From 342ee458ae348f01b1db57e94ded3df3e0ec2798 Mon Sep 17 00:00:00 2001 From: Scott Lahteine Date: Fri, 31 Mar 2017 07:57:41 -0500 Subject: [PATCH] Additional UBL fixes, optimizations --- .travis.yml | 2 +- Marlin/G26_Mesh_Validation_Tool.cpp | 97 ++++++--------- Marlin/Marlin_main.cpp | 6 +- Marlin/UBL.h | 72 +++++------ Marlin/UBL_Bed_Leveling.cpp | 2 +- Marlin/UBL_G29.cpp | 33 +++-- Marlin/UBL_line_to_destination.cpp | 181 +++++++++++++--------------- 7 files changed, 177 insertions(+), 216 deletions(-) diff --git a/.travis.yml b/.travis.yml index 951e985276..33af669821 100644 --- a/.travis.yml +++ b/.travis.yml @@ -120,7 +120,7 @@ script: # Test a simple build of AUTO_BED_LEVELING_UBL # - restore_configs - - opt_enable AUTO_BED_LEVELING_UBL UBL_G26_MESH_EDITING FIX_MOUNTED_PROBE EEPROM_SETTINGS G3D_PANEL + - opt_enable AUTO_BED_LEVELING_UBL UBL_G26_MESH_EDITING ENABLE_LEVELING_FADE_HEIGHT FIX_MOUNTED_PROBE EEPROM_SETTINGS G3D_PANEL - build_marlin # # Test a Sled Z Probe diff --git a/Marlin/G26_Mesh_Validation_Tool.cpp b/Marlin/G26_Mesh_Validation_Tool.cpp index bd17b9d025..8cd4338df4 100644 --- a/Marlin/G26_Mesh_Validation_Tool.cpp +++ b/Marlin/G26_Mesh_Validation_Tool.cpp @@ -47,8 +47,8 @@ #define OOZE_AMOUNT 0.3 #define SIZE_OF_INTERSECTION_CIRCLES 5 - #define SIZE_OF_CROSS_HAIRS 3 // cross hairs inside the circle. This number should be - // less than SIZE_OR_INTERSECTION_CIRCLES + #define SIZE_OF_CROSSHAIRS 3 // crosshairs inside the circle. This number should be + // less than SIZE_OR_INTERSECTION_CIRCLES /** * Roxy's G26 Mesh Validation Tool @@ -132,12 +132,12 @@ void line_to_destination(float ); void gcode_G28(); void sync_plan_position_e(); - void un_retract_filament(); - void retract_filament(); + void un_retract_filament(float where[XYZE]); + void retract_filament(float where[XYZE]); void look_for_lines_to_connect(); bool parse_G26_parameters(); void move_to(const float&, const float&, const float&, const float&) ; - void print_line_from_here_to_there(float sx, float sy, float sz, float ex, float ey, float ez); + void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&); bool turn_on_heaters(); bool prime_nozzle(); void chirp_at_user(); @@ -154,8 +154,6 @@ float valid_trig_angle(float); mesh_index_pair find_closest_circle_to_print(float, float); - void ubl_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t); - //uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF); /* needed for the old mesh_buffer_line() routine */ static float extrusion_multiplier = EXTRUSION_MULTIPLIER, retraction_multiplier = RETRACTION_MULTIPLIER, @@ -359,7 +357,7 @@ lcd_reset_alert_level(); lcd_setstatuspgm(PSTR("Leaving G26")); - retract_filament(); + retract_filament(destination); destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; //debug_current_and_destination((char*)"ready to do Z-Raise."); @@ -445,18 +443,12 @@ // We found two circles that need a horizontal line to connect them // Print it! // - sx = ubl.mesh_index_to_xpos[i]; - sx = sx + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the right edge of the circle - sy = ubl.mesh_index_to_ypos[j]; + sx = ubl.mesh_index_to_xpos[ i ] + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge + ex = ubl.mesh_index_to_xpos[i + 1] - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge - ex = ubl.mesh_index_to_xpos[i + 1]; - ex = ex - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the left edge of the