⚗️ Use pwm_set_duty over analogWrite to set PWM (#23048)

Co-authored-by: Scott Lahteine <thinkyhead@users.noreply.github.com>
This commit is contained in:
Andrei M 2021-11-02 01:47:16 -04:00 committed by Scott Lahteine
parent b033da1782
commit 0d91b07797
26 changed files with 159 additions and 126 deletions

View file

@ -221,7 +221,7 @@ void set_pwm_frequency(const pin_t pin, int f_desired);
/** /**
* set_pwm_duty * set_pwm_duty
* Sets the PWM duty cycle of the provided pin to the provided value * Set the PWM duty cycle of the provided pin to the provided value
* Optionally allows inverting the duty cycle [default = false] * Optionally allows inverting the duty cycle [default = false]
* Optionally allows changing the maximum size of the provided value to enable finer PWM duty control [default = 255] * Optionally allows changing the maximum size of the provided value to enable finer PWM duty control [default = 255]
*/ */

View file

@ -22,11 +22,10 @@
#ifdef __AVR__ #ifdef __AVR__
#include "../../inc/MarlinConfigPre.h" #include "../../inc/MarlinConfigPre.h"
#include "HAL.h"
#if NEEDS_HARDWARE_PWM // Specific meta-flag for features that mandate PWM #if NEEDS_HARDWARE_PWM // Specific meta-flag for features that mandate PWM
#include "HAL.h"
struct Timer { struct Timer {
volatile uint8_t* TCCRnQ[3]; // max 3 TCCR registers per timer volatile uint8_t* TCCRnQ[3]; // max 3 TCCR registers per timer
volatile uint16_t* OCRnQ[3]; // max 3 OCR registers per timer volatile uint16_t* OCRnQ[3]; // max 3 OCR registers per timer
@ -153,7 +152,7 @@ Timer get_pwm_timer(const pin_t pin) {
void set_pwm_frequency(const pin_t pin, int f_desired) { void set_pwm_frequency(const pin_t pin, int f_desired) {
Timer timer = get_pwm_timer(pin); Timer timer = get_pwm_timer(pin);
if (timer.n == 0) return; // Don't proceed if protected timer or not recognised if (timer.n == 0) return; // Don't proceed if protected timer or not recognized
uint16_t size; uint16_t size;
if (timer.n == 2) size = 255; else size = 65535; if (timer.n == 2) size = 255; else size = 65535;
@ -243,40 +242,39 @@ void set_pwm_frequency(const pin_t pin, int f_desired) {
_SET_ICRn(timer.ICRn, res); // Set ICRn value (TOP) = res _SET_ICRn(timer.ICRn, res); // Set ICRn value (TOP) = res
} }
#endif // NEEDS_HARDWARE_PWM
void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size/*=255*/, const bool invert/*=false*/) { void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size/*=255*/, const bool invert/*=false*/) {
// If v is 0 or v_size (max), digitalWrite to LOW or HIGH. #if NEEDS_HARDWARE_PWM
// Note that digitalWrite also disables pwm output for us (sets COM bit to 0)
if (v == 0)
digitalWrite(pin, invert);
else if (v == v_size)
digitalWrite(pin, !invert);
else {
Timer timer = get_pwm_timer(pin);
if (timer.n == 0) return; // Don't proceed if protected timer or not recognised
// Set compare output mode to CLEAR -> SET or SET -> CLEAR (if inverted)
_SET_COMnQ(timer.TCCRnQ, (timer.q
#ifdef TCCR2
+ (timer.q == 2) // COM20 is on bit 4 of TCCR2, thus requires q + 1 in the macro
#endif
), COM_CLEAR_SET + invert
);
uint16_t top; // If v is 0 or v_size (max), digitalWrite to LOW or HIGH.
if (timer.n == 2) { // if TIMER2 // Note that digitalWrite also disables pwm output for us (sets COM bit to 0)
top = ( if (v == 0)
#if ENABLED(USE_OCR2A_AS_TOP) digitalWrite(pin, invert);
*timer.OCRnQ[0] // top = OCR2A else if (v == v_size)
#else digitalWrite(pin, !invert);
255 // top = 0xFF (max) else {
#endif Timer timer = get_pwm_timer(pin);
if (timer.n == 0) return; // Don't proceed if protected timer or not recognized
// Set compare output mode to CLEAR -> SET or SET -> CLEAR (if inverted)
_SET_COMnQ(timer.TCCRnQ, (timer.q
#ifdef TCCR2
+ (timer.q == 2) // COM20 is on bit 4 of TCCR2, thus requires q + 1 in the macro
#endif
), COM_CLEAR_SET + invert
); );
}
else
top = *timer.ICRn; // top = ICRn
_SET_OCRnQ(timer.OCRnQ, timer.q, v * float(top) / float(v_size)); // Scale 8/16-bit v to top value uint16_t top = (timer.n == 2) ? TERN(USE_OCR2A_AS_TOP, *timer.OCRnQ[0], 255) : *timer.ICRn;
} _SET_OCRnQ(timer.OCRnQ, timer.q, (v * top + v_size / 2) / v_size); // Scale 8/16-bit v to top value
}
#else
analogWrite(pin, v);
UNUSED(v_size);
UNUSED(invert);
#endif
} }
#endif // NEEDS_HARDWARE_PWM
#endif // __AVR__ #endif // __AVR__

