[New Feature] I2C position encoder support (#6946)

* [New Feature] I2C position encoder support

I plan to continue improving/cleaning this up, as there areas that need work.

* let the cleanups begin.

* progress

* more progress

* comments, rename files, etc.

* clean

* Cleanups per thinkyhead

* a few more cleanups

* cleanups, bugfixes, etc.

* remove unnecessary passes_test(), additional cleanups/optimizations

* cleanups

* misc.

* Fix up I2CPEM.init() and a few other things.

* organize, fix, rename, etc.

* more optimization

* a few more tweaks
This commit is contained in:
bgort 2017-06-09 08:06:23 -04:00 committed by GitHub
parent f7dacd1f50
commit 2f55870edb
8 changed files with 1684 additions and 17 deletions

View file

@ -1261,4 +1261,87 @@
#define USER_GCODE_5 "G28\nM503"
#endif
//===========================================================================
//============================ I2C Encoder Settings =========================
//===========================================================================
/**
* I2C position encoders for closed loop control.
* Developed by Chris Barr at Aus3D.
*
* Wiki: http://wiki.aus3d.com.au/Magnetic_Encoder
* Github: https://github.com/Aus3D/MagneticEncoder
*
* Supplier: http://aus3d.com.au/magnetic-encoder-module
* Alternative Supplier: http://reliabuild3d.com/
*
* Reilabuild encoders have been modified to improve reliability.
*/
//#define I2C_POSITION_ENCODERS
#if ENABLED(I2C_POSITION_ENCODERS)
#define I2CPE_ENCODER_CNT 1 // The number of encoders installed; max of 5
// encoders supported currently.
#define I2CPE_ENC_1_ADDR I2CPE_PRESET_ADDR_X // I2C address of the encoder. 30-200.
#define I2CPE_ENC_1_AXIS X_AXIS // Axis the encoder module is installed on. <X|Y|Z|E>_AXIS.
#define I2CPE_ENC_1_TYPE I2CPE_ENC_TYPE_LINEAR // Type of encoder: I2CPE_ENC_TYPE_LINEAR -or-
// I2CPE_ENC_TYPE_ROTARY.
#define I2CPE_ENC_1_TICKS_UNIT 2048 // 1024 for magnetic strips with 2mm poles; 2048 for
// 1mm poles. For linear encoders this is ticks / mm,
// for rotary encoders this is ticks / revolution.
//#define I2CPE_ENC_1_TICKS_REV (16 * 200) // Only needed for rotary encoders; number of stepper
// steps per full revolution (motor steps/rev * microstepping)
//#define I2CPE_ENC_1_INVERT // Invert the direction of axis travel.
#define I2CPE_ENC_1_EC_METHOD I2CPE_ECM_NONE // Type of error error correction.
#define I2CPE_ENC_1_EC_THRESH 0.10 // Threshold size for error (in mm) above which the
// printer will attempt to correct the error; errors
// smaller than this are ignored to minimize effects of
// measurement noise / latency (filter).
#define I2CPE_ENC_2_ADDR I2CPE_PRESET_ADDR_Y // Same as above, but for encoder 2.
#define I2CPE_ENC_2_AXIS Y_AXIS
#define I2CPE_ENC_2_TYPE I2CPE_ENC_TYPE_LINEAR
#define I2CPE_ENC_2_TICKS_UNIT 2048
//#define I2CPE_ENC_2_TICKS_REV (16 * 200)
//#define I2CPE_ENC_2_INVERT
#define I2CPE_ENC_2_EC_METHOD I2CPE_ECM_NONE
#define I2CPE_ENC_2_EC_THRESH 0.10
#define I2CPE_ENC_3_ADDR I2CPE_PRESET_ADDR_Z // Encoder 3. Add additional configuration options
#define I2CPE_ENC_3_AXIS Z_AXIS // as above, or use defaults below.
#define I2CPE_ENC_4_ADDR I2CPE_PRESET_ADDR_E // Encoder 4.
#define I2CPE_ENC_4_AXIS E_AXIS
#define I2CPE_ENC_5_ADDR 34 // Encoder 5.
#define I2CPE_ENC_5_AXIS E_AXIS
// Default settings for encoders which are enabled, but without settings configured above.
#define I2CPE_DEF_TYPE I2CPE_ENC_TYPE_LINEAR
#define I2CPE_DEF_ENC_TICKS_UNIT 2048
#define I2CPE_DEF_TICKS_REV (16 * 200)
#define I2CPE_DEF_EC_METHOD I2CPE_ECM_NONE
#define I2CPE_DEF_EC_THRESH 0.1
//#define I2CPE_ERR_THRESH_ABORT 100.0 // Threshold size for error (in mm) error on any given
// axis after which the printer will abort. Comment out to
// disable abort behaviour.
#define I2CPE_TIME_TRUSTED 10000 // After an encoder fault, there must be no further fault
// for this amount of time (in ms) before the encoder
// is trusted again.
/**
* Position is checked every time a new command is executed from the buffer but during long moves,
* this setting determines the minimum update time between checks. A value of 100 works well with
* error rolling average when attempting to correct only for skips and not for vibration.
*/
#define I2CPE_MIN_UPD_TIME_MS 100 // Minimum time in miliseconds between encoder checks.
// Use a rolling average to identify persistant errors that indicate skips, as opposed to vibration and noise.
#define I2CPE_ERR_ROLLING_AVERAGE
#endif
#endif // CONFIGURATION_ADV_H

