commit
0e1f0efc4b
|
@ -3019,12 +3019,12 @@ static void homeaxis(const AxisEnum axis) {
|
|||
// so here it re-homes each tower in turn.
|
||||
// Delta homing treats the axes as normal linear axes.
|
||||
|
||||
// retrace by the amount specified in endstop_adj
|
||||
if (endstop_adj[axis] * Z_HOME_DIR < 0) {
|
||||
// retrace by the amount specified in endstop_adj + additional 0.1mm in order to have minimum steps
|
||||
if (endstop_adj[axis] * Z_HOME_DIR <= 0) {
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
|
||||
#endif
|
||||
do_homing_move(axis, endstop_adj[axis]);
|
||||
do_homing_move(axis, endstop_adj[axis] - 0.1);
|
||||
}
|
||||
|
||||
#else
|
||||
|
@ -5098,20 +5098,18 @@ void home_all_axes() { gcode_G28(true); }
|
|||
*
|
||||
* Parameters:
|
||||
*
|
||||
* P Number of probe points:
|
||||
* Pn Number of probe points:
|
||||
*
|
||||
* P1 Probe center and set height only.
|
||||
* P2 Probe center and towers. Set height, endstops, and delta radius.
|
||||
* P3 Probe all positions: center, towers and opposite towers. Set all.
|
||||
* P4-P7 Probe all positions at different locations and average them.
|
||||
*
|
||||
* A Abort delta height calibration after 1 probe (only P1)
|
||||
*
|
||||
* O Use opposite tower points instead of tower points (only P2)
|
||||
*
|
||||
* T Don't calibrate tower angle corrections (P3-P7)
|
||||
*
|
||||
* V Verbose level:
|
||||
* T Don't calibrate tower angle corrections
|
||||
*
|
||||
* Cn.nn Calibration precision; when omitted calibrates to maximum precision
|
||||
*
|
||||
* Vn Verbose level:
|
||||
*
|
||||
* V0 Dry-run mode. Report settings and probe results. No calibration.
|
||||
* V1 Report settings
|
||||
|
@ -5131,30 +5129,61 @@ void home_all_axes() { gcode_G28(true); }
|
|||
return;
|
||||
}
|
||||
|
||||
const bool do_height_only = probe_points == 1,
|
||||
do_center_and_towers = probe_points == 2,
|
||||
do_all_positions = probe_points == 3,
|
||||
do_circle_x2 = probe_points == 5,
|
||||
do_circle_x3 = probe_points == 6,
|
||||
do_circle_x4 = probe_points == 7,
|
||||
probe_center_plus_3 = probe_points >= 3,
|
||||
point_averaging = probe_points >= 4,
|
||||
probe_center_plus_6 = probe_points >= 5;
|
||||
const float calibration_precision = code_seen('C') ? code_value_float() : 0.0;
|
||||
if (calibration_precision < 0) {
|
||||
SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>0).");
|
||||
return;
|
||||
}
|
||||
|
||||
const char negating_parameter = do_height_only ? 'A' : do_center_and_towers ? 'O' : 'T';
|
||||
int8_t probe_mode = code_seen(negating_parameter) && code_value_bool() ? -probe_points : probe_points;
|
||||
const bool towers_set = !code_seen('T'),
|
||||
|
||||
_1p_calibration = probe_points == 1,
|
||||
_4p_calibration = probe_points == 2,
|
||||
_4p_towers_points = _4p_calibration && towers_set,
|
||||
_4p_opposite_points = _4p_calibration && !towers_set,
|
||||
_7p_calibration = probe_points >= 3,
|
||||
_7p_half_circle = probe_points == 3,
|
||||
_7p_double_circle = probe_points == 5,
|
||||
_7p_triple_circle = probe_points == 6,
|
||||
_7p_quadruple_circle = probe_points == 7,
|
||||
_7p_multi_circle = _7p_double_circle || _7p_triple_circle || _7p_quadruple_circle,
|
||||
_7p_intermed_points = _7p_calibration && !_7p_half_circle;
|
||||
|
||||
if (!_1p_calibration) { // test if the outer radius is reachable
|
||||
for (uint8_t axis = 1; axis < 13; ++axis) {
|
||||
float circles = (_7p_quadruple_circle ? 1.5 :
|
||||
_7p_triple_circle ? 1.0 :
|
||||
_7p_double_circle ? 0.5 : 0);
|
||||
if (!position_is_reachable_by_probe_xy(cos(RADIANS(180 + 30 * axis)) *
|
||||
delta_calibration_radius * (1 + circles * 0.1),
|
||||
sin(RADIANS(180 + 30 * axis)) *
|
||||
delta_calibration_radius * (1 + circles * 0.1))) {
|
||||
SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
|
||||
|
||||
stepper.synchronize();
|
||||
#if HAS_LEVELING
|
||||
set_bed_leveling_enabled(false);
|
||||
reset_bed_level(); // After calibration bed-level data is no longer valid
|
||||
#endif
|