View file

@ -144,6 +144,11 @@ inline void HAL_adc_init() {}//todo
void HAL_adc_start_conversion(const uint8_t ch); void HAL_adc_start_conversion(const uint8_t ch);
uint16_t HAL_adc_get_result(); uint16_t HAL_adc_get_result();
//
// PWM
//
inline void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t=255, const bool=false) { analogWrite(pin, v); }
// //
// Pin Map // Pin Map
// //

View file

@ -129,6 +129,10 @@ void HAL_adc_init();
void HAL_adc_start_conversion(const uint8_t adc_pin); void HAL_adc_start_conversion(const uint8_t adc_pin);
// PWM
inline void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t=255, const bool=false) { analogWrite(pin, v); }
// Pin Map
#define GET_PIN_MAP_PIN(index) index #define GET_PIN_MAP_PIN(index) index
#define GET_PIN_MAP_INDEX(pin) pin #define GET_PIN_MAP_INDEX(pin) pin
#define PARSED_PIN_INDEX(code, dval) parser.intval(code, dval) #define PARSED_PIN_INDEX(code, dval) parser.intval(code, dval)

View file

@ -101,6 +101,9 @@ void HAL_adc_enable_channel(const uint8_t ch);
void HAL_adc_start_conversion(const uint8_t ch); void HAL_adc_start_conversion(const uint8_t ch);
uint16_t HAL_adc_get_result(); uint16_t HAL_adc_get_result();
// PWM
inline void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t=255, const bool=false) { analogWrite(pin, v); }
// Reset source // Reset source
inline void HAL_clear_reset_source(void) {} inline void HAL_clear_reset_source(void) {}
inline uint8_t HAL_get_reset_source(void) { return RST_POWER_ON; } inline uint8_t HAL_get_reset_source(void) { return RST_POWER_ON; }

View file

@ -22,18 +22,18 @@
#ifdef TARGET_LPC1768 #ifdef TARGET_LPC1768
#include "../../inc/MarlinConfigPre.h" #include "../../inc/MarlinConfigPre.h"
#if NEEDS_HARDWARE_PWM // Specific meta-flag for features that mandate PWM
#include <pwm.h> #include <pwm.h>
void set_pwm_frequency(const pin_t pin, int f_desired) {
LPC176x::pwm_set_frequency(pin, f_desired);
}
void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size/*=255*/, const bool invert/*=false*/) { void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size/*=255*/, const bool invert/*=false*/) {
LPC176x::pwm_write_ratio(pin, invert ? 1.0f - (float)v / v_size : (float)v / v_size); LPC176x::pwm_write_ratio(pin, invert ? 1.0f - (float)v / v_size : (float)v / v_size);
} }
#endif // NEEDS_HARDWARE_PWM #if NEEDS_HARDWARE_PWM // Specific meta-flag for features that mandate PWM
void set_pwm_frequency(const pin_t pin, int f_desired) {
LPC176x::pwm_set_frequency(pin, f_desired);
}
#endif
#endif // TARGET_LPC1768 #endif // TARGET_LPC1768

