Merge pull request #4402 from thinkyhead/rc_consistent_positioning

Account for coordinate space offsets
This commit is contained in:
Scott Lahteine 2016-07-24 19:23:20 -07:00 committed by GitHub
commit 169c21b477
3 changed files with 83 additions and 66 deletions

View file

@ -293,14 +293,26 @@ extern bool volumetric_enabled;
extern int extruder_multiplier[EXTRUDERS]; // sets extrude multiply factor (in percent) for each extruder individually extern int extruder_multiplier[EXTRUDERS]; // sets extrude multiply factor (in percent) for each extruder individually
extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder. extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder.
extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner
extern float current_position[NUM_AXIS];
extern float home_offset[3]; // axis[n].home_offset
extern float sw_endstop_min[3]; // axis[n].sw_endstop_min
extern float sw_endstop_max[3]; // axis[n].sw_endstop_max
extern bool axis_known_position[3]; // axis[n].is_known extern bool axis_known_position[3]; // axis[n].is_known
extern bool axis_homed[3]; // axis[n].is_homed extern bool axis_homed[3]; // axis[n].is_homed
extern volatile bool wait_for_heatup; extern volatile bool wait_for_heatup;
extern float current_position[NUM_AXIS];
extern float position_shift[3];
extern float home_offset[3];
extern float sw_endstop_min[3];
extern float sw_endstop_max[3];
#define LOGICAL_POSITION(POS, AXIS) (POS + home_offset[AXIS] + position_shift[AXIS])
#define RAW_POSITION(POS, AXIS) (POS - home_offset[AXIS] - position_shift[AXIS])
#define LOGICAL_X_POSITION(POS) LOGICAL_POSITION(POS, X_AXIS)
#define LOGICAL_Y_POSITION(POS) LOGICAL_POSITION(POS, Y_AXIS)
#define LOGICAL_Z_POSITION(POS) LOGICAL_POSITION(POS, Z_AXIS)
#define RAW_X_POSITION(POS) RAW_POSITION(POS, X_AXIS)
#define RAW_Y_POSITION(POS) RAW_POSITION(POS, Y_AXIS)
#define RAW_Z_POSITION(POS) RAW_POSITION(POS, Z_AXIS)
#define RAW_CURRENT_POSITION(AXIS) RAW_POSITION(current_position[AXIS], AXIS)
// GCode support for external objects // GCode support for external objects
bool code_seen(char); bool code_seen(char);
int code_value_int(); int code_value_int();

View file

@ -331,10 +331,6 @@ float position_shift[3] = { 0 };
// Set by M206, M428, or menu item. Saved to EEPROM. // Set by M206, M428, or menu item. Saved to EEPROM.
float home_offset[3] = { 0 }; float home_offset[3] = { 0 };
#define LOGICAL_POSITION(POS, AXIS) (POS + home_offset[AXIS] + position_shift[AXIS])
#define RAW_POSITION(POS, AXIS) (POS - home_offset[AXIS] - position_shift[AXIS])
#define RAW_CURRENT_POSITION(AXIS) (RAW_POSITION(current_position[AXIS], AXIS))
// Software Endstops. Default to configured limits. // Software Endstops. Default to configured limits.