||||
#if HOTENDS > 1
|
||||
const uint8_t old_tool_index = active_extruder;
|
||||
tool_change(0, 0, true);
|
||||
#endif
|
||||
setup_for_endstop_or_probe_move();
|
||||
|
||||
home_all_axes();
|
||||
endstops.enable(true);
|
||||
home_delta();
|
||||
endstops.not_homing();
|
||||
|
||||
const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
|
||||
float test_precision,
|
||||
zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
|
||||
zero_std_dev_old = zero_std_dev,
|
||||
e_old[XYZ] = {
|
||||
endstop_adj[A_AXIS],
|
||||
endstop_adj[B_AXIS],
|
||||
|
@ -5173,7 +5202,7 @@ void home_all_axes() { gcode_G28(true); }
|
|||
LCD_MESSAGEPGM("Checking... AC"); // TODO: Make translatable string
|
||||
|
||||
SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
|
||||
if (!do_height_only) {
|
||||
if (!_1p_calibration) {
|
||||
SERIAL_PROTOCOLPGM(" Ex:");
|
||||
if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
|
||||
SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
|
||||
|
@ -5186,7 +5215,7 @@ void home_all_axes() { gcode_G28(true); }
|
|||
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
|
||||
}
|
||||
SERIAL_EOL;
|
||||
if (probe_mode > 2) { // negative disables tower angles
|
||||
if (_7p_calibration && towers_set) {
|
||||
SERIAL_PROTOCOLPGM(".Tower angle : Tx:");
|
||||
if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+');
|
||||
SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2);
|
||||
|
@ -5202,80 +5231,76 @@ void home_all_axes() { gcode_G28(true); }
|
|||
#endif
|
||||
|
||||
int8_t iterations = 0;
|
||||
|
||||
home_offset[Z_AXIS] -= probe_pt(0.0, 0.0 , true, 1); // 1st probe to set height
|
||||
do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
|
||||
|
||||
do {
|
||||
|
||||
float z_at_pt[13] = { 0 },
|
||||
S1 = 0.0,
|
||||
S2 = 0.0;
|
||||
float z_at_pt[13] = { 0.0 }, S1 = 0.0, S2 = 0.0;
|
||||
int16_t N = 0;
|
||||
|
||||
test_precision = zero_std_dev;
|
||||
test_precision = zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev;
|
||||
|
||||
iterations++;
|
||||
|
||||
// Probe the points
|
||||
|
||||
if (!do_all_positions && !do_circle_x3) { // probe the center
|
||||
setup_for_endstop_or_probe_move();
|
||||
z_at_pt[0] += probe_pt(0.0, 0.0 , true, 1); // TODO: Needs error handling
|
||||
clean_up_after_endstop_or_probe_move();
|
||||
if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
|
||||
z_at_pt[0] += probe_pt(0.0, 0.0 , true, 1);
|
||||
}
|
||||
if (probe_center_plus_3) { // probe extra center points
|
||||
for (int8_t axis = probe_center_plus_6 ? 11 : 9; axis > 0; axis -= probe_center_plus_6 ? 2 : 4) {
|
||||
setup_for_endstop_or_probe_move();
|
||||
z_at_pt[0] += probe_pt( // TODO: Needs error handling
|
||||
cos(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius),
|
||||
sin(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius), true, 1);
|
||||
clean_up_after_endstop_or_probe_move();
|
||||
if (_7p_calibration) { // probe extra center points
|
||||
for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) {
|
||||
const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1;
|
||||
z_at_pt[0] += probe_pt(cos(a) * r, sin(a) * r, true, 1); // TODO: Needs error handling
|
||||
}
|
||||
z_at_pt[0] /= float(do_circle_x2 ? 7 : probe_points);
|
||||
z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points);
|
||||
}
|
||||
if (!do_height_only) { // probe the radius
|
||||
if (!_1p_calibration) { // probe the radius
|
||||
bool zig_zag = true;
|
||||
for (uint8_t axis = (probe_mode == -2 ? 3 : 1); axis < 13;
|
||||
axis += (do_center_and_towers ? 4 : do_all_positions ? 2 : 1)) {
|
||||
float offset_circles = (do_circle_x4 ? (zig_zag ? 1.5 : 1.0) :
|
||||
do_circle_x3 ? (zig_zag ? 1.0 : 0.5) :
|
||||
do_circle_x2 ? (zig_zag ? 0.5 : 0.0) : 0);
|
||||
const uint8_t start = _4p_opposite_points ? 3 : 1,
|
||||
step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1;
|
||||
for (uint8_t axis = start; axis < 13; axis += step) {
|
||||
const float offset_circles = _7p_quadruple_circle ? (zig_zag ? 1.5 : 1.0) :