View file

@ -133,6 +133,9 @@ void HAL_adc_enable_channel(const uint8_t ch);
void HAL_adc_start_conversion(const uint8_t ch); void HAL_adc_start_conversion(const uint8_t ch);
uint16_t HAL_adc_get_result(); uint16_t HAL_adc_get_result();
// PWM
inline void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t=255, const bool=false) { analogWrite(pin, v); }
// Reset source // Reset source
inline void HAL_clear_reset_source(void) {} inline void HAL_clear_reset_source(void) {}
inline uint8_t HAL_get_reset_source(void) { return RST_POWER_ON; } inline uint8_t HAL_get_reset_source(void) { return RST_POWER_ON; }

View file

@ -127,6 +127,11 @@ void HAL_adc_init();
void HAL_adc_start_conversion(const uint8_t adc_pin); void HAL_adc_start_conversion(const uint8_t adc_pin);
//
// PWM
//
inline void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t=255, const bool=false) { analogWrite(pin, v); }
// //
// Pin Map // Pin Map
// //

View file

@ -24,26 +24,9 @@
#ifdef HAL_STM32 #ifdef HAL_STM32
#include "../../inc/MarlinConfigPre.h" #include "../../inc/MarlinConfig.h"
#if NEEDS_HARDWARE_PWM
#include "HAL.h"
#include "timers.h" #include "timers.h"
void set_pwm_frequency(const pin_t pin, int f_desired) {
if (!PWM_PIN(pin)) return; // Don't proceed if no hardware timer
PinName pin_name = digitalPinToPinName(pin);
TIM_TypeDef *Instance = (TIM_TypeDef *)pinmap_peripheral(pin_name, PinMap_PWM); // Get HAL timer instance
LOOP_S_L_N(i, 0, NUM_HARDWARE_TIMERS) // Protect used timers
if (timer_instance[i] && timer_instance[i]->getHandle()->Instance == Instance)
return;
pwm_start(pin_name, f_desired, 0, RESOLUTION_8B_COMPARE_FORMAT);
}
void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size/*=255*/, const bool invert/*=false*/) { void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size/*=255*/, const bool invert/*=false*/) {
PinName pin_name = digitalPinToPinName(pin); PinName pin_name = digitalPinToPinName(pin);
TIM_TypeDef *Instance = (TIM_TypeDef *)pinmap_peripheral(pin_name, PinMap_PWM); TIM_TypeDef *Instance = (TIM_TypeDef *)pinmap_peripheral(pin_name, PinMap_PWM);
@ -58,5 +41,21 @@ void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size/*=255
} }
} }
#endif // NEEDS_HARDWARE_PWM #if NEEDS_HARDWARE_PWM
void set_pwm_frequency(const pin_t pin, int f_desired) {
if (!PWM_PIN(pin)) return; // Don't proceed if no hardware timer
PinName pin_name = digitalPinToPinName(pin);
TIM_TypeDef *Instance = (TIM_TypeDef *)pinmap_peripheral(pin_name, PinMap_PWM); // Get HAL timer instance
LOOP_S_L_N(i, 0, NUM_HARDWARE_TIMERS) // Protect used timers
if (timer_instance[i] && timer_instance[i]->getHandle()->Instance == Instance)
return;
pwm_start(pin_name, f_desired, 0, RESOLUTION_8B_COMPARE_FORMAT);
}
#endif
#endif // HAL_STM32 #endif // HAL_STM32

