER
#ifdef PIDTEMP #ifdef PIDTEMP
@ -4472,24 +4455,10 @@ inline void gcode_M503() {
LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE); LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
uint8_t cnt = 0; uint8_t cnt = 0;
while (!lcd_clicked()) { while (!lcd_clicked()) {
cnt++; if (++cnt == 0) lcd_quick_feedback(); // every 256th frame till the lcd is clicked
manage_heater(); manage_heater();
manage_inactivity(true); manage_inactivity(true);
lcd_update(); lcd_update();
if (cnt == 0) {
#if BEEPER > 0
OUT_WRITE(BEEPER,HIGH);
delay(3);
WRITE(BEEPER,LOW);
delay(3);
#else
#if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
lcd_buzz(1000/6, 100);
#else
lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
#endif
#endif
}
} // while(!lcd_clicked) } // while(!lcd_clicked)
//return to normal //return to normal
@ -5078,11 +5047,11 @@ void process_commands() {
break; break;
#endif // NUM_SERVOS > 0 #endif // NUM_SERVOS > 0
#if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)) #if BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)
case 300: // M300 - Play beep tone case 300: // M300 - Play beep tone
gcode_M300(); gcode_M300();
break; break;
#endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER) #endif // BEEPER > 0 || ULTRALCD || LCD_USE_I2C_BUZZER
#ifdef PIDTEMP #ifdef PIDTEMP
case 301: // M301 case 301: // M301
@ -5289,25 +5258,23 @@ void get_arc_coordinates() {
offset[1] = code_seen('J') ? code_value() : 0; offset[1] = code_seen('J') ? code_value() : 0;
} }
void clamp_to_software_endstops(float target[3]) void clamp_to_software_endstops(float target[3]) {
{
if (min_software_endstops) { if (min_software_endstops) {
if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS]; NOLESS(target[X_AXIS], min_pos[X_AXIS]);
if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS]; NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
float negative_z_offset = 0; float negative_z_offset = 0;
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER; if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset += Z_PROBE_OFFSET_FROM_EXTRUDER;
if (home_offset[Z_AXIS] < 0) negative_z_offset = negative_z_offset + home_offset[Z_AXIS]; if (home_offset[Z_AXIS] < 0) negative_z_offset += home_offset[Z_AXIS];
#endif #endif
NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
} }
if (max_software_endstops) { if (max_software_endstops) {
if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS]; NOMORE(target[X_AXIS], max_pos[X_AXIS]);
if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS]; NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS]; NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
} }
} }
@ -5522,7 +5489,7 @@ void prepare_move() {
//SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]); //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
//SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]); //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder); plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedmultiply/100.0, active_extruder);
} }
#endif // SCARA #endif // SCARA
@ -5549,7 +5516,7 @@ void prepare_move() {
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
adjust_delta(destination); adjust_delta(destination);
#endif #endif
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder); plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedmultiply/100.0, active_extruder);
} }
#endif // DELTA #endif // DELTA
@ -5573,7 +5540,7 @@ void prepare_move() {
// (so it can be used as the start of the next non-travel move) // (so it can be used as the start of the next non-travel move)
if (delayed_move_time != 0xFFFFFFFFUL) { if (delayed_move_time != 0xFFFFFFFFUL) {
set_current_to_destination(); set_current_to_destination();
if (destination[Z_AXIS] > raised_parked_position[Z_AXIS]) raised_parked_position[Z_AXIS] = destination[Z_AXIS]; NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
delayed_move_time = millis(); delayed_move_time = millis();
return; return;
} }
@ -5621,11 +5588,11 @@ void prepare_arc_move(char isclockwise) {
#if HAS_CONTROLLERFAN #if HAS_CONTROLLERFAN
unsigned long lastMotor = 0; // Last time a motor was turned on millis_t lastMotor = 0; // Last time a motor was turned on
unsigned long lastMotorCheck = 0; // Last time the state was checked millis_t lastMotorCheck = 0; // Last time the state was checked
void controllerFan() { void controllerFan() {
uint32_t ms = millis(); millis_t ms = millis();
if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
lastMotorCheck = ms; lastMotorCheck = ms;
if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0 if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
@ -5732,36 +5699,28 @@ void calculate_delta(float cartesian[3]){
#endif #endif
#ifdef TEMP_STAT_LEDS #ifdef TEMP_STAT_LEDS
static bool blue_led = false;
static bool red_led = false;
static uint32_t stat_update = 0;
void handle_status_leds(void) { static bool red_led = false;
static millis_t next_status_led_update_ms = 0;
void handle_status_leds(void) {
float max_temp = 0.0; float max_temp = 0.0;
if(millis() > stat_update) { if (millis() > next_status_led_update_ms) {
stat_update += 500; // Update every 0.5s next_status_led_update_ms += 500; // Update every 0.5s
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) { for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
max_temp = max(max_temp, degHotend(cur_extruder)); max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
max_temp = max(max_temp, degTargetHotend(cur_extruder));
}
#if HAS_TEMP_BED #if HAS_TEMP_BED
max_temp = max(max_temp, degTargetBed()); max_temp = max(max(max_temp, degTargetBed()), degBed());
max_temp = max(max_temp, degBed());
#endif #endif
if((max_temp > 55.0) && (red_led == false)) { bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
digitalWrite(STAT_LED_RED, 1); if (new_led != red_led) {
digitalWrite(STAT_LED_BLUE, 0); red_led = new_led;
red_led = true; digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
blue_led = false; digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
}
if((max_temp < 54.0) && (blue_led == false)) {
digitalWrite(STAT_LED_RED, 0);
digitalWrite(STAT_LED_BLUE, 1);
red_led = false;
blue_led = true;
} }
} }
} }
#endif #endif
void enable_all_steppers() { void enable_all_steppers() {
@ -5805,11 +5764,11 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
if (buflen < BUFSIZE - 1) get_command(); if (buflen < BUFSIZE - 1) get_command();
unsigned long ms = millis(); millis_t ms = millis();
if (max_inactive_time && ms > previous_millis_cmd + max_inactive_time) kill(); if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill();
if (stepper_inactive_time && ms > previous_millis_cmd + stepper_inactive_time if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
&& !ignore_stepper_queue && !blocks_queued()) && !ignore_stepper_queue && !blocks_queued())
disable_all_steppers(); disable_all_steppers();
@ -5845,7 +5804,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
const int HOME_DEBOUNCE_DELAY = 750; const int HOME_DEBOUNCE_DELAY = 750;
if (!READ(HOME_PIN)) { if (!READ(HOME_PIN)) {
if (!homeDebounceCount) { if (!homeDebounceCount) {
enquecommands_P(PSTR("G28")); enqueuecommands_P(PSTR("G28"));
LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME); LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
} }
if (homeDebounceCount < HOME_DEBOUNCE_DELAY) if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
@ -5860,7 +5819,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
#endif #endif
#ifdef EXTRUDER_RUNOUT_PREVENT #ifdef EXTRUDER_RUNOUT_PREVENT
if (ms > previous_millis_cmd + EXTRUDER_RUNOUT_SECONDS * 1000) if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) { if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
bool oldstatus; bool oldstatus;
switch(active_extruder) { switch(active_extruder) {
@ -5894,7 +5853,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
current_position[E_AXIS] = oldepos; current_position[E_AXIS] = oldepos;
destination[E_AXIS] = oldedes; destination[E_AXIS] = oldedes;
plan_set_e_position(oldepos); plan_set_e_position(oldepos);
previous_millis_cmd = ms; // refresh_cmd_timeout() previous_cmd_ms = ms; // refresh_cmd_timeout()
st_synchronize(); st_synchronize();
switch(active_extruder) { switch(active_extruder) {
case 0: case 0:
@ -5964,7 +5923,7 @@ void kill()
{ {
if filrunoutEnqued == false { if filrunoutEnqued == false {
filrunoutEnqued = true; filrunoutEnqued = true;
enquecommand("M600"); enqueuecommand("M600");
} }
} }
#endif #endif