|
||||
_7p_triple_circle ? (zig_zag ? 1.0 : 0.5) :
|
||||
_7p_double_circle ? (zig_zag ? 0.5 : 0.0) : 0;
|
||||
for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
|
||||
setup_for_endstop_or_probe_move();
|
||||
z_at_pt[axis] += probe_pt( // TODO: Needs error handling
|
||||
cos(RADIANS(180 + 30 * axis)) * delta_calibration_radius *
|
||||
(1 + circles * 0.1 * (zig_zag ? 1 : -1)),
|
||||
sin(RADIANS(180 + 30 * axis)) * delta_calibration_radius *
|
||||
(1 + circles * 0.1 * (zig_zag ? 1 : -1)), true, 1);
|
||||
clean_up_after_endstop_or_probe_move();
|
||||
const float a = RADIANS(180 + 30 * axis),
|
||||
r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1));
|
||||
z_at_pt[axis] += probe_pt(cos(a) * r, sin(a) * r, true, 1); // TODO: Needs error handling
|
||||
}
|
||||
zig_zag = !zig_zag;
|
||||
z_at_pt[axis] /= (2 * offset_circles + 1);
|
||||
}
|
||||
}
|
||||
if (point_averaging) // average intermediates to tower and opposites
|
||||
if (_7p_intermed_points) // average intermediates to tower and opposites
|
||||
for (uint8_t axis = 1; axis <= 11; axis += 2)
|
||||
z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
|
||||
|
||||
S1 += z_at_pt[0];
|
||||
S2 += sq(z_at_pt[0]);
|
||||
N++;
|
||||
if (!do_height_only) // std dev from zero plane
|
||||
for (uint8_t axis = (probe_mode == -2 ? 3 : 1); axis < 13; axis += (do_center_and_towers ? 4 : 2)) {
|
||||
if (!_1p_calibration) // std dev from zero plane
|
||||
for (uint8_t axis = (_4p_opposite_points ? 3 : 1); axis < 13; axis += (_4p_calibration ? 4 : 2)) {
|
||||
S1 += z_at_pt[axis];
|
||||
S2 += sq(z_at_pt[axis]);
|
||||
N++;
|
||||
}
|
||||
zero_std_dev_old = zero_std_dev;
|
||||
zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001;
|
||||
|
||||
if (iterations == 1) home_offset[Z_AXIS] = zh_old; // reset height after 1st probe change
|
||||
|
||||
// Solve matrices
|
||||
|
||||
if (zero_std_dev < test_precision) {
|
||||
if (zero_std_dev < test_precision && zero_std_dev > calibration_precision) {
|
||||
COPY(e_old, endstop_adj);
|
||||
dr_old = delta_radius;
|
||||
zh_old = home_offset[Z_AXIS];
|
||||
alpha_old = delta_tower_angle_trim[A_AXIS];
|
||||
beta_old = delta_tower_angle_trim[B_AXIS];
|
||||
|
||||
float e_delta[XYZ] = { 0.0 }, r_delta = 0.0,
|
||||
t_alpha = 0.0, t_beta = 0.0;
|
||||
float e_delta[XYZ] = { 0.0 }, r_delta = 0.0, t_alpha = 0.0, t_beta = 0.0;
|
||||
const float r_diff = delta_radius - delta_calibration_radius,
|
||||
h_factor = 1.00 + r_diff * 0.001, //1.02 for r_diff = 20mm
|
||||
r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), //2.25 for r_diff = 20mm
|
||||
|
@ -5293,25 +5318,25 @@ void home_all_axes() { gcode_G28(true); }
|
|||
#define Z0444(I) ZP(a_factor * 4.0 / 9.0, I)
|
||||
#define Z0888(I) ZP(a_factor * 8.0 / 9.0, I)
|
||||
|
||||
switch (probe_mode) {
|
||||
case -1:
|
||||
test_precision = 0.00;
|
||||
switch (probe_points) {
|
||||
case 1:
|
||||
test_precision = 0.00;
|
||||
LOOP_XYZ(i) e_delta[i] = Z1000(0);
|
||||
break;
|
||||
|
||||
case 2:
|
||||
e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9);
|
||||
e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9);
|
||||
e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9);
|
||||
r_delta = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9);
|
||||
break;
|
||||
|
||||
case -2:
|
||||
e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3);
|
||||
e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3);
|
||||
e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3);
|
||||
r_delta = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3);
|
||||
if (towers_set) {
|
||||
e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9);
|
||||
e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9);
|
||||
e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9);
|
||||
r_delta = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9);
|
||||
}
|
||||
else {
|
||||
e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3);
|
||||