View file

@ -449,8 +449,7 @@ uint16_t analogRead(pin_t pin) {
// Wrapper to maple unprotected analogWrite // Wrapper to maple unprotected analogWrite
void analogWrite(pin_t pin, int pwm_val8) { void analogWrite(pin_t pin, int pwm_val8) {
if (PWM_PIN(pin)) if (PWM_PIN(pin)) analogWrite(uint8_t(pin), pwm_val8);
analogWrite(uint8_t(pin), pwm_val8);
} }
void HAL_reboot() { nvic_sys_reset(); } void HAL_reboot() { nvic_sys_reset(); }

View file

@ -23,40 +23,10 @@
#include "../../inc/MarlinConfigPre.h" #include "../../inc/MarlinConfigPre.h"
#if NEEDS_HARDWARE_PWM
#include <pwm.h> #include <pwm.h>
#include "HAL.h" #include "HAL.h"
#include "timers.h" #include "timers.h"
void set_pwm_frequency(const pin_t pin, int f_desired) {
if (!PWM_PIN(pin)) return; // Don't proceed if no hardware timer
timer_dev *timer = PIN_MAP[pin].timer_device;
uint8_t channel = PIN_MAP[pin].timer_channel;
// Protect used timers
if (timer == get_timer_dev(TEMP_TIMER_NUM)) return;
if (timer == get_timer_dev(STEP_TIMER_NUM)) return;
#if PULSE_TIMER_NUM != STEP_TIMER_NUM
if (timer == get_timer_dev(PULSE_TIMER_NUM)) return;
#endif
if (!(timer->regs.bas->SR & TIMER_CR1_CEN)) // Ensure the timer is enabled
timer_init(timer);
timer_set_mode(timer, channel, TIMER_PWM);
uint16_t preload = 255; // Lock 255 PWM resolution for high frequencies
int32_t prescaler = (HAL_TIMER_RATE) / (preload + 1) / f_desired - 1;
if (prescaler > 65535) { // For low frequencies increase prescaler
prescaler = 65535;
preload = (HAL_TIMER_RATE) / (prescaler + 1) / f_desired - 1;
}
if (prescaler < 0) return; // Too high frequency
timer_set_reload(timer, preload);
timer_set_prescaler(timer, prescaler);
}
void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size/*=255*/, const bool invert/*=false*/) { void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size/*=255*/, const bool invert/*=false*/) {
timer_dev *timer = PIN_MAP[pin].timer_device; timer_dev *timer = PIN_MAP[pin].timer_device;
uint16_t max_val = timer->regs.bas->ARR * v / v_size; uint16_t max_val = timer->regs.bas->ARR * v / v_size;
@ -64,5 +34,35 @@ void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size/*=255
pwmWrite(pin, max_val); pwmWrite(pin, max_val);
} }
#if NEEDS_HARDWARE_PWM
void set_pwm_frequency(const pin_t pin, int f_desired) {
if (!PWM_PIN(pin)) return; // Don't proceed if no hardware timer
timer_dev *timer = PIN_MAP[pin].timer_device;
uint8_t channel = PIN_MAP[pin].timer_channel;
// Protect used timers
if (timer == get_timer_dev(TEMP_TIMER_NUM)) return;
if (timer == get_timer_dev(STEP_TIMER_NUM)) return;
#if PULSE_TIMER_NUM != STEP_TIMER_NUM
if (timer == get_timer_dev(PULSE_TIMER_NUM)) return;
#endif
if (!(timer->regs.bas->SR & TIMER_CR1_CEN)) // Ensure the timer is enabled
timer_init(timer);
timer_set_mode(timer, channel, TIMER_PWM);
uint16_t preload = 255; // Lock 255 PWM resolution for high frequencies
int32_t prescaler = (HAL_TIMER_RATE) / (preload + 1) / f_desired - 1;
if (prescaler > 65535) { // For low frequencies increase prescaler
prescaler = 65535;
preload = (HAL_TIMER_RATE) / (prescaler + 1) / f_desired - 1;
}
if (prescaler < 0) return; // Too high frequency
timer_set_reload(timer, preload);
timer_set_prescaler(timer, prescaler);
}
#endif // NEEDS_HARDWARE_PWM #endif // NEEDS_HARDWARE_PWM
#endif // __STM32F1__ #endif // __STM32F1__