circle - ey = sy; - - sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops - sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1); + sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); + sy = ey = constrain(ubl.mesh_index_to_ypos[j], Y_MIN_POS + 1, Y_MAX_POS - 1); ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1); - ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1); if (ubl.g26_debug_flag) { SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx); @@ -468,7 +460,7 @@ //debug_current_and_destination((char*)"Connecting horizontal line."); } - print_line_from_here_to_there(sx, sy, layer_height, ex, ey, layer_height); + print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height); bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again } } @@ -482,17 +474,11 @@ // We found two circles that need a vertical line to connect them // Print it! // - sx = ubl.mesh_index_to_xpos[i]; - sy = ubl.mesh_index_to_ypos[j]; - sy = sy + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the top edge of the circle + sy = ubl.mesh_index_to_ypos[ j ] + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge + ey = ubl.mesh_index_to_ypos[j + 1] - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge - ex = sx; - ey = ubl.mesh_index_to_ypos[j + 1]; - ey = ey - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the bottom edge of the circle - - sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops + sx = ex = constrain(ubl.mesh_index_to_xpos[i], X_MIN_POS + 1, X_MAX_POS - 1); sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1); - ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1); ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1); if (ubl.g26_debug_flag) { @@ -504,8 +490,8 @@ SERIAL_EOL; debug_current_and_destination((char*)"Connecting vertical line."); } - print_line_from_here_to_there(sx, sy, layer_height, ex, ey, layer_height); - bit_set( vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again + print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height); + bit_set(vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again } } } @@ -533,7 +519,7 @@ destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code. destination[E_AXIS] = current_position[E_AXIS]; - ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0); + ubl_line_to_destination(feed_value, 0); stepper.synchronize(); set_destination_to_current(); @@ -553,7 +539,7 @@ //if (ubl.g26_debug_flag) debug_current_and_destination((char*)" in move_to() doing last move"); - ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0); + ubl_line_to_destination(feed_value, 0); //if (ubl.g26_debug_flag) debug_current_and_destination((char*)" in move_to() after last move"); @@ -562,18 +548,18 @@ } - void retract_filament() { + void retract_filament(float where[XYZE]) { if (!g26_retracted) { // Only retract if we are not already retracted! g26_retracted = true; //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract."); - move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], -1.0 * retraction_multiplier); + move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], -1.0 * retraction_multiplier); //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Retraction done."); } } - void un_retract_filament() { + void un_retract_filament(float where[XYZE]) { if (g26_retracted) { // Only un-retract if we are retracted. - move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 1.2 * retraction_multiplier); + move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], 1.2 * retraction_multiplier); g26_retracted = false; //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" unretract done."); } @@ -594,7 +580,7 @@ * segment of a 'circle'. The time this requires is very short and is easily saved by the other * cases where the optimization comes into play. */ - void print_line_from_here_to_there( float sx, float sy, float sz, float ex, float ey, float ez) { + void print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) { const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment dy_s = current_position[Y_AXIS] - sy, dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2 @@ -603,31 +589,26 @@ dy_e = current_position[Y_AXIS] - ey, dist_end = HYPOT2(dx_e, dy_e), - dx = ex - sx, - dy = ey - sy, - line_length = HYPOT(dx, dy); + line_length = HYPOT(ex - sx, ey - sy); - // If the end point of the line is closer to the nozzle, we are going to - // flip the direction of this line. We will print it from the end to the start. - // On very small lines we don't do the optimization because it just isn't worth it. - // + // If the end point of the line is closer to the nozzle, flip the direction, + // moving from the end to the start. On very small lines the optimization isn't worth it. if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(line_length)) { //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Reversing start and end of print_line_from_here_to_there()"); - print_line_from_here_to_there(ex, ey, ez, sx, sy, sz); - return; + return print_line_from_here_to_there(ex, ey, ez, sx, sy, sz); } - // Now decide if we should retract. + // Decide whether to retract. if (dist_start > 2.0) { - retract_filament(); + retract_filament(destination); //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" filament retracted."); } move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion const float e_pos_delta = line_length * g26_e_axis_feedrate * extrusion_multiplier; - un_retract_filament(); + un_retract_filament(destination); //if (ubl.g26_debug_flag) { // SERIAL_ECHOLNPGM(" doing printing move."); @@ -814,6 +795,7 @@ lcd_setstatuspgm(PSTR("")); lcd_quick_feedback(); #endif + return UBL_OK; } @@ -832,9 +814,8 @@ set_destination_to_current(); - un_retract_filament(); // Lets make sure the G26 command doesn't think the filament is - // retracted(). We are here because we want to prime the nozzle. - // So let's just unretract just to be sure. + un_retract_filament(destination); // Make sure G26 doesn't think the filament is retracted(). + while (!ubl_lcd_clicked()) { chirp_at_user(); destination[E_AXIS] += 0.25; @@ -842,10 +823,7 @@ Total_Prime += 0.25; if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR; #endif - ubl_line_to_destination( - destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], - planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0 - ); + ubl_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0); stepper.synchronize(); // Without this synchronize, the purge is more consistent, // but because the planner has a buffer, we won't be able @@ -874,13 +852,10 @@ #endif set_destination_to_current(); destination[E_AXIS] += prime_length; - ubl_line_to_destination( - destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], - planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0 - ); + ubl_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0); stepper.synchronize(); set_destination_to_current(); - retract_filament(); + retract_filament(destination); } return UBL_OK; diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp index 17af4d46a2..d1ae914ad6 100755 --- a/Marlin/Marlin_main.cpp +++ b/Marlin/Marlin_main.cpp @@ -9901,11 +9901,7 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) { #elif ENABLED(AUTO_BED_LEVELING_UBL) if (ubl.state.active) { -// ubl_line_to_destination(MMS_SCALED(feedrate_mm_s)); - - ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], -// (feedrate*(1.0/60.0))*(feedrate_percentage*(1.0/100.0) ), active_extruder); - MMS_SCALED(feedrate_mm_s), active_extruder); + ubl_line_to_destination(MMS_SCALED(feedrate_mm_s), active_extruder); return false; } diff --git a/Marlin/UBL.h b/Marlin/UBL.h index 1d3a91b30d..e2c10af509 100644 --- a/Marlin/UBL.h +++ b/Marlin/UBL.h @@ -43,7 +43,7 @@ bool ubl_lcd_clicked(); void probe_entire_mesh(const float&, const float&, const bool, const bool, const bool); void debug_current_and_destination(char *title); - void ubl_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t); + void ubl_line_to_destination(const float&, uint8_t); void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool); vector_3 tilt_mesh_based_on_3pts(const float&, const float&, const float&); float measure_business_card_thickness(const float&); @@ -193,22 +193,16 @@ * multiplications. */ static FORCE_INLINE float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) { - const float delta_z = (z2 - z1), - delta_a = (a0 - a1) / (a2 - a1); - return z1 + delta_a * delta_z; + return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1); } /** - * get_z_correction_at_Y_intercept(float x0, int x1_i, int yi) only takes - * three parameters. It assumes the x0 point is on a Mesh line denoted by yi. In theory - * we could use get_cell_index_x(float x) to obtain the 2nd parameter x1_i but any code calling - * the get_z_correction_along_vertical_mesh_line_at_specific_X routine will already have - * the X index of the x0 intersection available and we don't want to perform any extra floating - * point operations. + * z_correction_for_x_on_horizontal_mesh_line is an optimization for + * the rare occasion when a point lies exactly on a Mesh line (denoted by index yi). */ - static inline float get_z_correction_along_horizontal_mesh_line_at_specific_X(const float &x0, const int x1_i, const int yi) { - if (x1_i < 0 || yi < 0 || x1_i >= UBL_MESH_NUM_X_POINTS || yi >= UBL_MESH_NUM_Y_POINTS) { - SERIAL_ECHOPAIR("? in get_z_correction_along_horizontal_mesh_line_at_specific_X(x0=", x0); + static inline float z_correction_for_x_on_horizontal_mesh_line(const float &lx0, const int x1_i, const int yi) { + if (!WITHIN(x1_i, 0, UBL_MESH_NUM_X_POINTS - 1) || !WITHIN(yi, 0, UBL_MESH_NUM_Y_POINTS - 1)) { + SERIAL_ECHOPAIR("? in z_correction_for_x_on_horizontal_mesh_line(lx0=", lx0); SERIAL_ECHOPAIR(",x1_i=", x1_i); SERIAL_ECHOPAIR(",yi=", yi); SERIAL_CHAR(')'); @@ -216,20 +210,18 @@ return NAN; } - const float xratio = (RAW_X_POSITION(x0) - mesh_index_to_xpos[x1_i]) * (1.0 / (MESH_X_DIST)), - z1 = z_values[x1_i][yi], - z2 = z_values[x1_i + 1][yi], - dz = (z2 - z1); + const float xratio = (RAW_X_POSITION(lx0) - mesh_index_to_xpos[x1_i]) * (1.0 / (MESH_X_DIST)), + z1 = z_values[x1_i][yi]; - return z1 + xratio * dz; + return z1 + xratio * (z_values[x1_i + 1][yi] - z1); } // - // See