e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3);
|
||||
e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3);
|
||||
r_delta = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3);
|
||||
}
|
||||
break;
|
||||
|
||||
default:
|
||||
|
@ -5320,9 +5345,9 @@ void home_all_axes() { gcode_G28(true); }
|
|||
e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3);
|
||||
r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3);
|
||||
|
||||
if (probe_mode > 0) { // negative disables tower angles
|
||||
t_alpha = + Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3);
|
||||
t_beta = - Z0888(1) + Z0444(5) + Z0444(9) - Z0888(7) + Z0444(11) + Z0444(3);
|
||||
if (towers_set) {
|
||||
t_alpha = Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3);
|
||||
t_beta = Z0888(1) - Z0444(5) - Z0444(9) + Z0888(7) - Z0444(11) - Z0444(3);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
@ -5330,7 +5355,7 @@ void home_all_axes() { gcode_G28(true); }
|
|||
LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
|
||||
delta_radius += r_delta;
|
||||
delta_tower_angle_trim[A_AXIS] += t_alpha;
|
||||
delta_tower_angle_trim[B_AXIS] -= t_beta;
|
||||
delta_tower_angle_trim[B_AXIS] += t_beta;
|
||||
|
||||
// adjust delta_height and endstops by the max amount
|
||||
const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
|
||||
|
@ -5339,7 +5364,7 @@ void home_all_axes() { gcode_G28(true); }
|
|||
|
||||
recalc_delta_settings(delta_radius, delta_diagonal_rod);
|
||||
}
|
||||
else { // step one back
|
||||
else if(zero_std_dev >= test_precision) { // step one back
|
||||
COPY(endstop_adj, e_old);
|
||||
delta_radius = dr_old;
|
||||
home_offset[Z_AXIS] = zh_old;
|
||||
|
@ -5355,7 +5380,7 @@ void home_all_axes() { gcode_G28(true); }
|
|||
SERIAL_PROTOCOLPGM(". c:");
|
||||
if (z_at_pt[0] > 0) SERIAL_CHAR('+');
|
||||
SERIAL_PROTOCOL_F(z_at_pt[0], 2);
|
||||
if (probe_mode == 2 || probe_center_plus_3) {
|
||||
if (_4p_towers_points || _7p_calibration) {
|
||||
SERIAL_PROTOCOLPGM(" x:");
|
||||
if (z_at_pt[1] >= 0) SERIAL_CHAR('+');
|
||||
SERIAL_PROTOCOL_F(z_at_pt[1], 2);
|
||||
|
@ -5366,9 +5391,9 @@ void home_all_axes() { gcode_G28(true); }
|
|||
if (z_at_pt[9] >= 0) SERIAL_CHAR('+');
|
||||
SERIAL_PROTOCOL_F(z_at_pt[9], 2);
|
||||
}
|
||||
if (probe_mode != -2) SERIAL_EOL;
|
||||
if (probe_mode == -2 || probe_center_plus_3) {
|
||||
if (probe_center_plus_3) {
|
||||
if (!_4p_opposite_points) SERIAL_EOL;
|
||||
if ((_4p_opposite_points) || _7p_calibration) {
|
||||
if (_7p_calibration) {
|
||||
SERIAL_CHAR('.');
|
||||
SERIAL_PROTOCOL_SP(13);
|
||||
}
|
||||
|
@ -5385,10 +5410,15 @@ void home_all_axes() { gcode_G28(true); }
|
|||
}
|
||||
}
|
||||
if (test_precision != 0.0) { // !forced end
|
||||
if (zero_std_dev >= test_precision) { // end iterations
|
||||
if (zero_std_dev >= test_precision || zero_std_dev <= calibration_precision) { // end iterations
|
||||
SERIAL_PROTOCOLPGM("Calibration OK");
|
||||
SERIAL_PROTOCOL_SP(36);
|
||||
SERIAL_PROTOCOLPGM("rolling back.");
|
||||
if (zero_std_dev >= test_precision)
|
||||
SERIAL_PROTOCOLPGM("rolling back.");
|
||||
else {
|
||||
SERIAL_PROTOCOLPGM("std dev:");
|
||||
SERIAL_PROTOCOL_F(zero_std_dev, 3);
|
||||
}
|
||||
SERIAL_EOL;
|
||||
LCD_MESSAGEPGM("Calibration OK"); // TODO: Make translatable string
|
||||
}
|
||||
|
@ -5404,7 +5434,7 @@ void home_all_axes() { gcode_G28(true); }
|
|||
lcd_setstatus(mess);
|
||||
}
|
||||
SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
|
||||
if (!do_height_only) {
|
||||
if (!_1p_calibration) {
|
||||
SERIAL_PROTOCOLPGM(" Ex:");
|
||||
if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
|
||||
SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
|
||||
|
@ -5417,7 +5447,7 @@ void home_all_axes() { gcode_G28(true); }
|
|||
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
|
||||
}
|
||||
SERIAL_EOL;
|
||||
if (probe_mode > 2) { // negative disables tower angles
|
||||
if (_7p_calibration && towers_set) {
|
||||
SERIAL_PROTOCOLPGM(".Tower angle : Tx:");
|