File diff suppressed because it is too large Load diff

356
Marlin/I2CPositionEncoder.h Normal file
View file

@ -0,0 +1,356 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef I2CPOSENC_H
#define I2CPOSENC_H
#include "MarlinConfig.h"
#if ENABLED(I2C_POSITION_ENCODERS)
#include "enum.h"
#include "macros.h"
#include "types.h"
#include <Wire.h>
//=========== Advanced / Less-Common Encoder Configuration Settings ==========
#define I2CPE_EC_THRESH_PROPORTIONAL // if enabled adjusts the error correction threshold
// proportional to the current speed of the axis allows
// for very small error margin at low speeds without
// stuttering due to reading latency at high speeds
#define I2CPE_DEBUG // enable encoder-related debug serial echos
#define I2CPE_REBOOT_TIME 5000 // time we wait for an encoder module to reboot
// after changing address.
#define I2CPE_MAG_SIG_GOOD 0
#define I2CPE_MAG_SIG_MID 1
#define I2CPE_MAG_SIG_BAD 2
#define I2CPE_MAG_SIG_NF 255
#define I2CPE_REQ_REPORT 0
#define I2CPE_RESET_COUNT 1
#define I2CPE_SET_ADDR 2
#define I2CPE_SET_REPORT_MODE 3
#define I2CPE_CLEAR_EEPROM 4
#define I2CPE_LED_PAR_MODE 10
#define I2CPE_LED_PAR_BRT 11
#define I2CPE_LED_PAR_RATE 14
#define I2CPE_REPORT_DISTANCE 0
#define I2CPE_REPORT_STRENGTH 1
#define I2CPE_REPORT_VERSION 2
// Default I2C addresses
#define I2CPE_PRESET_ADDR_X 30
#define I2CPE_PRESET_ADDR_Y 31
#define I2CPE_PRESET_ADDR_Z 32
#define I2CPE_PRESET_ADDR_E 33
#define I2CPE_DEF_AXIS X_AXIS
#define I2CPE_DEF_ADDR I2CPE_PRESET_ADDR_X
// Error event counter; tracks how many times there is an error exceeding a certain threshold
#define I2CPE_ERR_CNT_THRESH 3.00
#define I2CPE_ERR_CNT_DEBOUNCE_MS 2000
#if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
#define I2CPE_ERR_ARRAY_SIZE 32
#endif
// Error Correction Methods
#define I2CPE_ECM_NONE 0
#define I2CPE_ECM_MICROSTEP 1
#define I2CPE_ECM_PLANNER 2
#define I2CPE_ECM_STALLDETECT 3
// Encoder types
#define I2CPE_ENC_TYPE_ROTARY 0
#define I2CPE_ENC_TYPE_LINEAR 1
// Parser
#define I2CPE_PARSE_ERR 1
#define I2CPE_PARSE_OK 0
#define LOOP_PE(VAR) LOOP_L_N(VAR, I2CPE_ENCODER_CNT)
#define CHECK_IDX if (!WITHIN(idx, 0, I2CPE_ENCODER_CNT - 1)) return;
extern const char axis_codes[XYZE];
typedef union {
volatile long val = 0;
uint8_t bval[4];
} i2cLong;
class I2CPositionEncoder {
private:
AxisEnum encoderAxis = I2CPE_DEF_AXIS;
uint8_t i2cAddress = I2CPE_DEF_ADDR,
ecMethod = I2CPE_DEF_EC_METHOD,
type = I2CPE_DEF_TYPE,
H = I2CPE_MAG_SIG_NF; // Magnetic field strength
int encoderTicksPerUnit = I2CPE_DEF_ENC_TICKS_UNIT,
stepperTicks = I2CPE_DEF_TICKS_REV;
float ecThreshold = I2CPE_DEF_EC_THRESH;
bool homed = false,
trusted = false,
initialised = false,
active = false,
invert = false,
ec = true;
int errorCount = 0,
errorPrev = 0;
float axisOffset = 0;
long axisOffsetTicks = 0,
zeroOffset = 0,
lastPosition = 0,
position;
unsigned long lastPositionTime = 0,
lastErrorCountTime = 0,
lastErrorTime;