View file

@ -25,7 +25,7 @@ CardReader::CardReader() {
OUT_WRITE(SDPOWER, HIGH); OUT_WRITE(SDPOWER, HIGH);
#endif //SDPOWER #endif //SDPOWER
autostart_atmillis = millis() + 5000; next_autostart_ms = millis() + 5000;
} }
char *createFilename(char *buffer, const dir_t &p) { //buffer > 12characters char *createFilename(char *buffer, const dir_t &p) { //buffer > 12characters
@ -397,7 +397,7 @@ void CardReader::write_command(char *buf) {
} }
void CardReader::checkautostart(bool force) { void CardReader::checkautostart(bool force) {
if (!force && (!autostart_stilltocheck || autostart_atmillis < millis())) if (!force && (!autostart_stilltocheck || next_autostart_ms < millis()))
return; return;
autostart_stilltocheck = false; autostart_stilltocheck = false;
@ -421,8 +421,8 @@ void CardReader::checkautostart(bool force) {
if (p.name[9] != '~' && strncmp((char*)p.name, autoname, 5) == 0) { if (p.name[9] != '~' && strncmp((char*)p.name, autoname, 5) == 0) {
char cmd[30]; char cmd[30];
sprintf_P(cmd, PSTR("M23 %s"), autoname); sprintf_P(cmd, PSTR("M23 %s"), autoname);
enquecommand(cmd); enqueuecommand(cmd);
enquecommands_P(PSTR("M24")); enqueuecommands_P(PSTR("M24"));
found = true; found = true;
} }
} }
@ -508,7 +508,7 @@ void CardReader::printingHasFinished() {
sdprinting = false; sdprinting = false;
if (SD_FINISHED_STEPPERRELEASE) { if (SD_FINISHED_STEPPERRELEASE) {
//finishAndDisableSteppers(); //finishAndDisableSteppers();
enquecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND)); enqueuecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
} }
autotempShutdown(); autotempShutdown();
} }

View file

@ -62,7 +62,7 @@ private:
uint32_t filespos[SD_PROCEDURE_DEPTH]; uint32_t filespos[SD_PROCEDURE_DEPTH];
char filenames[SD_PROCEDURE_DEPTH][MAXPATHNAMELENGTH]; char filenames[SD_PROCEDURE_DEPTH][MAXPATHNAMELENGTH];
uint32_t filesize; uint32_t filesize;
unsigned long autostart_atmillis; millis_t next_autostart_ms;
uint32_t sdpos; uint32_t sdpos;
bool autostart_stilltocheck; //the sd start is delayed, because otherwise the serial cannot answer fast enought to make contact with the hostsoftware. bool autostart_stilltocheck; //the sd start is delayed, because otherwise the serial cannot answer fast enought to make contact with the hostsoftware.