||||
if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+');
|
||||
SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2);
|
||||
|
@ -5427,7 +5457,7 @@ void home_all_axes() { gcode_G28(true); }
|
|||
SERIAL_PROTOCOLPGM(" Tz:+0.00");
|
||||
SERIAL_EOL;
|
||||
}
|
||||
if (zero_std_dev >= test_precision)
|
||||
if (zero_std_dev >= test_precision || zero_std_dev <= calibration_precision)
|
||||
serialprintPGM(save_message);
|
||||
SERIAL_EOL;
|
||||
}
|
||||
|
@ -5449,12 +5479,20 @@ void home_all_axes() { gcode_G28(true); }
|
|||
}
|
||||
}
|
||||
|
||||
stepper.synchronize();
|
||||
endstops.enable(true);
|
||||
home_delta();
|
||||
endstops.not_homing();
|
||||
|
||||
home_all_axes();
|
||||
|
||||
} while (zero_std_dev < test_precision && iterations < 31);
|
||||
}
|
||||
while (zero_std_dev < test_precision && zero_std_dev > calibration_precision && iterations < 31);
|
||||
|
||||
#if ENABLED(DELTA_HOME_TO_SAFE_ZONE)
|
||||
do_blocking_move_to_z(delta_clip_start_height);
|
||||
#endif
|
||||
clean_up_after_endstop_or_probe_move();
|
||||
#if HOTENDS > 1
|
||||
tool_change(old_tool_index, 0, true);
|
||||
#endif
|
||||
#if ENABLED(Z_PROBE_SLED)
|
||||
RETRACT_PROBE();
|
||||
#endif
|
||||
|
|
|
@ -447,10 +447,10 @@
|
|||
#define DELTA_DIAGONAL_ROD 218.0 // mm
|
||||
|
||||
// Horizontal distance bridged by diagonal push rods when effector is centered.
|
||||
#define DELTA_RADIUS 100.00 //mm // get this value from auto calibrate
|
||||
#define DELTA_RADIUS 100.00 //mm Get this value from auto calibrate
|
||||
|
||||
// height from z=0 to home position
|
||||
#define DELTA_HEIGHT 295.00 // get this value from auto calibrate - use G33 P1 A at 1st time calibration
|
||||
#define DELTA_HEIGHT 295.00 // get this value from auto calibrate - use G33 P1 at 1st time calibration
|
||||
|
||||
// Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
|
||||
#define DELTA_PRINTABLE_RADIUS 85.0
|
||||
|
@ -460,8 +460,8 @@
|
|||
// See http://minow.blogspot.com/index.html#4918805519571907051
|
||||
#define DELTA_CALIBRATION_MENU
|
||||
|
||||
// set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
|
||||
#define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 17) // mm
|
||||
// set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 if DELTA_AUTO_CALIBRATION enabled
|
||||
#define DELTA_CALIBRATION_RADIUS ((DELTA_PRINTABLE_RADIUS) * 0.869) // mm
|
||||
|
||||
// G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
|
||||
#define DELTA_AUTO_CALIBRATION
|
||||
|
|
|
@ -454,10 +454,10 @@
|
|||
#define DELTA_CARRIAGE_OFFSET 22.0 // mm
|
||||
|
||||
// Horizontal distance bridged by diagonal push rods when effector is centered.
|
||||
#define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm // get this value from auto calibrate
|
||||
#define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm Get this value from auto calibrate
|
||||
|
||||
// height from z=0.00 to home position
|
||||
#define DELTA_HEIGHT 280 // get this value from auto calibrate - use G33 C-1 at 1st time calibration
|
||||
#define DELTA_HEIGHT 280 // get this value from auto calibrate - use G33 P1 at 1st time calibration
|
||||
|
||||
// Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
|
||||
#define DELTA_PRINTABLE_RADIUS 85.0
|
||||
|
@ -467,8 +467,8 @@
|
|||
// See http://minow.blogspot.com/index.html#4918805519571907051
|
||||
//#define DELTA_CALIBRATION_MENU
|
||||
|
||||
// set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
|
||||
#define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 17) // mm
|
||||
// set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 if DELTA_AUTO_CALIBRATION enabled
|
||||
#define DELTA_CALIBRATION_RADIUS ((DELTA_PRINTABLE_RADIUS) * 0.869) // mm
|
||||
|
||||
// G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
|
||||
//#define DELTA_AUTO_CALIBRATION
|
||||
|
|
|
@ -444,10 +444,10 @@
|
|||
#define DELTA_CARRIAGE_OFFSET 18.0 // mm
|
||||
|
||||
// Horizontal distance bridged by diagonal push rods when effector is centered.