//double positionMm; //calculate
#if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
uint8_t errIdx = 0;
int err[I2CPE_ERR_ARRAY_SIZE] = {0};
#endif
public:
void init(uint8_t address, AxisEnum axis);
void reset();
void update();
void set_homed();
long get_raw_count();
FORCE_INLINE double mm_from_count(long count) {
if (type == I2CPE_ENC_TYPE_LINEAR) return count / encoderTicksPerUnit;
else if (type == I2CPE_ENC_TYPE_ROTARY)
return (count * stepperTicks) / (encoderTicksPerUnit * planner.axis_steps_per_mm[encoderAxis]);
return -1;
}
FORCE_INLINE double get_position_mm() { return mm_from_count(get_position()); }
FORCE_INLINE long get_position() { return get_raw_count() - zeroOffset - axisOffsetTicks; }
long get_axis_error_steps(bool report);
double get_axis_error_mm(bool report);
void calibrate_steps_mm(int iter);
bool passes_test(bool report);
bool test_axis(void);
FORCE_INLINE int get_error_count(void) { return errorCount; }
FORCE_INLINE void set_error_count(int newCount) { errorCount = newCount; }
FORCE_INLINE uint8_t get_address() { return i2cAddress; }
FORCE_INLINE void set_address(uint8_t addr) { i2cAddress = addr; }
FORCE_INLINE bool get_active(void) { return active; }
FORCE_INLINE void set_active(bool a) { active = a; }
FORCE_INLINE void set_inverted(bool i) { invert = i; }
FORCE_INLINE AxisEnum get_axis() { return encoderAxis; }
FORCE_INLINE bool get_ec_enabled() { return ec; }
FORCE_INLINE void set_ec_enabled(bool enabled) { ec = enabled; }
FORCE_INLINE uint8_t get_ec_method() { return ecMethod; }
FORCE_INLINE void set_ec_method(byte method) { ecMethod = method; }
FORCE_INLINE float get_ec_threshold() { return ecThreshold; }
FORCE_INLINE void set_ec_threshold(float newThreshold) { ecThreshold = newThreshold; }
FORCE_INLINE int get_encoder_ticks_mm() {
if (type == I2CPE_ENC_TYPE_LINEAR) return encoderTicksPerUnit;
else if (type == I2CPE_ENC_TYPE_ROTARY)
return (int)((encoderTicksPerUnit / stepperTicks) * planner.axis_steps_per_mm[encoderAxis]);
return 0;
}
FORCE_INLINE int get_ticks_unit() { return encoderTicksPerUnit; }
FORCE_INLINE void set_ticks_unit(int ticks) { encoderTicksPerUnit = ticks; }
FORCE_INLINE uint8_t get_type() { return type; }
FORCE_INLINE void set_type(byte newType) { type = newType; }
FORCE_INLINE int get_stepper_ticks() { return stepperTicks; }
FORCE_INLINE void set_stepper_ticks(int ticks) { stepperTicks = ticks; }
FORCE_INLINE float get_axis_offset() { return axisOffset; }
FORCE_INLINE void set_axis_offset(float newOffset) {
axisOffset = newOffset;
axisOffsetTicks = (long)(axisOffset * get_encoder_ticks_mm());
}
FORCE_INLINE void set_current_position(float newPositionMm) {
set_axis_offset(get_position_mm() - newPositionMm + axisOffset);
}
};
class I2CPositionEncodersMgr {
private:
bool I2CPE_anyaxis;
uint8_t I2CPE_addr;
int8_t I2CPE_idx;
public:
void init(void);
// consider only updating one endoder per call / tick if encoders become too time intensive