View file

@ -122,6 +122,12 @@ void HAL_adc_init();
void HAL_adc_start_conversion(const uint8_t adc_pin); void HAL_adc_start_conversion(const uint8_t adc_pin);
uint16_t HAL_adc_get_result(); uint16_t HAL_adc_get_result();
// PWM
inline void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t=255, const bool=false) { analogWrite(pin, v); }
// Pin Map
#define GET_PIN_MAP_PIN(index) index #define GET_PIN_MAP_PIN(index) index
#define GET_PIN_MAP_INDEX(pin) pin #define GET_PIN_MAP_INDEX(pin) pin
#define PARSED_PIN_INDEX(code, dval) parser.intval(code, dval) #define PARSED_PIN_INDEX(code, dval) parser.intval(code, dval)

View file

@ -129,6 +129,12 @@ void HAL_adc_init();
void HAL_adc_start_conversion(const uint8_t adc_pin); void HAL_adc_start_conversion(const uint8_t adc_pin);
uint16_t HAL_adc_get_result(); uint16_t HAL_adc_get_result();
// PWM
inline void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t=255, const bool=false) { analogWrite(pin, v); }
// Pin Map
#define GET_PIN_MAP_PIN(index) index #define GET_PIN_MAP_PIN(index) index
#define GET_PIN_MAP_INDEX(pin) pin #define GET_PIN_MAP_INDEX(pin) pin
#define PARSED_PIN_INDEX(code, dval) parser.intval(code, dval) #define PARSED_PIN_INDEX(code, dval) parser.intval(code, dval)

View file

@ -106,17 +106,17 @@ void HAL_adc_init() {
void HAL_clear_reset_source() { void HAL_clear_reset_source() {
uint32_t reset_source = SRC_SRSR; uint32_t reset_source = SRC_SRSR;
SRC_SRSR = reset_source; SRC_SRSR = reset_source;
} }
uint8_t HAL_get_reset_source() { uint8_t HAL_get_reset_source() {
switch (SRC_SRSR & 0xFF) { switch (SRC_SRSR & 0xFF) {
case 1: return RST_POWER_ON; break; case 1: return RST_POWER_ON; break;
case 2: return RST_SOFTWARE; break; case 2: return RST_SOFTWARE; break;
case 4: return RST_EXTERNAL; break; case 4: return RST_EXTERNAL; break;
// case 8: return RST_BROWN_OUT; break; //case 8: return RST_BROWN_OUT; break;
case 16: return RST_WATCHDOG; break; case 16: return RST_WATCHDOG; break;
case 64: return RST_JTAG; break; case 64: return RST_JTAG; break;
// case 128: return RST_OVERTEMP; break; //case 128: return RST_OVERTEMP; break;
} }
return 0; return 0;
} }
@ -168,7 +168,7 @@ uint16_t HAL_adc_get_result() {
return 0; return 0;
} }
bool is_output(uint8_t pin) { bool is_output(pin_t pin) {
const struct digital_pin_bitband_and_config_table_struct *p; const struct digital_pin_bitband_and_config_table_struct *p;
p = digital_pin_to_info_PGM + pin; p = digital_pin_to_info_PGM + pin;
return (*(p->reg + 1) & p->mask); return (*(p->reg + 1) & p->mask);

View file

@ -150,8 +150,14 @@ void HAL_adc_init();
void HAL_adc_start_conversion(const uint8_t adc_pin); void HAL_adc_start_conversion(const uint8_t adc_pin);
uint16_t HAL_adc_get_result(); uint16_t HAL_adc_get_result();
// PWM
inline void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t=255, const bool=false) { analogWrite(pin, v); }
// Pin Map
#define GET_PIN_MAP_PIN(index) index #define GET_PIN_MAP_PIN(index) index
#define GET_PIN_MAP_INDEX(pin) pin #define GET_PIN_MAP_INDEX(pin) pin
#define PARSED_PIN_INDEX(code, dval) parser.intval(code, dval) #define PARSED_PIN_INDEX(code, dval) parser.intval(code, dval)
bool is_output(uint8_t pin); bool is_output(pin_t pin);