comments above for get_z_correction_along_horizontal_mesh_line_at_specific_X + // See comments above for z_correction_for_x_on_horizontal_mesh_line // - static inline float get_z_correction_along_vertical_mesh_line_at_specific_Y(const float &y0, const int xi, const int y1_i) { - if (xi < 0 || y1_i < 0 || xi >= UBL_MESH_NUM_X_POINTS || y1_i >= UBL_MESH_NUM_Y_POINTS) { - SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_X(y0=", y0); + static inline float z_correction_for_y_on_vertical_mesh_line(const float &ly0, const int xi, const int y1_i) { + if (!WITHIN(xi, 0, UBL_MESH_NUM_X_POINTS - 1) || !WITHIN(y1_i, 0, UBL_MESH_NUM_Y_POINTS - 1)) { + SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_x(ly0=", ly0); SERIAL_ECHOPAIR(", x1_i=", xi); SERIAL_ECHOPAIR(", yi=", y1_i); SERIAL_CHAR(')'); @@ -237,12 +229,10 @@ return NAN; } - const float yratio = (RAW_Y_POSITION(y0) - mesh_index_to_ypos[y1_i]) * (1.0 / (MESH_Y_DIST)), - z1 = z_values[xi][y1_i], - z2 = z_values[xi][y1_i + 1], - dz = (z2 - z1); + const float yratio = (RAW_Y_POSITION(ly0) - mesh_index_to_ypos[y1_i]) * (1.0 / (MESH_Y_DIST)), + z1 = z_values[xi][y1_i]; - return z1 + yratio * dz; + return z1 + yratio * (z_values[xi][y1_i + 1] - z1); } /** @@ -251,14 +241,14 @@ * Z-Height at both ends. Then it does a linear interpolation of these heights based * on the Y position within the cell. */ - static float get_z_correction(const float &x0, const float &y0) { - const int8_t cx = get_cell_index_x(RAW_X_POSITION(x0)), - cy = get_cell_index_y(RAW_Y_POSITION(y0)); + static float get_z_correction(const float &lx0, const float &ly0) { + const int8_t cx = get_cell_index_x(RAW_X_POSITION(lx0)), + cy = get_cell_index_y(RAW_Y_POSITION(ly0)); - if (cx < 0 || cy < 0 || cx >= UBL_MESH_NUM_X_POINTS || cy >= UBL_MESH_NUM_Y_POINTS) { + if (!WITHIN(cx, 0, UBL_MESH_NUM_X_POINTS - 1) || !WITHIN(cy, 0, UBL_MESH_NUM_Y_POINTS - 1)) { - SERIAL_ECHOPAIR("? in get_z_correction(x0=", x0); - SERIAL_ECHOPAIR(", y0=", y0); + SERIAL_ECHOPAIR("? in get_z_correction(lx0=", lx0); + SERIAL_ECHOPAIR(", ly0=", ly0); SERIAL_CHAR(')'); SERIAL_EOL; @@ -269,21 +259,21 @@ return 0.0; // this used to return state.z_offset } - const float z1 = calc_z0(RAW_X_POSITION(x0), + const float z1 = calc_z0(RAW_X_POSITION(lx0), mesh_index_to_xpos[cx], z_values[cx][cy], mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy]), - z2 = calc_z0(RAW_X_POSITION(x0), + z2 = calc_z0(RAW_X_POSITION(lx0), mesh_index_to_xpos[cx], z_values[cx][cy + 1], mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy + 1]); - float z0 = calc_z0(RAW_Y_POSITION(y0), + float z0 = calc_z0(RAW_Y_POSITION(ly0), mesh_index_to_ypos[cy], z1, mesh_index_to_ypos[cy + 1], z2); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(MESH_ADJUST)) { - SERIAL_ECHOPAIR(" raw get_z_correction(", x0); + SERIAL_ECHOPAIR(" raw get_z_correction(", lx0); SERIAL_CHAR(',') - SERIAL_ECHO(y0); + SERIAL_ECHO(ly0); SERIAL_ECHOPGM(") = "); SERIAL_ECHO_F(z0, 6); } @@ -305,9 +295,9 @@ #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(MESH_ADJUST)) { - SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", x0); + SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", lx0); SERIAL_CHAR(','); - SERIAL_ECHO(y0); + SERIAL_ECHO(ly0); SERIAL_CHAR(')'); SERIAL_EOL; } @@ -327,7 +317,7 @@ */ #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) - FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) { + static FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) { const float rz = RAW_Z_POSITION(lz); if (last_specified_z != rz) { last_specified_z = rz; diff --git a/Marlin/UBL_Bed_Leveling.cpp b/Marlin/UBL_Bed_Leveling.cpp index a81a16bc09..795e5c7c6e 100644 --- a/Marlin/UBL_Bed_Leveling.cpp +++ b/Marlin/UBL_Bed_Leveling.cpp @@ -203,7 +203,7 @@ const float f = z_values[i][j]; if (isnan(f)) { - serialprintPGM(map0 ? PSTR(" . ") : PSTR("NAN")); + serialprintPGM(map0 ? PSTR(" . ") : PSTR("NAN")); } else { // if we don't do this, the columns won't line up nicely diff --git a/Marlin/UBL_G29.cpp b/Marlin/UBL_G29.cpp index 4cfc8ad382..38bbba1ce6 100644 --- a/Marlin/UBL_G29.cpp +++ b/Marlin/UBL_G29.cpp @@ -515,16 +515,23 @@ } if (code_seen('T')) { - float z1 = probe_pt(ubl_3_point_1_X, ubl_3_point_1_Y, false /*Stow Flag*/, g29_verbose_level), - z2 = probe_pt(ubl_3_point_2_X, ubl_3_point_2_Y, false /*Stow Flag*/, g29_verbose_level), - z3 = probe_pt(ubl_3_point_3_X, ubl_3_point_3_Y, true /*Stow Flag*/, g29_verbose_level); + const float lx1 = LOGICAL_X_POSITION(ubl_3_point_1_X), + lx2 = LOGICAL_X_POSITION(ubl_3_point_2_X), + lx3 = LOGICAL_X_POSITION(ubl_3_point_3_X), + ly1 = LOGICAL_Y_POSITION(ubl_3_point_1_Y), + ly2 = LOGICAL_Y_POSITION(ubl_3_point_2_Y), + ly3 = LOGICAL_Y_POSITION(ubl_3_point_3_Y); + + float z1 = probe_pt(lx1, ly1, false /*Stow Flag*/, g29_verbose_level), + z2 = probe_pt(lx2, ly2, false /*Stow Flag*/, g29_verbose_level), + z3 = probe_pt(lx3, ly3, true /*Stow Flag*/, g29_verbose_level); // We need to adjust z1, z2, z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean // the Mesh is tilted! (We need to compensate each probe point by what the Mesh says that location's height is) - z1 -= ubl.get_z_correction(ubl_3_point_1_X, ubl_3_point_1_Y); - z2 -= ubl.get_z_correction(ubl_3_point_2_X, ubl_3_point_2_Y); - z3 -= ubl.get_z_correction(ubl_3_point_3_X, ubl_3_point_3_Y); + z1 -= ubl.get_z_correction(lx1, ly1); + z2 -= ubl.get_z_correction(lx2, ly2); + z3 -= ubl.get_z_correction(lx3, ly3); do_blocking_move_to_xy((X_MAX_POS - (X_MIN_POS)) / 2.0, (Y_MAX_POS - (Y_MIN_POS)) / 2.0); tilt_mesh_based_on_3pts(z1, z2, z3); @@ -778,17 +785,17 @@ ); } - vector_3 tilt_mesh_based_on_3pts(const float &pt1, const float &pt2, const float &pt3) { + vector_3 tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3) { float c, d, t; int i, j; vector_3 v1 = vector_3( (ubl_3_point_1_X - ubl_3_point_2_X), (ubl_3_point_1_Y - ubl_3_point_2_Y), - (pt1 - pt2) ), + (z1 - z2) ), v2 = vector_3( (ubl_3_point_3_X - ubl_3_point_2_X), (ubl_3_point_3_Y - ubl_3_point_2_Y), - (pt3 - pt2) ), + (z3 - z2) ), normal = vector_3::cross(v1, v2); @@ -810,7 +817,7 @@ // All of 3 of these points should give us the same d constant // t = normal.x * ubl_3_point_1_X + normal.y * ubl_3_point_1_Y; - d = t + normal.z * pt1; + d = t + normal.z * z1; c = d - t; SERIAL_ECHOPGM("d from 1st point: "); SERIAL_ECHO_F(d, 6); @@ -818,7 +825,7 @@ SERIAL_ECHO_F(c, 6); SERIAL_EOL; t = normal.x * ubl_3_point_2_X + normal.y * ubl_3_point_2_Y; - d = t + normal.z * pt2; + d = t + normal.z * z2; c = d - t; SERIAL_ECHOPGM("d from 2nd point: "); SERIAL_ECHO_F(d, 6); @@ -826,7 +833,7 @@ SERIAL_ECHO_F(c, 6); SERIAL_EOL; t = normal.x * ubl_3_point_3_X + normal.y * ubl_3_point_3_Y; - d = t + normal.z * pt3; + d = t + normal.z * z3; c = d - t; SERIAL_ECHOPGM("d from 3rd point: "); SERIAL_ECHO_F(d, 6); @@ -1425,4 +1432,4 @@ SERIAL_ECHOLNPGM("Done