void update(void) { LOOP_PE(i) encoders[i].update(); }
void homed(AxisEnum axis) {
LOOP_PE(i)
if (encoders[i].get_axis() == axis) encoders[i].set_homed();
}
void report_position(uint8_t idx, bool units, bool noOffset);
void report_status(uint8_t idx) {
CHECK_IDX
SERIAL_ECHOPAIR("Encoder ",idx);
SERIAL_ECHOPGM(": ");
encoders[idx].get_raw_count();
encoders[idx].passes_test(true);
}
void report_error(uint8_t idx) {
CHECK_IDX
encoders[idx].get_axis_error_steps(true);
}
void test_axis(uint8_t idx) {
CHECK_IDX
encoders[idx].test_axis();
}
void calibrate_steps_mm(uint8_t idx, int iterations) {
CHECK_IDX
encoders[idx].calibrate_steps_mm(iterations);
}
void change_module_address(uint8_t oldaddr, uint8_t newaddr);
void report_module_firmware(uint8_t address);
void report_error_count(uint8_t idx, AxisEnum axis) {
CHECK_IDX
SERIAL_ECHOPAIR("Error count on ", axis_codes[axis]);
SERIAL_ECHOLNPAIR(" axis is ", encoders[idx].get_error_count());
}
void reset_error_count(uint8_t idx, AxisEnum axis) {
CHECK_IDX
encoders[idx].set_error_count(0);
SERIAL_ECHOPAIR("Error count on ", axis_codes[axis]);
SERIAL_ECHOLNPGM(" axis has been reset.");
}
void enable_ec(uint8_t idx, bool enabled, AxisEnum axis) {
CHECK_IDX
encoders[idx].set_ec_enabled(enabled);
SERIAL_ECHOPAIR("Error correction on ", axis_codes[axis]);
SERIAL_ECHOPGM(" axis is ");
serialprintPGM(encoders[idx].get_ec_enabled() ? PSTR("en") : PSTR("dis"));
SERIAL_ECHOLNPGM("abled.");
}
void set_ec_threshold(uint8_t idx, float newThreshold, AxisEnum axis) {
CHECK_IDX
encoders[idx].set_ec_threshold(newThreshold);
SERIAL_ECHOPAIR("Error correct threshold for ", axis_codes[axis]);
SERIAL_ECHOPAIR_F(" axis set to ", newThreshold);
SERIAL_ECHOLNPGM("mm.");
}
void get_ec_threshold(uint8_t idx, AxisEnum axis) {
CHECK_IDX
float threshold = encoders[idx].get_ec_threshold();
SERIAL_ECHOPAIR("Error correct threshold for ", axis_codes[axis]);
SERIAL_ECHOPAIR_F(" axis is ", threshold);
SERIAL_ECHOLNPGM("mm.");
}
int8_t idx_from_axis(AxisEnum axis) {
LOOP_PE(i)
if (encoders[i].get_axis() == axis) return i;
return -1;
}
int8_t idx_from_addr(uint8_t addr) {
LOOP_PE(i)
if (encoders[i].get_address() == addr) return i;
return -1;
}
int8_t parse();
void M860();
void M861();
void M862();
void M863();
void M864();
void M865();
void M866();
void M867();
void M868();
void M869();
I2CPositionEncoder encoders[I2CPE_ENCODER_CNT];
};
extern I2CPositionEncodersMgr I2CPEM;
FORCE_INLINE void gcode_M860() { I2CPEM.M860(); }
FORCE_INLINE void gcode_M861() { I2CPEM.M861(); }
FORCE_INLINE void gcode_M862() { I2CPEM.M862(); }
FORCE_INLINE void gcode_M863() { I2CPEM.M863(); }
FORCE_INLINE void gcode_M864() { I2CPEM.M864(); }
FORCE_INLINE void gcode_M865() { I2CPEM.M865(); }
FORCE_INLINE void gcode_M866() { I2CPEM.M866(); }
FORCE_INLINE void gcode_M867() { I2CPEM.M867(); }
FORCE_INLINE void gcode_M868() { I2CPEM.M868(); }
FORCE_INLINE void gcode_M869() { I2CPEM.M869(); }
#endif //I2C_POSITION_ENCODERS
#endif //I2CPOSENC_H