View file

@ -350,7 +350,7 @@ static void lcd_implementation_status_screen() {
#ifndef FILAMENT_LCD_DISPLAY #ifndef FILAMENT_LCD_DISPLAY
lcd_print(lcd_status_message); lcd_print(lcd_status_message);
#else #else
if (millis() < message_millis + 5000) { //Display both Status message line and Filament display on the last line if (millis() < previous_lcd_status_ms + 5000) { //Display both Status message line and Filament display on the last line
lcd_print(lcd_status_message); lcd_print(lcd_status_message);
} }
else { else {

View file

@ -58,9 +58,7 @@ Here are some standard links for getting your machine calibrated:
// The following define selects which electronics board you have. // The following define selects which electronics board you have.
// Please choose the name from boards.h that matches your setup // Please choose the name from boards.h that matches your setup
#ifndef MOTHERBOARD #define MOTHERBOARD BOARD_HEPHESTOS
#define MOTHERBOARD BOARD_HEPHESTOS
#endif
// Optional custom name for your RepStrap or other custom machine // Optional custom name for your RepStrap or other custom machine
// Displayed in the LCD "Ready" message // Displayed in the LCD "Ready" message

View file

@ -58,9 +58,7 @@ Here are some standard links for getting your machine calibrated:
// The following define selects which electronics board you have. // The following define selects which electronics board you have.
// Please choose the name from boards.h that matches your setup // Please choose the name from boards.h that matches your setup
#ifndef MOTHERBOARD #define MOTHERBOARD BOARD_WITBOX
#define MOTHERBOARD BOARD_WITBOX
#endif
// Optional custom name for your RepStrap or other custom machine // Optional custom name for your RepStrap or other custom machine
// Displayed in the LCD "Ready" message // Displayed in the LCD "Ready" message

View file

@ -60,13 +60,13 @@
#ifdef MESH_BED_LEVELING #ifdef MESH_BED_LEVELING
#include "mesh_bed_leveling.h" #include "mesh_bed_leveling.h"
#endif // MESH_BED_LEVELING #endif
//=========================================================================== //===========================================================================
//============================= public variables ============================ //============================= public variables ============================
//=========================================================================== //===========================================================================
unsigned long minsegmenttime; millis_t minsegmenttime;
float max_feedrate[NUM_AXIS]; // Max speeds in mm per minute float max_feedrate[NUM_AXIS]; // Max speeds in mm per minute
float axis_steps_per_unit[NUM_AXIS]; float axis_steps_per_unit[NUM_AXIS];
unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
@ -159,8 +159,8 @@ void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exi
unsigned long final_rate = ceil(block->nominal_rate * exit_factor); // (step/min) unsigned long final_rate = ceil(block->nominal_rate * exit_factor); // (step/min)
// Limit minimal step rate (Otherwise the timer will overflow.) // Limit minimal step rate (Otherwise the timer will overflow.)
if (initial_rate < 120) initial_rate = 120; NOLESS(initial_rate, 120);
if (final_rate < 120) final_rate = 120; NOLESS(final_rate, 120);
long acceleration = block->acceleration_st; long acceleration = block->acceleration_st;
int32_t accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration)); int32_t accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
@ -382,9 +382,11 @@ void plan_init() {
} }
float t = autotemp_min + high * autotemp_factor; float t = autotemp_min + high * autotemp_factor;
if (t < autotemp_min) t = autotemp_min; t = constrain(t, autotemp_min, autotemp_max);
if (t > autotemp_max) t = autotemp_max; if (oldt > t) {
if (oldt > t) t = AUTOTEMP_OLDWEIGHT * oldt + (1 - AUTOTEMP_OLDWEIGHT) * t; t *= (1 - AUTOTEMP_OLDWEIGHT);
t += AUTOTEMP_OLDWEIGHT * oldt;
}
oldt = t; oldt = t;
setTargetHotend0(t); setTargetHotend0(t);
} }
@ -426,7 +428,7 @@ void check_axes_activity() {
#if HAS_FAN #if HAS_FAN
#ifdef FAN_KICKSTART_TIME #ifdef FAN_KICKSTART_TIME
static unsigned long fan_kick_end; static millis_t fan_kick_end;
if (tail_fan_speed) { if (tail_fan_speed) {
if (fan_kick_end == 0) { if (fan_kick_end == 0) {
// Just starting up fan - run at full power. // Just starting up fan - run at full power.
@ -651,10 +653,10 @@ float junction_deviation = 0.1;
} }
} }
if (block->steps[E_AXIS]) { if (block->steps[E_AXIS])
if (feed_rate < minimumfeedrate) feed_rate = minimumfeedrate; NOLESS(feed_rate, minimumfeedrate);
} else
else if (feed_rate < mintravelfeedrate) feed_rate = mintravelfeedrate; NOLESS(feed_rate, mintravelfeedrate);
/** /**
* This part of the code calculates the total length of the movement. * This part of the code calculates the total length of the movement.

View file

@ -115,7 +115,7 @@ FORCE_INLINE uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block
void plan_set_e_position(const float &e); void plan_set_e_position(const float &e);
extern unsigned long minsegmenttime; extern millis_t minsegmenttime;
extern float max_feedrate[NUM_AXIS]; // set the max speeds extern float max_feedrate[NUM_AXIS]; // set the max speeds
extern float axis_steps_per_unit[NUM_AXIS]; extern float axis_steps_per_unit[NUM_AXIS];
extern unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software extern unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software