|
||||
#define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm // get this value from auto calibrate // height from z=0.00 to home position
|
||||
#define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm Get this value from auto calibrate
|
||||
|
||||
// height from z=0.00 to home position
|
||||
#define DELTA_HEIGHT 250 // get this value from auto calibrate - use G33 C-1 at 1st time calibration
|
||||
#define DELTA_HEIGHT 250 // get this value from auto calibrate - use G33 P1 at 1st time calibration
|
||||
|
||||
// Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
|
||||
#define DELTA_PRINTABLE_RADIUS 140.0
|
||||
|
@ -456,8 +456,8 @@
|
|||
// See http://minow.blogspot.com/index.html#4918805519571907051
|
||||
//#define DELTA_CALIBRATION_MENU
|
||||
|
||||
// set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
|
||||
#define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 28) // mm
|
||||
// set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 if DELTA_AUTO_CALIBRATION enabled
|
||||
#define DELTA_CALIBRATION_RADIUS ((DELTA_PRINTABLE_RADIUS) * 0.869) // mm
|
||||
|
||||
// G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
|
||||
//#define DELTA_AUTO_CALIBRATION
|
||||
|
|
|
@ -444,10 +444,10 @@
|
|||
#define DELTA_CARRIAGE_OFFSET 19.5 // mm
|
||||
|
||||
// Horizontal distance bridged by diagonal push rods when effector is centered.
|
||||
#define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm // get this value from auto calibrate
|
||||
#define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm Get this value from auto calibrate
|
||||
|
||||
// height from z=0.00 to home position
|
||||
#define DELTA_HEIGHT 250 // get this value from auto calibrate - use G33 C-1 at 1st time calibration
|
||||
#define DELTA_HEIGHT 250 // get this value from auto calibrate - use G33 P1 at 1st time calibration
|
||||
|
||||
// Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
|
||||
#define DELTA_PRINTABLE_RADIUS 90.0
|
||||
|
@ -456,8 +456,8 @@
|
|||
// See http://minow.blogspot.com/index.html#4918805519571907051
|
||||
//#define DELTA_CALIBRATION_MENU
|
||||
|
||||
// set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
|
||||
#define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 18) // mm
|
||||
// set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 if DELTA_AUTO_CALIBRATION enabled
|
||||
#define DELTA_CALIBRATION_RADIUS ((DELTA_PRINTABLE_RADIUS) * 0.869) // mm
|
||||
|
||||
// G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
|
||||
//#define DELTA_AUTO_CALIBRATION
|
||||
|
|
|
@ -431,10 +431,10 @@
|
|||
#define DELTA_CARRIAGE_OFFSET 30.0 // mm
|
||||
|
||||
// Horizontal distance bridged by diagonal push rods when effector is centered.
|
||||
#define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm // get this value from auto calibrate
|
||||
#define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm Get this value from auto calibrate
|
||||
|
||||
// height from z=0.00 to home position
|
||||
#define DELTA_HEIGHT 277 // get this value from auto calibrate - use G33 C-1 at 1st time calibration
|
||||
#define DELTA_HEIGHT 277 // get this value from auto calibrate - use G33 P1 at 1st time calibration
|
||||
|
||||
// Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
|
||||
#define DELTA_PRINTABLE_RADIUS 127.0
|
||||
|
@ -443,8 +443,8 @@
|
|||
// See http://minow.blogspot.com/index.html#4918805519571907051
|
||||
//#define DELTA_CALIBRATION_MENU
|
||||
|
||||
// set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
|
||||
#define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 25.4) // mm
|
||||
// set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 if DELTA_AUTO_CALIBRATION enabled
|
||||
#define DELTA_CALIBRATION_RADIUS ((DELTA_PRINTABLE_RADIUS) * 0.869) // mm
|
||||
|
||||
// G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
|
||||
//#define DELTA_AUTO_CALIBRATION
|
||||
|
|
|
@ -449,10 +449,10 @@
|
|||
#define DELTA_CARRIAGE_OFFSET 22.0 // mm
|
||||
|
||||
// Horizontal distance bridged by diagonal push rods when effector is centered.