View file

@ -200,6 +200,16 @@
* M666 - Set delta endstop adjustment. (Requires DELTA)
* M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
* M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
* M860 - Report the position of position encoder modules.
* M861 - Report the status of position encoder modules.
* M862 - Perform an axis continuity test for position encoder modules.
* M863 - Perform steps-per-mm calibration for position encoder modules.
* M864 - Change position encoder module I2C address.
* M865 - Check position encoder module firmware version.
* M866 - Report or reset position encoder module error count.
* M867 - Enable/disable or toggle error correction for position encoder modules.
* M868 - Report or set position encoder module error correction threshold.
* M869 - Report position encoder module error.
* M900 - Get and/or Set advance K factor and WH/D ratio. (Requires LIN_ADVANCE)
* M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
* M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
@ -286,6 +296,10 @@
#include "twibus.h"
#endif
#if ENABLED(I2C_POSITION_ENCODERS)
#include "I2CPositionEncoder.h"
#endif
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
#include "endstop_interrupts.h"
#endif
@ -662,6 +676,12 @@ static bool send_ok[BUFSIZE];
#define host_keepalive() NOOP
#endif
#if ENABLED(I2C_POSITION_ENCODERS)
I2CPositionEncodersMgr I2CPEM;
uint8_t blockBufferIndexRef = 0;
millis_t lastUpdateMillis;
#endif
FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
@ -1493,6 +1513,10 @@ static void set_axis_is_at_home(const AxisEnum axis) {
SERIAL_EOL;
}
#endif
#if ENABLED(I2C_POSITION_ENCODERS)
I2CPEM.homed(axis);
#endif
}
/**
@ -5609,6 +5633,11 @@ inline void gcode_G92() {
#if HAS_POSITION_SHIFT
position_shift[i] += v - p; // Offset the coordinate space
update_software_endstops((AxisEnum)i);
#if ENABLED(I2C_POSITION_ENCODERS)
I2CPEM.encoders[I2CPEM.idx_from_axis((AxisEnum) i)].set_axis_offset(position_shift[i]);
#endif
#endif
}
#endif
@ -10904,6 +10933,50 @@ void process_next_command() {
break;
#endif
#if ENABLED(I2C_POSITION_ENCODERS)
case 860: // M860 Report encoder module position
gcode_M860();
break;
case 861: // M861 Report encoder module status
gcode_M861();
break;
case 862: // M862 Perform axis test
gcode_M862();
break;
case 863: // M863 Calibrate steps/mm
gcode_M863();
break;
case 864: // M864 Change module address
gcode_M864();
break;
case 865: // M865 Check module firmware version
gcode_M865();
break;
case 866: // M866 Report axis error count
gcode_M866();
break;
case 867: // M867 Toggle error correction
gcode_M867();
break;
case 868: // M868 Set error correction threshold
gcode_M868();
break;
case 869: // M869 Report axis error
gcode_M869();
break;
#endif // I2C_POSITION_ENCODERS
case 999: // M999: Restart after being Stopped
gcode_M999();
break;
@ -12200,7 +12273,7 @@ void disable_all_steppers() {
const bool has_days = (elapsed.value > 60*60*24L);
(void)elapsed.toDigital(timestamp, has_days);
SERIAL_ECHO(timestamp);
SERIAL_ECHO(": ");
SERIAL_ECHOPGM(": ");
SERIAL_ECHO(axisID);
SERIAL_ECHOLNPGM(" driver overtemperature warning!");
}
@ -12495,6 +12568,16 @@ void idle(
#if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
buzzer.tick();
#endif
#if ENABLED(I2C_POSITION_ENCODERS)
if (planner.blocks_queued() &&
( (blockBufferIndexRef != planner.block_buffer_head) ||
((lastUpdateMillis + I2CPE_MIN_UPD_TIME_MS) < millis())) ) {
blockBufferIndexRef = planner.block_buffer_head;
I2CPEM.update();
lastUpdateMillis = millis();
}
#endif
}
/**
@ -12739,6 +12822,10 @@ void setup() {
set_bltouch_deployed(false);
#endif
#if ENABLED(I2C_POSITION_ENCODERS)
I2CPEM.init();
#endif
#if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
i2c.onReceive(i2c_on_receive);
i2c.onRequest(i2c_on_request);