View file

@ -400,7 +400,7 @@ ISR(TIMER1_COMPA_vect) {
current_block = NULL; current_block = NULL;
plan_discard_current_block(); plan_discard_current_block();
#ifdef SD_FINISHED_RELEASECOMMAND #ifdef SD_FINISHED_RELEASECOMMAND
if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enquecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND)); if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueuecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
#endif #endif
cleaning_buffer_counter--; cleaning_buffer_counter--;
OCR1A = 200; OCR1A = 200;
@ -718,7 +718,7 @@ ISR(TIMER1_COMPA_vect) {
// Calculate new timer value // Calculate new timer value
unsigned short timer; unsigned short timer;
unsigned short step_rate; unsigned short step_rate;
if (step_events_completed <= (unsigned long int)current_block->accelerate_until) { if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate); MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
acc_step_rate += current_block->initial_rate; acc_step_rate += current_block->initial_rate;
@ -742,7 +742,7 @@ ISR(TIMER1_COMPA_vect) {
#endif #endif
} }
else if (step_events_completed > (unsigned long int)current_block->decelerate_after) { else if (step_events_completed > (unsigned long)current_block->decelerate_after) {
MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate); MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
if (step_rate > acc_step_rate) { // Check step_rate stays positive if (step_rate > acc_step_rate) { // Check step_rate stays positive