|
||||
#define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm // get this value from auto calibrate
|
||||
#define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm Get this value from auto calibrate
|
||||
|
||||
// height from z=0.00 to home position
|
||||
#define DELTA_HEIGHT 380 // get this value from auto calibrate - use G33 C-1 at 1st time calibration
|
||||
#define DELTA_HEIGHT 380 // get this value from auto calibrate - use G33 P1 at 1st time calibration
|
||||
|
||||
// Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
|
||||
#define DELTA_PRINTABLE_RADIUS 140.0
|
||||
|
@ -461,8 +461,8 @@
|
|||
// See http://minow.blogspot.com/index.html#4918805519571907051
|
||||
//#define DELTA_CALIBRATION_MENU
|
||||
|
||||
// set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
|
||||
#define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 28) // mm
|
||||
// set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 if DELTA_AUTO_CALIBRATION enabled
|
||||
#define DELTA_CALIBRATION_RADIUS ((DELTA_PRINTABLE_RADIUS) * 0.869) // mm
|
||||
|
||||
// G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
|
||||
//#define DELTA_AUTO_CALIBRATION
|
||||
|
|
|
@ -160,8 +160,10 @@ class Planner {
|
|||
min_travel_feedrate_mm_s;
|
||||
|
||||
#if HAS_ABL
|
||||
static bool abl_enabled; // Flag that bed leveling is enabled
|
||||
static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
|
||||
static bool abl_enabled; // Flag that bed leveling is enabled
|
||||
#if ABL_PLANAR
|
||||
static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
|
|
|
@ -2151,6 +2151,10 @@ void kill_screen(const char* lcd_msg) {
|
|||
}
|
||||
|
||||
void _lcd_delta_calibrate_home() {
|
||||
#if HAS_LEVELING
|
||||
reset_bed_level(); // After calibration bed-level data is no longer valid
|
||||
#endif
|
||||
|
||||
enqueue_and_echo_commands_P(PSTR("G28"));
|
||||
lcd_goto_screen(_lcd_calibrate_homing);
|
||||
}
|
||||
|
@ -2158,6 +2162,10 @@ void kill_screen(const char* lcd_msg) {
|
|||
// Move directly to the tower position with uninterpolated moves
|
||||
// If we used interpolated moves it would cause this to become re-entrant
|
||||
void _goto_tower_pos(const float &a) {
|
||||
#if HAS_LEVELING
|
||||
reset_bed_level(); // After calibration bed-level data is no longer valid
|
||||
#endif
|
||||
|
||||
current_position[Z_AXIS] = max(Z_HOMING_HEIGHT, Z_CLEARANCE_BETWEEN_PROBES) + (DELTA_PRINTABLE_RADIUS) / 5;
|
||||
line_to_current(Z_AXIS);
|
||||
|
||||
|
|
97
README.md
97
README.md
|
@ -6,7 +6,7 @@
|
|||
<img align="top" width=175 src="buildroot/share/pixmaps/logo/marlin-250.png" />
|
||||
|
||||
Additional documentation can be found at the [Marlin Home Page](http://marlinfw.org/).
|
||||
Please test this firmware and inform us if it misbehaves in any way, volunteers are standing by!
|
||||
Please test this firmware and let us know if it misbehaves in any way. Volunteers are standing by!
|
||||
|
||||
## Bugfix Branch
|
||||
|
||||
|
@ -14,91 +14,18 @@ __Not for production use. Use with caution!__
|
|||
|
||||
This branch is used to accumulate patches to the latest 1.1.x release version. Periodically this branch will form the basis for the next minor 1.1.x release.
|
||||
|
||||
Download earlier versions of Marlin on the [Releases page](https://github.com/MarlinFirmware/Marlin/releases). (The latest tagged release of Marlin is version 1.1.0.)
|
||||
Download earlier versions of Marlin on the [Releases page](https://github.com/MarlinFirmware/Marlin/releases). (The latest tagged release of Marlin is version 1.1.1.)
|
||||
|
||||
## Recent Changes
|
||||
- 1.1.0 - 4 May 2017
|
||||
- See the [1.1.0 Release Notes](https://github.com/MarlinFirmware/Marlin/releases/tag/1.1.0) for a full list of changes.
|
||||
|
||||
- RC8 - 6 Dec 2016
|
||||
- Major performance improvement for Graphical LCDs
|
||||
- Simplified probe configuration
|
||||
- Enable Auto Bed Leveling by type
|
||||
- Reduce serial communication errors
|
||||
- Make Bilinear (Mesh) Grid Leveling available for non-delta
|
||||
- Support for Trinamic TMC2130 SilentStepStick SPI-based drivers
|
||||
- Add `M211` to Enable/Disable Software Endstops
|
||||
- Add `M355` to turn the case light on/off and set brightness
|
||||
- Improved I2C class with full master/slave support
|
||||
- Add `G38.2` `G38.3` command option for CNC style probing