float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS }; float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS }; float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
@ -1421,7 +1417,7 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
static float x_home_pos(int extruder) { static float x_home_pos(int extruder) {
if (extruder == 0) if (extruder == 0)
return LOGICAL_POSITION(base_home_pos(X_AXIS), X_AXIS); return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
else else
/** /**
* In dual carriage mode the extruder offset provides an override of the * In dual carriage mode the extruder offset provides an override of the
@ -1526,7 +1522,7 @@ static void set_axis_is_at_home(AxisEnum axis) {
if (active_extruder != 0) if (active_extruder != 0)
current_position[X_AXIS] = x_home_pos(active_extruder); current_position[X_AXIS] = x_home_pos(active_extruder);
else else
current_position[X_AXIS] = LOGICAL_POSITION(base_home_pos(X_AXIS), X_AXIS); current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
update_software_endstops(X_AXIS); update_software_endstops(X_AXIS);
return; return;
} }
@ -1803,7 +1799,7 @@ static void clean_up_after_endstop_or_probe_move() {
SERIAL_ECHOLNPGM(")"); SERIAL_ECHOLNPGM(")");
} }
#endif #endif
float z_dest = LOGICAL_POSITION(z_raise, Z_AXIS); float z_dest = LOGICAL_Z_POSITION(z_raise);
if (zprobe_zoffset < 0) if (zprobe_zoffset < 0)
z_dest -= zprobe_zoffset; z_dest -= zprobe_zoffset;
@ -2964,7 +2960,7 @@ inline void gcode_G28() {
if (home_all_axis || homeX || homeY) { if (home_all_axis || homeX || homeY) {
// Raise Z before homing any other axes and z is not already high enough (never lower z) // Raise Z before homing any other axes and z is not already high enough (never lower z)
destination[Z_AXIS] = LOGICAL_POSITION(MIN_Z_HEIGHT_FOR_HOMING, Z_AXIS); destination[Z_AXIS] = LOGICAL_Z_POSITION(MIN_Z_HEIGHT_FOR_HOMING);
if (destination[Z_AXIS] > current_position[Z_AXIS]) { if (destination[Z_AXIS] > current_position[Z_AXIS]) {
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
@ -3004,7 +3000,7 @@ inline void gcode_G28() {
int tmp_extruder = active_extruder; int tmp_extruder = active_extruder;
active_extruder = !active_extruder; active_extruder = !active_extruder;
HOMEAXIS(X); HOMEAXIS(X);
inactive_extruder_x_pos = current_position[X_AXIS]; inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
active_extruder = tmp_extruder; active_extruder = tmp_extruder;
HOMEAXIS(X); HOMEAXIS(X);
// reset state used by the different modes // reset state used by the different modes
@ -3079,7 +3075,7 @@ inline void gcode_G28() {
* NOTE: This doesn't necessarily ensure the Z probe is also * NOTE: This doesn't necessarily ensure the Z probe is also
* within the bed! * within the bed!
*/ */
float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS]; float cpx = RAW_CURRENT_POSITION(X_AXIS), cpy = RAW_CURRENT_POSITION(Y_AXIS);
if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER) if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
&& cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER) && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
&& cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER) && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
@ -3218,12 +3214,12 @@ inline void gcode_G28() {
; ;
line_to_current_position(); line_to_current_position();
current_position[X_AXIS] = LOGICAL_POSITION(x, X_AXIS); current_position[X_AXIS] = LOGICAL_X_POSITION(x);
current_position[Y_AXIS] = LOGICAL_POSITION(y, Y_AXIS); current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
line_to_current_position(); line_to_current_position();
#if Z_RAISE_BETWEEN_PROBINGS > 0 || MIN_Z_HEIGHT_FOR_HOMING > 0 #if Z_RAISE_BETWEEN_PROBINGS > 0 || MIN_Z_HEIGHT_FOR_HOMING > 0
current_position[Z_AXIS] = LOGICAL_POSITION(MESH_HOME_SEARCH_Z, Z_AXIS); current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
line_to_current_position(); line_to_current_position();
#endif #endif
@ -3476,36 +3472,36 @@ inline void gcode_G28() {
xy_probe_feedrate_mm_m = code_seen('S') ? (int)code_value_linear_units() : XY_PROBE_SPEED; xy_probe_feedrate_mm_m = code_seen('S') ? (int)code_value_linear_units() : XY_PROBE_SPEED;
int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LEFT_PROBE_BED_POSITION, int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : RIGHT_PROBE_BED_POSITION, right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : FRONT_PROBE_BED_POSITION, front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : BACK_PROBE_BED_POSITION; back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