View file

@ -70,7 +70,7 @@ void CaseLight::update(const bool sflag) {
#if CASELIGHT_USES_BRIGHTNESS #if CASELIGHT_USES_BRIGHTNESS
if (pin_is_pwm()) if (pin_is_pwm())
analogWrite(pin_t(CASE_LIGHT_PIN), ( set_pwm_duty(pin_t(CASE_LIGHT_PIN), (
#if CASE_LIGHT_MAX_PWM == 255 #if CASE_LIGHT_MAX_PWM == 255
n10ct n10ct
#else #else

View file

@ -72,9 +72,10 @@ void ControllerFan::update() {
? settings.active_speed : settings.idle_speed ? settings.active_speed : settings.idle_speed
); );
// Allow digital or PWM fan output (see M42 handling) if (PWM_PIN(CONTROLLER_FAN_PIN))
WRITE(CONTROLLER_FAN_PIN, speed); set_pwm_duty(pin_t(CONTROLLER_FAN_PIN), speed);
analogWrite(pin_t(CONTROLLER_FAN_PIN), speed); else
WRITE(CONTROLLER_FAN_PIN, speed);
} }
} }

View file

@ -121,11 +121,11 @@ void LEDLights::set_color(const LEDColor &incol
// This variant uses 3-4 separate pins for the RGB(W) components. // This variant uses 3-4 separate pins for the RGB(W) components.
// If the pins can do PWM then their intensity will be set. // If the pins can do PWM then their intensity will be set.
#define _UPDATE_RGBW(C,c) do { \ #define _UPDATE_RGBW(C,c) do { \
if (PWM_PIN(RGB_LED_##C##_PIN)) \ if (PWM_PIN(RGB_LED_##C##_PIN)) \
analogWrite(pin_t(RGB_LED_##C##_PIN), c); \ set_pwm_duty(pin_t(RGB_LED_##C##_PIN), c); \
else \ else \
WRITE(RGB_LED_##C##_PIN, c ? HIGH : LOW); \ WRITE(RGB_LED_##C##_PIN, c ? HIGH : LOW); \
}while(0) }while(0)
#define UPDATE_RGBW(C,c) _UPDATE_RGBW(C, TERN1(CASE_LIGHT_USE_RGB_LED, caselight.on) ? incol.c : 0) #define UPDATE_RGBW(C,c) _UPDATE_RGBW(C, TERN1(CASE_LIGHT_USE_RGB_LED, caselight.on) ? incol.c : 0)
UPDATE_RGBW(R,r); UPDATE_RGBW(G,g); UPDATE_RGBW(B,b); UPDATE_RGBW(R,r); UPDATE_RGBW(G,g); UPDATE_RGBW(B,b);