View file

@ -77,14 +77,14 @@ unsigned char soft_pwm_bed;
#define HAS_BED_THERMAL_PROTECTION (defined(THERMAL_RUNAWAY_PROTECTION_BED_PERIOD) && THERMAL_RUNAWAY_PROTECTION_BED_PERIOD > 0 && TEMP_SENSOR_BED != 0) #define HAS_BED_THERMAL_PROTECTION (defined(THERMAL_RUNAWAY_PROTECTION_BED_PERIOD) && THERMAL_RUNAWAY_PROTECTION_BED_PERIOD > 0 && TEMP_SENSOR_BED != 0)
#if HAS_HEATER_THERMAL_PROTECTION || HAS_BED_THERMAL_PROTECTION #if HAS_HEATER_THERMAL_PROTECTION || HAS_BED_THERMAL_PROTECTION
enum TRState { TRReset, TRInactive, TRFirstHeating, TRStable, TRRunaway }; enum TRState { TRReset, TRInactive, TRFirstHeating, TRStable, TRRunaway };
void thermal_runaway_protection(TRState *state, unsigned long *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc); void thermal_runaway_protection(TRState *state, millis_t *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
#if HAS_HEATER_THERMAL_PROTECTION #if HAS_HEATER_THERMAL_PROTECTION
static TRState thermal_runaway_state_machine[4] = { TRReset, TRReset, TRReset, TRReset }; static TRState thermal_runaway_state_machine[4] = { TRReset, TRReset, TRReset, TRReset };
static unsigned long thermal_runaway_timer[4]; // = {0,0,0,0}; static millis_t thermal_runaway_timer[4]; // = {0,0,0,0};
#endif #endif
#if HAS_BED_THERMAL_PROTECTION #if HAS_BED_THERMAL_PROTECTION
static TRState thermal_runaway_bed_state_machine = TRReset; static TRState thermal_runaway_bed_state_machine = TRReset;
static unsigned long thermal_runaway_bed_timer; static millis_t thermal_runaway_bed_timer;
#endif #endif
#endif #endif
@ -118,7 +118,7 @@ static volatile bool temp_meas_ready = false;
static float temp_iState_min_bed; static float temp_iState_min_bed;
static float temp_iState_max_bed; static float temp_iState_max_bed;
#else //PIDTEMPBED #else //PIDTEMPBED
static unsigned long previous_millis_bed_heater; static millis_t next_bed_check_ms;
#endif //PIDTEMPBED #endif //PIDTEMPBED
static unsigned char soft_pwm[EXTRUDERS]; static unsigned char soft_pwm[EXTRUDERS];
@ -126,7 +126,7 @@ static volatile bool temp_meas_ready = false;
static unsigned char soft_pwm_fan; static unsigned char soft_pwm_fan;
#endif #endif
#if HAS_AUTO_FAN #if HAS_AUTO_FAN
static unsigned long extruder_autofan_last_check; static millis_t next_auto_fan_check_ms;
#endif #endif
#ifdef PIDTEMP #ifdef PIDTEMP
@ -171,7 +171,7 @@ static void updateTemperaturesFromRawValues();
#ifdef WATCH_TEMP_PERIOD #ifdef WATCH_TEMP_PERIOD
int watch_start_temp[EXTRUDERS] = { 0 }; int watch_start_temp[EXTRUDERS] = { 0 };
unsigned long watchmillis[EXTRUDERS] = { 0 }; millis_t watchmillis[EXTRUDERS] = { 0 };
#endif //WATCH_TEMP_PERIOD #endif //WATCH_TEMP_PERIOD
#ifndef SOFT_PWM_SCALE #ifndef SOFT_PWM_SCALE
@ -196,7 +196,7 @@ void PID_autotune(float temp, int extruder, int ncycles)
int cycles = 0; int cycles = 0;
bool heating = true; bool heating = true;
unsigned long temp_millis = millis(), t1 = temp_millis, t2 = temp_millis; millis_t temp_ms = millis(), t1 = temp_ms, t2 = temp_ms;
long t_high = 0, t_low = 0; long t_high = 0, t_low = 0;
long bias, d; long bias, d;
@ -205,7 +205,7 @@ void PID_autotune(float temp, int extruder, int ncycles)
float max = 0, min = 10000; float max = 0, min = 10000;
#if HAS_AUTO_FAN #if HAS_AUTO_FAN
unsigned long extruder_autofan_last_check = temp_millis; millis_t next_auto_fan_check_ms = temp_ms + 2500;
#endif #endif
if (extruder >= EXTRUDERS if (extruder >= EXTRUDERS
@ -229,7 +229,7 @@ void PID_autotune(float temp, int extruder, int ncycles)
// PID Tuning loop // PID Tuning loop
for (;;) { for (;;) {
unsigned long ms = millis(); millis_t ms = millis();
if (temp_meas_ready) { // temp sample ready if (temp_meas_ready) { // temp sample ready
updateTemperaturesFromRawValues(); updateTemperaturesFromRawValues();
@ -240,9 +240,9 @@ void PID_autotune(float temp, int extruder, int ncycles)
min = min(min, input); min = min(min, input);
#if HAS_AUTO_FAN #if HAS_AUTO_FAN
if (ms > extruder_autofan_last_check + 2500) { if (ms > next_auto_fan_check_ms) {
checkExtruderAutoFans(); checkExtruderAutoFans();
extruder_autofan_last_check = ms; next_auto_fan_check_ms = ms + 2500;
} }
#endif #endif
@ -317,7 +317,7 @@ void PID_autotune(float temp, int extruder, int ncycles)
return; return;
} }
// Every 2 seconds... // Every 2 seconds...
if (ms > temp_millis + 2000) { if (ms > temp_ms + 2000) {
int p; int p;
if (extruder < 0) { if (extruder < 0) {
p = soft_pwm_bed; p = soft_pwm_bed;
@ -332,7 +332,7 @@ void PID_autotune(float temp, int extruder, int ncycles)
SERIAL_PROTOCOLPGM(MSG_AT); SERIAL_PROTOCOLPGM(MSG_AT);
SERIAL_PROTOCOLLN(p); SERIAL_PROTOCOLLN(p);
temp_millis = ms; temp_ms = ms;
} // every 2 seconds } // every 2 seconds
// Over 2 minutes? // Over 2 minutes?
if (((ms - t1) + (ms - t2)) > (10L*60L*1000L*2L)) { if (((ms - t1) + (ms - t2)) > (10L*60L*1000L*2L)) {
@ -592,7 +592,7 @@ void manage_heater() {
#endif //HEATER_0_USES_MAX6675 #endif //HEATER_0_USES_MAX6675
#if defined(WATCH_TEMP_PERIOD) || !defined(PIDTEMPBED) || HAS_AUTO_FAN #if defined(WATCH_TEMP_PERIOD) || !defined(PIDTEMPBED) || HAS_AUTO_FAN
unsigned long ms = millis(); millis_t ms = millis();
#endif #endif
// Loop through all extruders // Loop through all extruders
@ -631,16 +631,16 @@ void manage_heater() {
} // Extruders Loop } // Extruders Loop
#if HAS_AUTO_FAN #if HAS_AUTO_FAN
if (ms > extruder_autofan_last_check + 2500) { // only need to check fan state very infrequently if (ms > next_auto_fan_check_ms) { // only need to check fan state very infrequently
checkExtruderAutoFans(); checkExtruderAutoFans();
extruder_autofan_last_check = ms; next_auto_fan_check_ms = ms + 2500;
} }
#endif #endif
#ifndef PIDTEMPBED #ifndef PIDTEMPBED
if (ms < previous_millis_bed_heater + BED_CHECK_INTERVAL) return; if (ms < next_bed_check_ms) return;
previous_millis_bed_heater = ms; next_bed_check_ms = ms + BED_CHECK_INTERVAL;
#endif //PIDTEMPBED #endif
#if TEMP_SENSOR_BED != 0 #if TEMP_SENSOR_BED != 0
@ -992,7 +992,7 @@ void tp_init()
void setWatch() { void setWatch() {
#ifdef WATCH_TEMP_PERIOD #ifdef WATCH_TEMP_PERIOD
unsigned long ms = millis(); millis_t ms = millis();
for (int e = 0; e < EXTRUDERS; e++) { for (int e = 0; e < EXTRUDERS; e++) {
if (degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2)) { if (degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2)) {
watch_start_temp[e] = degHotend(e); watch_start_temp[e] = degHotend(e);
@ -1004,7 +1004,7 @@ void setWatch() {
#if HAS_HEATER_THERMAL_PROTECTION || HAS_BED_THERMAL_PROTECTION #if HAS_HEATER_THERMAL_PROTECTION || HAS_BED_THERMAL_PROTECTION
void thermal_runaway_protection(TRState *state, unsigned long *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc) { void thermal_runaway_protection(TRState *state, millis_t *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc) {
static float tr_target_temperature[EXTRUDERS+1] = { 0.0 }; static float tr_target_temperature[EXTRUDERS+1] = { 0.0 };
@ -1109,16 +1109,18 @@ void disable_heater() {
#ifdef HEATER_0_USES_MAX6675 #ifdef HEATER_0_USES_MAX6675
#define MAX6675_HEAT_INTERVAL 250u #define MAX6675_HEAT_INTERVAL 250u
unsigned long max6675_previous_millis = MAX6675_HEAT_INTERVAL; static millis_t next_max6675_ms = 0;
int max6675_temp = 2000; int max6675_temp = 2000;
static int read_max6675() { static int read_max6675() {
unsigned long ms = millis(); millis_t ms = millis();
if (ms < max6675_previous_millis + MAX6675_HEAT_INTERVAL)
if (ms < next_max6675_ms)
return max6675_temp; return max6675_temp;
max6675_previous_millis = ms; next_max6675_ms = ms + MAX6675_HEAT_INTERVAL;
max6675_temp = 0; max6675_temp = 0;
#ifdef PRR #ifdef PRR