|
||||
- Add `MINIMUM_STEPPER_PULSE` option to adjust step pulse duration
|
||||
- Add `R` parameter support for `G2`/`G3`
|
||||
- Add `M43` optional command (`PINS_DEBUGGING`)
|
||||
- Remove SCARA axis scaling
|
||||
- Improved sanity checking of configuration
|
||||
- Improved support for PlatformIO and command-line build
|
||||
- Usable `DELTA_CALIBRATION_MENU`
|
||||
- Support for Printrbot Rev.F
|
||||
- New and updated languages
|
||||
|
||||
- RC7 - 26 Jul 2016
|
||||
- Add Print Job Timer and Print Counter (`PRINTCOUNTER`)
|
||||
- New `M600` Filament Change (`FILAMENT_CHANGE_FEATURE`)
|
||||
- New `G12` Nozzle Clean (`NOZZLE_CLEAN_FEATURE`)
|
||||
- New `G27` Nozzle Park (`NOZZLE_PARK_FEATURE`)
|
||||
- Add support for `COREYZ`
|
||||
- Add a new Advance Extrusion algorithm (`LIN_ADVANCE`)
|
||||
- Add support for inches, Fahrenheit, Kelvin units (`INCH_MODE_SUPPORT`, `TEMPERATURE_UNITS_SUPPORT`)
|
||||
- Better handling of `G92` shifting of the coordinate space
|
||||
- Add Greek and Croatian languages
|
||||
- Improve the Manual (Mesh) Bed Leveling user interface
|
||||
- Add support for more boards, controllers, and probes:
|
||||
- Vellemann K8400 (`BOARD_K8400`)
|
||||
- RigidBot V2 (`BOARD_RIGIDBOARD_V2`)
|
||||
- Cartesio UI (`BOARD_CNCONTROLS_12`)
|
||||
- BLTouch probe sensor (`BLTOUCH`)
|
||||
- Viki 2 with RAMPS and MKS boards
|
||||
- Improve support for `DELTA` and other kinematics
|
||||
- Improve thermal management, add `WATCH_BED_TEMP_PERIOD`
|
||||
- Better handling of toolchange, multiple tools
|
||||
- Add support for two X steppers `X_DUAL_STEPPER_DRIVERS`
|
||||
- Add support for `SINGLENOZZLE`, `MIXING_EXTRUDER`, `SWITCHING_NOZZLE`, and `SWITCHING_EXTRUDER`
|
||||
- Simplified probe configuration, allow usage without bed leveling
|
||||
- And much more… See the [1.1.0-RC7 Change Log](https://github.com/MarlinFirmware/Marlin/releases/tag/1.1.0-RC7) for the complete list of changes.
|
||||
|
||||
- RC6 - 24 Apr 2016
|
||||
- Marlin now requires Arduino version 1.6.0 or later
|
||||
- Completed support for CoreXY / CoreXZ
|
||||
- See the [1.1.0-RC6 Change Log](https://github.com/MarlinFirmware/Marlin/releases/tag/1.1.0-RC6) for all the changes.
|
||||
|
||||
- RC5 - 01 Apr 2016
|
||||
- Warn if compiling with older versions (<1.50) of Arduino
|
||||
- Fix various LCD menu issues
|
||||
- Add formal support for MKSv1.3 and Sainsmart (RAMPS variants)
|
||||
- Fix bugs in M104, M109, and M190
|
||||
- Fix broken M404 command
|
||||
- Fix issues with M23 and "Start SD Print"
|
||||
- More output for M111
|
||||
- Rename FILAMENT_SENSOR to FILAMENT_WIDTH_SENSOR
|
||||
- Fix SD card bugs
|
||||
- and a lot more
|
||||
- See the [1.1.0-RC5 Change Log](https://github.com/MarlinFirmware/Marlin/releases/tag/1.1.0-RC5) for more!
|
||||
|
||||
- RC4 - 24 Mar 2016
|
||||
- Many lingering bugs and nagging issues addressed
|
||||
- Improvements to LCD menus, CoreXY/CoreXZ, Delta, Bed Leveling, and more…
|
||||
|
||||
- RC3 - 01 Dec 2015
|
||||
- A number of language sensitive strings have been revised
|
||||
- Formatting of the LCD display has been improved to handle negative coordinates better
|
||||
- Various compiler-related issues have been corrected
|
||||
|
||||
- RC2 - 29 Sep 2015
|
||||
- File styling reverted
|
||||
- LCD update frequency reduced
|
||||
|
||||
- RC1 - 19 Sep 2015
|
||||
- Published for testing
|
||||
- Further integration of Unified Bed Leveling
|
||||
- Initial UBL LCD Menu
|
||||
- New optimized G-code parser singleton
|
||||
- Initial M3/M4/M5 Spindle and Laser support
|
||||
- Added M421 Q to offset a mesh point
|
||||
- Refinements to G26 and G33
|
||||
- Added M80 S to query the power state
|
||||
- "Cancel Print" now shuts off heaters
|
||||
- Added `EXTRAPOLATE_BEYOND_GRID` option for mesh-based leveling
|
||||
|
||||
## Submitting Patches
|
||||
|
||||
|
@ -142,7 +69,7 @@ More features have been added by:
|
|||
- [[@Tannoo](https://github.com/Tannoo)]
|
||||
- [[@teemuatlut](https://github.com/teemuatlut)]
|
||||
- [[@bgort](https://github.com/bgort)]
|
||||
- [[@LVD-AC](https://github.com/LVD-AC)]
|
||||
- Luc Van Daele[[@LVD-AC](https://github.com/LVD-AC)] - Dutch, French, English
|
||||
- [[@paulusjacobus](https://github.com/paulusjacobus)]
|
||||
- ...and many others
|
||||
|
||||
|
|
Loading…
Reference in a new issue