View file

@ -66,7 +66,7 @@ void SpindleLaser::init() {
#endif #endif
#if ENABLED(SPINDLE_LASER_USE_PWM) #if ENABLED(SPINDLE_LASER_USE_PWM)
SET_PWM(SPINDLE_LASER_PWM_PIN); SET_PWM(SPINDLE_LASER_PWM_PIN);
analogWrite(pin_t(SPINDLE_LASER_PWM_PIN), SPINDLE_LASER_PWM_OFF); // Set to lowest speed set_pwm_duty(pin_t(SPINDLE_LASER_PWM_PIN), SPINDLE_LASER_PWM_OFF); // Set to lowest speed
#endif #endif
#if ENABLED(HAL_CAN_SET_PWM_FREQ) && defined(SPINDLE_LASER_FREQUENCY) #if ENABLED(HAL_CAN_SET_PWM_FREQ) && defined(SPINDLE_LASER_FREQUENCY)
set_pwm_frequency(pin_t(SPINDLE_LASER_PWM_PIN), SPINDLE_LASER_FREQUENCY); set_pwm_frequency(pin_t(SPINDLE_LASER_PWM_PIN), SPINDLE_LASER_FREQUENCY);
@ -92,10 +92,8 @@ void SpindleLaser::init() {
void SpindleLaser::_set_ocr(const uint8_t ocr) { void SpindleLaser::_set_ocr(const uint8_t ocr) {
#if NEEDS_HARDWARE_PWM && SPINDLE_LASER_FREQUENCY #if NEEDS_HARDWARE_PWM && SPINDLE_LASER_FREQUENCY
set_pwm_frequency(pin_t(SPINDLE_LASER_PWM_PIN), TERN(MARLIN_DEV_MODE, frequency, SPINDLE_LASER_FREQUENCY)); set_pwm_frequency(pin_t(SPINDLE_LASER_PWM_PIN), TERN(MARLIN_DEV_MODE, frequency, SPINDLE_LASER_FREQUENCY));
set_pwm_duty(pin_t(SPINDLE_LASER_PWM_PIN), ocr ^ SPINDLE_LASER_PWM_OFF);
#else
analogWrite(pin_t(SPINDLE_LASER_PWM_PIN), ocr ^ SPINDLE_LASER_PWM_OFF);
#endif #endif
set_pwm_duty(pin_t(SPINDLE_LASER_PWM_PIN), ocr ^ SPINDLE_LASER_PWM_OFF);
} }
void SpindleLaser::set_ocr(const uint8_t ocr) { void SpindleLaser::set_ocr(const uint8_t ocr) {

View file

@ -126,10 +126,10 @@ void GcodeSuite::M42() {
extDigitalWrite(pin, pin_status); extDigitalWrite(pin, pin_status);
#ifdef ARDUINO_ARCH_STM32 #ifdef ARDUINO_ARCH_STM32
// A simple I/O will be set to 0 by analogWrite() // A simple I/O will be set to 0 by set_pwm_duty()
if (pin_status <= 1 && !PWM_PIN(pin)) return; if (pin_status <= 1 && !PWM_PIN(pin)) return;
#endif #endif
analogWrite(pin, pin_status); set_pwm_duty(pin, pin_status);
} }
#endif // DIRECT_PIN_CONTROL #endif // DIRECT_PIN_CONTROL

View file

@ -342,7 +342,7 @@ void MarlinUI::clear_lcd() { } // Automatically cleared by Picture Loop
void MarlinUI::_set_brightness() { void MarlinUI::_set_brightness() {
#if PIN_EXISTS(TFT_BACKLIGHT) #if PIN_EXISTS(TFT_BACKLIGHT)
if (PWM_PIN(TFT_BACKLIGHT_PIN)) if (PWM_PIN(TFT_BACKLIGHT_PIN))
analogWrite(pin_t(TFT_BACKLIGHT_PIN), brightness); set_pwm_duty(pin_t(TFT_BACKLIGHT_PIN), brightness);
#endif #endif
} }
#endif #endif

View file

@ -213,7 +213,7 @@ void MarlinUI::clear_lcd() {
void MarlinUI::_set_brightness() { void MarlinUI::_set_brightness() {
#if PIN_EXISTS(TFT_BACKLIGHT) #if PIN_EXISTS(TFT_BACKLIGHT)
if (PWM_PIN(TFT_BACKLIGHT_PIN)) if (PWM_PIN(TFT_BACKLIGHT_PIN))
analogWrite(pin_t(TFT_BACKLIGHT_PIN), brightness); set_pwm_duty(pin_t(TFT_BACKLIGHT_PIN), brightness);
#endif #endif
} }
#endif #endif

View file

@ -1342,7 +1342,7 @@ void Endstops::update() {
ES_REPORT_CHANGE(K_MAX); ES_REPORT_CHANGE(K_MAX);
#endif #endif
SERIAL_ECHOLNPGM("\n"); SERIAL_ECHOLNPGM("\n");
analogWrite(pin_t(LED_PIN), local_LED_status); set_pwm_duty(pin_t(LED_PIN), local_LED_status);
local_LED_status ^= 255; local_LED_status ^= 255;
old_live_state_local = live_state_local; old_live_state_local = live_state_local;
} }