View file

@ -22,7 +22,7 @@ int absPreheatHPBTemp;
int absPreheatFanSpeed; int absPreheatFanSpeed;
#ifdef FILAMENT_LCD_DISPLAY #ifdef FILAMENT_LCD_DISPLAY
unsigned long message_millis = 0; millis_t previous_lcd_status_ms = 0;
#endif #endif
/* !Configuration settings */ /* !Configuration settings */
@ -77,8 +77,6 @@ static void lcd_status_screen();
static void lcd_level_bed(); static void lcd_level_bed();
#endif #endif
static void lcd_quick_feedback();//Cause an LCD refresh, and give the user visual or audible feedback that something has happened
/* Different types of actions that can be used in menu items. */ /* Different types of actions that can be used in menu items. */
static void menu_action_back(menuFunc_t data); static void menu_action_back(menuFunc_t data);
static void menu_action_submenu(menuFunc_t data); static void menu_action_submenu(menuFunc_t data);
@ -220,7 +218,7 @@ static void lcd_status_screen();
volatile uint8_t slow_buttons; // Bits of the pressed buttons. volatile uint8_t slow_buttons; // Bits of the pressed buttons.
#endif #endif
uint8_t currentMenuViewOffset; /* scroll offset in the current menu */ uint8_t currentMenuViewOffset; /* scroll offset in the current menu */
uint32_t blocking_enc; millis_t next_button_update_ms;
uint8_t lastEncoderBits; uint8_t lastEncoderBits;
uint32_t encoderPosition; uint32_t encoderPosition;
#if (SDCARDDETECT > 0) #if (SDCARDDETECT > 0)
@ -230,7 +228,7 @@ static void lcd_status_screen();
#endif // ULTIPANEL #endif // ULTIPANEL
menuFunc_t currentMenu = lcd_status_screen; /* function pointer to the currently active menu */ menuFunc_t currentMenu = lcd_status_screen; /* function pointer to the currently active menu */
uint32_t lcd_next_update_millis; millis_t next_lcd_update_ms;
uint8_t lcd_status_update_delay; uint8_t lcd_status_update_delay;
bool ignore_click = false; bool ignore_click = false;
bool wait_for_unclick; bool wait_for_unclick;
@ -267,7 +265,7 @@ static void lcd_status_screen() {
encoderRateMultiplierEnabled = false; encoderRateMultiplierEnabled = false;
#ifdef LCD_PROGRESS_BAR #ifdef LCD_PROGRESS_BAR
unsigned long ms = millis(); millis_t ms = millis();
#ifndef PROGRESS_MSG_ONCE #ifndef PROGRESS_MSG_ONCE
if (ms > progressBarTick + PROGRESS_BAR_MSG_TIME + PROGRESS_BAR_BAR_TIME) { if (ms > progressBarTick + PROGRESS_BAR_MSG_TIME + PROGRESS_BAR_BAR_TIME) {
progressBarTick = ms; progressBarTick = ms;
@ -324,7 +322,7 @@ static void lcd_status_screen() {
#endif #endif
); );
#ifdef FILAMENT_LCD_DISPLAY #ifdef FILAMENT_LCD_DISPLAY
message_millis = millis(); // get status message to show up for a while previous_lcd_status_ms = millis(); // get status message to show up for a while
#endif #endif
} }
@ -433,7 +431,7 @@ void lcd_set_home_offsets() {
plan_set_position(0.0, 0.0, 0.0, current_position[E_AXIS]); plan_set_position(0.0, 0.0, 0.0, current_position[E_AXIS]);
// Audio feedback // Audio feedback
enquecommands_P(PSTR("M300 S659 P200\nM300 S698 P200")); enqueuecommands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
lcd_return_to_status(); lcd_return_to_status();
} }
@ -1114,15 +1112,15 @@ menu_edit_type(unsigned long, long5, ftostr5, 0.01)
lcd_move_y(); lcd_move_y();
} }
static void reprapworld_keypad_move_home() { static void reprapworld_keypad_move_home() {
enquecommands_P((PSTR("G28"))); // move all axis home enqueuecommands_P((PSTR("G28"))); // move all axis home
} }
#endif //REPRAPWORLD_KEYPAD #endif //REPRAPWORLD_KEYPAD
/** End of menus **/ /** End of menus **/
static void lcd_quick_feedback() { void lcd_quick_feedback() {
lcdDrawUpdate = 2; lcdDrawUpdate = 2;
blocking_enc = millis() + 500; next_button_update_ms = millis() + 500;
#ifdef LCD_USE_I2C_BUZZER #ifdef LCD_USE_I2C_BUZZER
#ifndef LCD_FEEDBACK_FREQUENCY_HZ #ifndef LCD_FEEDBACK_FREQUENCY_HZ
@ -1140,15 +1138,15 @@ static void lcd_quick_feedback() {
#ifndef LCD_FEEDBACK_FREQUENCY_DURATION_MS #ifndef LCD_FEEDBACK_FREQUENCY_DURATION_MS
#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 2 #define LCD_FEEDBACK_FREQUENCY_DURATION_MS 2
#endif #endif
const unsigned int delay = 1000000 / LCD_FEEDBACK_FREQUENCY_HZ / 2; const uint16_t delay = 1000000 / LCD_FEEDBACK_FREQUENCY_HZ / 2;
int i = LCD_FEEDBACK_FREQUENCY_DURATION_MS * LCD_FEEDBACK_FREQUENCY_HZ / 1000; uint16_t i = LCD_FEEDBACK_FREQUENCY_DURATION_MS * LCD_FEEDBACK_FREQUENCY_HZ / 1000;
while (i--) { while (i--) {
WRITE(BEEPER,HIGH); WRITE(BEEPER,HIGH);
delayMicroseconds(delay); delayMicroseconds(delay);
WRITE(BEEPER,LOW); WRITE(BEEPER,LOW);
delayMicroseconds(delay); delayMicroseconds(delay);
} }
const int j = max(10000 - LCD_FEEDBACK_FREQUENCY_DURATION_MS * 1000, 0); const uint16_t j = max(10000 - LCD_FEEDBACK_FREQUENCY_DURATION_MS * 1000, 0);
if (j) delayMicroseconds(j); if (j) delayMicroseconds(j);
#endif #endif
} }
@ -1156,15 +1154,15 @@ static void lcd_quick_feedback() {
/** Menu action functions **/ /** Menu action functions **/