bool left_out_l = left_probe_bed_position < MIN_PROBE_X, bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE), left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
right_out_r = right_probe_bed_position > MAX_PROBE_X, right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE, right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
front_out_f = front_probe_bed_position < MIN_PROBE_Y, front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE), front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
back_out_b = back_probe_bed_position > MAX_PROBE_Y, back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE; back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
if (left_out || right_out || front_out || back_out) { if (left_out || right_out || front_out || back_out) {
if (left_out) { if (left_out) {
out_of_range_error(PSTR("(L)eft")); out_of_range_error(PSTR("(L)eft"));
left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE); left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
} }
if (right_out) { if (right_out) {
out_of_range_error(PSTR("(R)ight")); out_of_range_error(PSTR("(R)ight"));
right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE; right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
} }
if (front_out) { if (front_out) {
out_of_range_error(PSTR("(F)ront")); out_of_range_error(PSTR("(F)ront"));
front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE); front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
} }
if (back_out) { if (back_out) {
out_of_range_error(PSTR("(B)ack")); out_of_range_error(PSTR("(B)ack"));
back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE; back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
} }
return; return;
} }
@ -3641,14 +3637,14 @@ inline void gcode_G28() {
#endif #endif
// Probe at 3 arbitrary points // Probe at 3 arbitrary points
float z_at_pt_1 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_1_X, X_AXIS), float z_at_pt_1 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_1_X, X_AXIS),
LOGICAL_POSITION(ABL_PROBE_PT_1_Y, Y_AXIS), LOGICAL_Y_POSITION(ABL_PROBE_PT_1_Y, Y_AXIS),
stow_probe_after_each, verbose_level), stow_probe_after_each, verbose_level),
z_at_pt_2 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_2_X, X_AXIS), z_at_pt_2 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_2_X, X_AXIS),
LOGICAL_POSITION(ABL_PROBE_PT_2_Y, Y_AXIS), LOGICAL_Y_POSITION(ABL_PROBE_PT_2_Y, Y_AXIS),
stow_probe_after_each, verbose_level), stow_probe_after_each, verbose_level),
z_at_pt_3 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_3_X, X_AXIS), z_at_pt_3 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_3_X, X_AXIS),
LOGICAL_POSITION(ABL_PROBE_PT_3_Y, Y_AXIS), LOGICAL_Y_POSITION(ABL_PROBE_PT_3_Y, Y_AXIS),
stow_probe_after_each, verbose_level); stow_probe_after_each, verbose_level);
if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3); if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
@ -4212,7 +4208,7 @@ inline void gcode_M42() {
float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER; float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
#if DISABLED(DELTA) #if DISABLED(DELTA)
if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) { if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
out_of_range_error(PSTR("X")); out_of_range_error(PSTR("X"));
return; return;
} }
@ -4220,12 +4216,12 @@ inline void gcode_M42() {
float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER; float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
#if DISABLED(DELTA) #if DISABLED(DELTA)
if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) { if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
out_of_range_error(PSTR("Y")); out_of_range_error(PSTR("Y"));
return; return;
} }
#else #else
if (HYPOT(X_probe_location, Y_probe_location) > DELTA_PROBEABLE_RADIUS) { if (HYPOT(RAW_X_POSITION(X_probe_location), RAW_Y_POSITION(Y_probe_location)) > DELTA_PROBEABLE_RADIUS) {
SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius."); SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
return; return;
} }
@ -6751,16 +6747,16 @@ void tool_change(const uint8_t tmp_extruder, const float fr_mm_m/*=0.0*/, bool n