View file

@ -1270,7 +1270,7 @@ void Planner::recalculate() {
#elif ENABLED(FAST_PWM_FAN) #elif ENABLED(FAST_PWM_FAN)
#define _FAN_SET(F) set_pwm_duty(FAN##F##_PIN, CALC_FAN_SPEED(F)); #define _FAN_SET(F) set_pwm_duty(FAN##F##_PIN, CALC_FAN_SPEED(F));
#else #else
#define _FAN_SET(F) analogWrite(pin_t(FAN##F##_PIN), CALC_FAN_SPEED(F)); #define _FAN_SET(F) set_pwm_duty(pin_t(FAN##F##_PIN), CALC_FAN_SPEED(F));
#endif #endif
#define FAN_SET(F) do{ kickstart_fan(fan_speed, ms, F); _FAN_SET(F); }while(0) #define FAN_SET(F) do{ kickstart_fan(fan_speed, ms, F); _FAN_SET(F); }while(0)
@ -1393,8 +1393,8 @@ void Planner::check_axes_activity() {
TERN_(AUTOTEMP, autotemp_task()); TERN_(AUTOTEMP, autotemp_task());
#if ENABLED(BARICUDA) #if ENABLED(BARICUDA)
TERN_(HAS_HEATER_1, analogWrite(pin_t(HEATER_1_PIN), tail_valve_pressure)); TERN_(HAS_HEATER_1, set_pwm_duty(pin_t(HEATER_1_PIN), tail_valve_pressure));
TERN_(HAS_HEATER_2, analogWrite(pin_t(HEATER_2_PIN), tail_e_to_p_pressure)); TERN_(HAS_HEATER_2, set_pwm_duty(pin_t(HEATER_2_PIN), tail_e_to_p_pressure));
#endif #endif
} }

View file

@ -3253,7 +3253,7 @@ void Stepper::report_positions() {
#elif HAS_MOTOR_CURRENT_PWM #elif HAS_MOTOR_CURRENT_PWM
#define _WRITE_CURRENT_PWM(P) analogWrite(pin_t(MOTOR_CURRENT_PWM_## P ##_PIN), 255L * current / (MOTOR_CURRENT_PWM_RANGE)) #define _WRITE_CURRENT_PWM(P) set_pwm_duty(pin_t(MOTOR_CURRENT_PWM_## P ##_PIN), 255L * current / (MOTOR_CURRENT_PWM_RANGE))
switch (driver) { switch (driver) {
case 0: case 0:
#if PIN_EXISTS(MOTOR_CURRENT_PWM_X) #if PIN_EXISTS(MOTOR_CURRENT_PWM_X)

View file

@ -887,11 +887,11 @@ int16_t Temperature::getHeaterPower(const heater_id_t heater_id) {
SBI(fanState, pgm_read_byte(&fanBit[COOLER_FAN_INDEX])); SBI(fanState, pgm_read_byte(&fanBit[COOLER_FAN_INDEX]));
#endif #endif
#define _UPDATE_AUTO_FAN(P,D,A) do{ \ #define _UPDATE_AUTO_FAN(P,D,A) do{ \
if (PWM_PIN(P##_AUTO_FAN_PIN) && A < 255) \ if (PWM_PIN(P##_AUTO_FAN_PIN) && A < 255) \
analogWrite(pin_t(P##_AUTO_FAN_PIN), D ? A : 0); \ set_pwm_duty(pin_t(P##_AUTO_FAN_PIN), D ? A : 0); \
else \ else \
WRITE(P##_AUTO_FAN_PIN, D); \ WRITE(P##_AUTO_FAN_PIN, D); \
}while(0) }while(0)
uint8_t fanDone = 0; uint8_t fanDone = 0;