static void menu_action_back(menuFunc_t data) { lcd_goto_menu(data); } static void menu_action_back(menuFunc_t data) { lcd_goto_menu(data); }
static void menu_action_submenu(menuFunc_t data) { lcd_goto_menu(data); } static void menu_action_submenu(menuFunc_t data) { lcd_goto_menu(data); }
static void menu_action_gcode(const char* pgcode) { enquecommands_P(pgcode); } static void menu_action_gcode(const char* pgcode) { enqueuecommands_P(pgcode); }
static void menu_action_function(menuFunc_t data) { (*data)(); } static void menu_action_function(menuFunc_t data) { (*data)(); }
static void menu_action_sdfile(const char* filename, char* longFilename) { static void menu_action_sdfile(const char* filename, char* longFilename) {
char cmd[30]; char cmd[30];
char* c; char* c;
sprintf_P(cmd, PSTR("M23 %s"), filename); sprintf_P(cmd, PSTR("M23 %s"), filename);
for(c = &cmd[4]; *c; c++) *c = tolower(*c); for(c = &cmd[4]; *c; c++) *c = tolower(*c);
enquecommand(cmd); enqueuecommand(cmd);
enquecommands_P(PSTR("M24")); enqueuecommands_P(PSTR("M24"));
lcd_return_to_status(); lcd_return_to_status();
} }
static void menu_action_sddirectory(const char* filename, char* longFilename) { static void menu_action_sddirectory(const char* filename, char* longFilename) {
@ -1252,7 +1250,7 @@ int lcd_strlen_P(const char *s) {
void lcd_update() { void lcd_update() {
#ifdef ULTIPANEL #ifdef ULTIPANEL
static unsigned long timeoutToStatus = 0; static millis_t return_to_status_ms = 0;
#endif #endif
#ifdef LCD_HAS_SLOW_BUTTONS #ifdef LCD_HAS_SLOW_BUTTONS
@ -1282,8 +1280,8 @@ void lcd_update() {
} }
#endif//CARDINSERTED #endif//CARDINSERTED
uint32_t ms = millis(); millis_t ms = millis();
if (ms > lcd_next_update_millis) { if (ms > next_lcd_update_ms) {
#ifdef ULTIPANEL #ifdef ULTIPANEL
@ -1335,7 +1333,7 @@ void lcd_update() {
encoderPosition += (encoderDiff * encoderMultiplier) / ENCODER_PULSES_PER_STEP; encoderPosition += (encoderDiff * encoderMultiplier) / ENCODER_PULSES_PER_STEP;
encoderDiff = 0; encoderDiff = 0;
} }
timeoutToStatus = ms + LCD_TIMEOUT_TO_STATUS; return_to_status_ms = ms + LCD_TIMEOUT_TO_STATUS;
lcdDrawUpdate = 1; lcdDrawUpdate = 1;
} }
#endif //ULTIPANEL #endif //ULTIPANEL
@ -1371,20 +1369,24 @@ void lcd_update() {
#endif #endif
#ifdef ULTIPANEL #ifdef ULTIPANEL
// Return to Status Screen after a timeout
if (currentMenu != lcd_status_screen && if (currentMenu != lcd_status_screen &&
#if defined(MANUAL_BED_LEVELING) #ifdef MANUAL_BED_LEVELING
currentMenu != _lcd_level_bed && currentMenu != _lcd_level_bed &&
currentMenu != _lcd_level_bed_homing && currentMenu != _lcd_level_bed_homing &&
#endif // MANUAL_BED_LEVELING #endif
millis() > timeoutToStatus) { millis() > return_to_status_ms
) {
lcd_return_to_status(); lcd_return_to_status();
lcdDrawUpdate = 2; lcdDrawUpdate = 2;
} }
#endif //ULTIPANEL
#endif // ULTIPANEL
if (lcdDrawUpdate == 2) lcd_implementation_clear(); if (lcdDrawUpdate == 2) lcd_implementation_clear();
if (lcdDrawUpdate) lcdDrawUpdate--; if (lcdDrawUpdate) lcdDrawUpdate--;
lcd_next_update_millis = millis() + LCD_UPDATE_INTERVAL; next_lcd_update_ms = millis() + LCD_UPDATE_INTERVAL;
} }
} }
@ -1403,7 +1405,7 @@ void lcd_finishstatus(bool persist=false) {
lcdDrawUpdate = 2; lcdDrawUpdate = 2;
#ifdef FILAMENT_LCD_DISPLAY #ifdef FILAMENT_LCD_DISPLAY
message_millis = millis(); //get status message to show up for a while previous_lcd_status_ms = millis(); //get status message to show up for a while
#endif #endif
} }
@ -1473,7 +1475,7 @@ void lcd_buttons_update() {
if (READ(BTN_EN1) == 0) newbutton |= EN_A; if (READ(BTN_EN1) == 0) newbutton |= EN_A;
if (READ(BTN_EN2) == 0) newbutton |= EN_B; if (READ(BTN_EN2) == 0) newbutton |= EN_B;
#if BTN_ENC > 0 #if BTN_ENC > 0
if (millis() > blocking_enc && READ(BTN_ENC) == 0) newbutton |= EN_C; if (millis() > next_button_update_ms && READ(BTN_ENC) == 0) newbutton |= EN_C;
#endif #endif
buttons = newbutton; buttons = newbutton;
#ifdef LCD_HAS_SLOW_BUTTONS #ifdef LCD_HAS_SLOW_BUTTONS
@ -1815,7 +1817,7 @@ char *ftostr52(const float &x) {
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z; current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
line_to_current(); line_to_current();
mbl.active = 1; mbl.active = 1;
enquecommands_P(PSTR("G28")); enqueuecommands_P(PSTR("G28"));
lcd_return_to_status(); lcd_return_to_status();
} else { } else {
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z; current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
@ -1857,7 +1859,7 @@ char *ftostr52(const float &x) {
axis_known_position[Y_AXIS] = false; axis_known_position[Y_AXIS] = false;
axis_known_position[Z_AXIS] = false; axis_known_position[Z_AXIS] = false;
mbl.reset(); mbl.reset();
enquecommands_P(PSTR("G28")); enqueuecommands_P(PSTR("G28"));
lcdDrawUpdate = 2; lcdDrawUpdate = 2;
lcd_goto_menu(_lcd_level_bed_homing); lcd_goto_menu(_lcd_level_bed_homing);
} }