switch (dual_x_carriage_mode) { switch (dual_x_carriage_mode) {
case DXC_FULL_CONTROL_MODE: case DXC_FULL_CONTROL_MODE:
current_position[X_AXIS] = inactive_extruder_x_pos; current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
inactive_extruder_x_pos = destination[X_AXIS]; inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
break; break;
case DXC_DUPLICATION_MODE: case DXC_DUPLICATION_MODE:
active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
if (active_extruder_parked) if (active_extruder_parked)
current_position[X_AXIS] = inactive_extruder_x_pos; current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
else else
current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset; current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
inactive_extruder_x_pos = destination[X_AXIS]; inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
extruder_duplication_enabled = false; extruder_duplication_enabled = false;
break; break;
default: default:
@ -7749,9 +7745,9 @@ void clamp_to_software_endstops(float target[3]) {
void inverse_kinematics(const float in_cartesian[3]) { void inverse_kinematics(const float in_cartesian[3]) {
const float cartesian[3] = { const float cartesian[3] = {
RAW_POSITION(in_cartesian[X_AXIS], X_AXIS), RAW_X_POSITION(in_cartesian[X_AXIS]),
RAW_POSITION(in_cartesian[Y_AXIS], Y_AXIS), RAW_Y_POSITION(in_cartesian[Y_AXIS]),
RAW_POSITION(in_cartesian[Z_AXIS], Z_AXIS) RAW_Z_POSITION(in_cartesian[Z_AXIS])
}; };
delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1 delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
@ -7779,13 +7775,13 @@ void clamp_to_software_endstops(float target[3]) {
float delta_safe_distance_from_top() { float delta_safe_distance_from_top() {
float cartesian[3] = { float cartesian[3] = {
LOGICAL_POSITION(0, X_AXIS), LOGICAL_X_POSITION(0),
LOGICAL_POSITION(0, Y_AXIS), LOGICAL_Y_POSITION(0),
LOGICAL_POSITION(0, Z_AXIS) LOGICAL_Z_POSITION(0)
}; };
inverse_kinematics(cartesian); inverse_kinematics(cartesian);
float distance = delta[TOWER_3]; float distance = delta[TOWER_3];
cartesian[Y_AXIS] = LOGICAL_POSITION(DELTA_PRINTABLE_RADIUS, Y_AXIS); cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
inverse_kinematics(cartesian); inverse_kinematics(cartesian);
return abs(distance - delta[TOWER_3]); return abs(distance - delta[TOWER_3]);
} }
@ -7877,8 +7873,8 @@ void clamp_to_software_endstops(float target[3]) {
int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2; int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
float h1 = 0.001 - half, h2 = half - 0.001, float h1 = 0.001 - half, h2 = half - 0.001,
grid_x = max(h1, min(h2, RAW_POSITION(cartesian[X_AXIS], X_AXIS) / delta_grid_spacing[0])), grid_x = max(h1, min(h2, RAW_X_POSITION(cartesian[X_AXIS]) / delta_grid_spacing[0])),
grid_y = max(h1, min(h2, RAW_POSITION(cartesian[Y_AXIS], Y_AXIS) / delta_grid_spacing[1])); grid_y = max(h1, min(h2, RAW_Y_POSITION(cartesian[Y_AXIS]) / delta_grid_spacing[1]));
int floor_x = floor(grid_x), floor_y = floor(grid_y); int floor_x = floor(grid_x), floor_y = floor(grid_y);
float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y, float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
z1 = bed_level[floor_x + half][floor_y + half], z1 = bed_level[floor_x + half][floor_y + half],
@ -7919,9 +7915,9 @@ void set_current_from_steppers_for_axis(AxisEnum axis) {
current_position[axis] = LOGICAL_POSITION(cartesian_position[axis], axis); current_position[axis] = LOGICAL_POSITION(cartesian_position[axis], axis);
#elif ENABLED(AUTO_BED_LEVELING_FEATURE) #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
vector_3 pos = planner.adjusted_position(); vector_3 pos = planner.adjusted_position();
current_position[axis] = LOGICAL_POSITION(axis == X_AXIS ? pos.x : axis == Y_AXIS ? pos.y : pos.z, axis); current_position[axis] = axis == X_AXIS ? pos.x : axis == Y_AXIS ? pos.y : pos.z;
#else #else
current_position[axis] = LOGICAL_POSITION(stepper.get_axis_position_mm(axis), axis); // CORE handled transparently current_position[axis] = stepper.get_axis_position_mm(axis); // CORE handled transparently
#endif #endif
} }
@ -7931,8 +7927,8 @@ void set_current_from_steppers_for_axis(AxisEnum axis) {
void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) { void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)), int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)), cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