View file

@ -270,11 +270,24 @@
#endif
#endif
/**
* I2C Position Encoders
*/
#if ENABLED(I2C_POSITION_ENCODERS)
#if DISABLED(BABYSTEPPING)
#error "I2C_POSITION_ENCODERS requires BABYSTEPPING."
#endif
#if I2CPE_ENCODER_CNT > 5 || I2CPE_ENCODER_CNT < 1
#error "I2CPE_ENCODER_CNT must be between 1 and 5."
#endif
#endif
/**
* Babystepping
*/
#if ENABLED(BABYSTEPPING)
#if DISABLED(ULTRA_LCD)
#if DISABLED(ULTRA_LCD) && DISABLED(I2C_POSITION_ENCODERS)
#error "BABYSTEPPING requires an LCD controller."
#elif ENABLED(SCARA)
#error "BABYSTEPPING is not implemented for SCARA yet."

View file

@ -48,9 +48,15 @@ enum AxisEnum {
ALL_AXES = 100
};
#define LOOP_XYZ(VAR) for (uint8_t VAR=X_AXIS; VAR<=Z_AXIS; VAR++)
#define LOOP_XYZE(VAR) for (uint8_t VAR=X_AXIS; VAR<=E_AXIS; VAR++)
#define LOOP_XYZE_N(VAR) for (uint8_t VAR=X_AXIS; VAR<XYZE_N; VAR++)
#define LOOP_S_LE_N(VAR, S, N) for (uint8_t VAR=S; VAR<=N; VAR++)
#define LOOP_S_L_N(VAR, S, N) for (uint8_t VAR=S; VAR<N; VAR++)
#define LOOP_LE_N(VAR, N) LOOP_S_LE_N(VAR, 0, N)
#define LOOP_L_N(VAR, N) LOOP_S_L_N(VAR, 0, N)
#define LOOP_NA(VAR) LOOP_L_N(VAR, NUM_AXIS)
#define LOOP_XYZ(VAR) LOOP_S_LE_N(VAR, X_AXIS, Z_AXIS)
#define LOOP_XYZE(VAR) LOOP_S_LE_N(VAR, X_AXIS, E_AXIS)
#define LOOP_XYZE_N(VAR) LOOP_S_L_N(VAR, X_AXIS, XYZE_N)
typedef enum {
LINEARUNIT_MM,

View file

@ -128,6 +128,12 @@ public:
return b;
}
static volatile bool seen_any() {
return codebits[3] || codebits[2] || codebits[1] || codebits[0];
}
#define SEEN_TEST(L) TEST(codebits[(L - 'A') >> 3], (L - 'A') & 0x7)
#else
// Code is found in the string. If not found, value_ptr is unchanged.
@ -139,6 +145,12 @@ public:
return b;
}
static volatile bool seen_any() {
return *command_args == '\0';
}
#define SEEN_TEST(L) !!strchr(command_args, L)
#endif // FASTER_GCODE_PARSER
// Populate all fields by parsing a single line of GCode
@ -148,6 +160,13 @@ public:
// Code value pointer was set
FORCE_INLINE static bool has_value() { return value_ptr != NULL; }
// Seen and has value
FORCE_INLINE static bool seenval(const char c) { return seen(c) && has_value(); }
static volatile bool seen_axis() {
return SEEN_TEST('X') || SEEN_TEST('Y') || SEEN_TEST('Z') || SEEN_TEST('E');
}
// Float removes 'E' to prevent scientific notation interpretation
inline static float value_float() {
if (value_ptr) {

View file

@ -108,6 +108,8 @@
#define HYPOT2(x,y) (sq(x)+sq(y))
#define HYPOT(x,y) sqrt(HYPOT2(x,y))
#define SIGN(a) ((a>0)-(a<0))
// Macros to contrain values
#define NOLESS(v,n) do{ if (v < n) v = n; }while(0)
#define NOMORE(v,n) do{ if (v > n) v = n; }while(0)