View file

@ -49,10 +49,11 @@
extern bool cancel_heatup; extern bool cancel_heatup;
#ifdef FILAMENT_LCD_DISPLAY #ifdef FILAMENT_LCD_DISPLAY
extern unsigned long message_millis; extern millis_t previous_lcd_status_ms;
#endif #endif
void lcd_buzz(long duration,uint16_t freq); void lcd_buzz(long duration,uint16_t freq);
void lcd_quick_feedback(); // Audible feedback for a button click - could also be visual
bool lcd_clicked(); bool lcd_clicked();
void lcd_ignore_click(bool b=true); void lcd_ignore_click(bool b=true);

View file

@ -610,7 +610,7 @@ static void lcd_implementation_status_screen() {
// Show Filament Diameter and Volumetric Multiplier % // Show Filament Diameter and Volumetric Multiplier %
// After allowing lcd_status_message to show for 5 seconds // After allowing lcd_status_message to show for 5 seconds
if (millis() >= message_millis + 5000) { if (millis() >= previous_lcd_status_ms + 5000) {
lcd_printPGM(PSTR("Dia ")); lcd_printPGM(PSTR("Dia "));
lcd.print(ftostr12ns(filament_width_meas)); lcd.print(ftostr12ns(filament_width_meas));
lcd_printPGM(PSTR(" V")); lcd_printPGM(PSTR(" V"));
@ -724,8 +724,8 @@ static void lcd_implementation_drawmenu_sddirectory(bool sel, uint8_t row, const
#define lcd_implementation_drawmenu_function(sel, row, pstr, data) lcd_implementation_drawmenu_generic(sel, row, pstr, '>', ' ') #define lcd_implementation_drawmenu_function(sel, row, pstr, data) lcd_implementation_drawmenu_generic(sel, row, pstr, '>', ' ')
#ifdef LCD_HAS_STATUS_INDICATORS #ifdef LCD_HAS_STATUS_INDICATORS
static void lcd_implementation_update_indicators()
{ static void lcd_implementation_update_indicators() {
#if defined(LCD_I2C_PANELOLU2) || defined(LCD_I2C_VIKI) #if defined(LCD_I2C_PANELOLU2) || defined(LCD_I2C_VIKI)
//set the LEDS - referred to as backlights by the LiquidTWI2 library //set the LEDS - referred to as backlights by the LiquidTWI2 library
static uint8_t ledsprev = 0; static uint8_t ledsprev = 0;
@ -741,29 +741,28 @@ static void lcd_implementation_update_indicators()
ledsprev = leds; ledsprev = leds;
} }
#endif #endif
} }
#endif
#endif // LCD_HAS_STATUS_INDICATORS
#ifdef LCD_HAS_SLOW_BUTTONS #ifdef LCD_HAS_SLOW_BUTTONS
extern uint32_t blocking_enc;
static uint8_t lcd_implementation_read_slow_buttons() extern millis_t next_button_update_ms;
{
static uint8_t lcd_implementation_read_slow_buttons() {
#ifdef LCD_I2C_TYPE_MCP23017 #ifdef LCD_I2C_TYPE_MCP23017
uint8_t slow_buttons; uint8_t slow_buttons;
// Reading these buttons this is likely to be too slow to call inside interrupt context // Reading these buttons this is likely to be too slow to call inside interrupt context
// so they are called during normal lcd_update // so they are called during normal lcd_update
slow_buttons = lcd.readButtons() << B_I2C_BTN_OFFSET; slow_buttons = lcd.readButtons() << B_I2C_BTN_OFFSET;
#if defined(LCD_I2C_VIKI) #ifdef LCD_I2C_VIKI
if(slow_buttons & (B_MI|B_RI)) { //LCD clicked if ((slow_buttons & (B_MI|B_RI)) && millis() < next_button_update_ms) // LCD clicked
if(blocking_enc > millis()) {
slow_buttons &= ~(B_MI|B_RI); // Disable LCD clicked buttons if screen is updated slow_buttons &= ~(B_MI|B_RI); // Disable LCD clicked buttons if screen is updated
}
}
#endif #endif
return slow_buttons; return slow_buttons;
#endif #endif
} }
#endif
#endif // LCD_HAS_SLOW_BUTTONS
#endif //__ULTRALCD_IMPLEMENTATION_HITACHI_HD44780_H #endif //__ULTRALCD_IMPLEMENTATION_HITACHI_HD44780_H