cx2 = mbl.cell_index_x(RAW_POSITION(destination[X_AXIS], X_AXIS)), cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
cy2 = mbl.cell_index_y(RAW_POSITION(destination[Y_AXIS], Y_AXIS)); cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
NOMORE(cx1, MESH_NUM_X_POINTS - 2); NOMORE(cx1, MESH_NUM_X_POINTS - 2);
NOMORE(cy1, MESH_NUM_Y_POINTS - 2); NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
NOMORE(cx2, MESH_NUM_X_POINTS - 2); NOMORE(cx2, MESH_NUM_X_POINTS - 2);
@ -7953,14 +7949,14 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_
int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2); int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
if (cx2 != cx1 && TEST(x_splits, gcx)) { if (cx2 != cx1 && TEST(x_splits, gcx)) {
memcpy(end, destination, sizeof(end)); memcpy(end, destination, sizeof(end));
destination[X_AXIS] = LOGICAL_POSITION(mbl.get_probe_x(gcx), X_AXIS); destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]); normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
destination[Y_AXIS] = MBL_SEGMENT_END(Y); destination[Y_AXIS] = MBL_SEGMENT_END(Y);
CBI(x_splits, gcx); CBI(x_splits, gcx);
} }
else if (cy2 != cy1 && TEST(y_splits, gcy)) { else if (cy2 != cy1 && TEST(y_splits, gcy)) {
memcpy(end, destination, sizeof(end)); memcpy(end, destination, sizeof(end));
destination[Y_AXIS] = LOGICAL_POSITION(mbl.get_probe_y(gcy), Y_AXIS); destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]); normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
destination[X_AXIS] = MBL_SEGMENT_END(X); destination[X_AXIS] = MBL_SEGMENT_END(X);
CBI(y_splits, gcy); CBI(y_splits, gcy);
@ -8031,7 +8027,12 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_
if (active_extruder_parked) { if (active_extruder_parked) {
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) { if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
// move duplicate extruder into correct duplication position. // move duplicate extruder into correct duplication position.
planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); planner.set_position_mm(
LOGICAL_X_POSITION(inactive_extruder_x_pos),
current_position[Y_AXIS],
current_position[Z_AXIS],
current_position[E_AXIS]
);
planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1); current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
SYNC_PLAN_POSITION_KINEMATIC(); SYNC_PLAN_POSITION_KINEMATIC();
@ -8375,8 +8376,8 @@ void prepare_move_to_destination() {
float SCARA_pos[2]; float SCARA_pos[2];
static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi; static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
SCARA_pos[X_AXIS] = RAW_POSITION(cartesian[X_AXIS], X_AXIS) * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y SCARA_pos[X_AXIS] = RAW_X_POSITION(cartesian[X_AXIS]) * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
SCARA_pos[Y_AXIS] = RAW_POSITION(cartesian[Y_AXIS], Y_AXIS) * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor. SCARA_pos[Y_AXIS] = RAW_Y_POSITION(cartesian[Y_AXIS]) * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
#if (Linkage_1 == Linkage_2) #if (Linkage_1 == Linkage_2)
SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1; SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
@ -8394,7 +8395,7 @@ void prepare_move_to_destination() {
delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor) delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
delta[Z_AXIS] = RAW_POSITION(cartesian[Z_AXIS], Z_AXIS); delta[Z_AXIS] = RAW_Z_POSITION(cartesian[Z_AXIS]);
/** /**
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]); SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);

View file

@ -1157,10 +1157,14 @@ void Planner::check_axes_activity() {
#endif // AUTO_BED_LEVELING_FEATURE || MESH_BED_LEVELING #endif // AUTO_BED_LEVELING_FEATURE || MESH_BED_LEVELING
{ {
#if ENABLED(MESH_BED_LEVELING) #if ENABLED(MESH_BED_LEVELING)
if (mbl.active()) if (mbl.active())
z += mbl.get_z(x - home_offset[X_AXIS], y - home_offset[Y_AXIS]); z += mbl.get_z(RAW_X_POSITION(x), RAW_Y_POSITION(y));
#elif ENABLED(AUTO_BED_LEVELING_FEATURE) #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
apply_rotation_xyz(bed_level_matrix, x, y, z); apply_rotation_xyz(bed_level_matrix, x, y, z);
#endif #endif
long nx = position[X_AXIS] = lround(x * axis_steps_per_mm[X_AXIS]), long nx = position[X_AXIS] = lround(x * axis_steps_per_mm[X_AXIS]),