Editing Mesh."); } -#endif // AUTO_BED_LEVELING_UBL +#endif // AUTO_BED_LEVELING_UBL \ No newline at end of file diff --git a/Marlin/UBL_line_to_destination.cpp b/Marlin/UBL_line_to_destination.cpp index 7c5e9f4b89..e110a4288e 100644 --- a/Marlin/UBL_line_to_destination.cpp +++ b/Marlin/UBL_line_to_destination.cpp @@ -31,7 +31,14 @@ extern float destination[XYZE]; extern void set_current_to_destination(); - extern float destination[]; + + static void debug_echo_axis(const AxisEnum axis) { + if (current_position[axis] == destination[axis]) + SERIAL_ECHOPGM("-------------"); + else + SERIAL_ECHO_F(destination[X_AXIS], 6); + } + void debug_current_and_destination(char *title) { // if the title message starts with a '!' it is so important, we are going to @@ -67,32 +74,13 @@ SERIAL_ECHOPGM(", "); SERIAL_ECHO_F(current_position[E_AXIS], 6); SERIAL_ECHOPGM(" ) destination=( "); - if (current_position[X_AXIS] == destination[X_AXIS]) - SERIAL_ECHOPGM("-------------"); - else - SERIAL_ECHO_F(destination[X_AXIS], 6); - + debug_echo_axis(X_AXIS); SERIAL_ECHOPGM(", "); - - if (current_position[Y_AXIS] == destination[Y_AXIS]) - SERIAL_ECHOPGM("-------------"); - else - SERIAL_ECHO_F(destination[Y_AXIS], 6); - + debug_echo_axis(Y_AXIS); SERIAL_ECHOPGM(", "); - - if (current_position[Z_AXIS] == destination[Z_AXIS]) - SERIAL_ECHOPGM("-------------"); - else - SERIAL_ECHO_F(destination[Z_AXIS], 6); - + debug_echo_axis(Z_AXIS); SERIAL_ECHOPGM(", "); - - if (current_position[E_AXIS] == destination[E_AXIS]) - SERIAL_ECHOPGM("-------------"); - else - SERIAL_ECHO_F(destination[E_AXIS], 6); - + debug_echo_axis(E_AXIS); SERIAL_ECHOPGM(" ) "); SERIAL_ECHO(title); SERIAL_EOL; @@ -105,32 +93,37 @@ //} } - void ubl_line_to_destination(const float &x_end, const float &y_end, const float &z_end, const float &e_end, const float &feed_rate, uint8_t extruder) { + void ubl_line_to_destination(const float &feed_rate, uint8_t extruder) { /** * Much of the nozzle movement will be within the same cell. So we will do as little computation * as possible to determine if this is the case. If this move is within the same cell, we will * just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave */ - const float x_start = current_position[X_AXIS], - y_start = current_position[Y_AXIS], - z_start = current_position[Z_AXIS], - e_start = current_position[E_AXIS]; + const float start[XYZE] = { + current_position[X_AXIS], + current_position[Y_AXIS], + current_position[Z_AXIS], + current_position[E_AXIS] + }, + end[XYZE] = { + destination[X_AXIS], + destination[Y_AXIS], + destination[Z_AXIS], + destination[E_AXIS] + }; - const int cell_start_xi = ubl.get_cell_index_x(RAW_X_POSITION(x_start)), - cell_start_yi = ubl.get_cell_index_y(RAW_Y_POSITION(y_start)), - cell_dest_xi = ubl.get_cell_index_x(RAW_X_POSITION(x_end)), - cell_dest_yi = ubl.get_cell_index_y(RAW_Y_POSITION(y_end)); + const int cell_start_xi = ubl.get_cell_index_x(RAW_X_POSITION(start[X_AXIS])), + cell_start_yi = ubl.get_cell_index_y(RAW_Y_POSITION(start[Y_AXIS])), + cell_dest_xi = ubl.get_cell_index_x(RAW_X_POSITION(end[X_AXIS])), + cell_dest_yi = ubl.get_cell_index_y(RAW_Y_POSITION(end[Y_AXIS])); if (ubl.g26_debug_flag) { - SERIAL_ECHOPGM(" ubl_line_to_destination(xe="); - SERIAL_ECHO(x_end); - SERIAL_ECHOPGM(", ye="); - SERIAL_ECHO(y_end); - SERIAL_ECHOPGM(", ze="); - SERIAL_ECHO(z_end); - SERIAL_ECHOPGM(", ee="); - SERIAL_ECHO(e_end); - SERIAL_ECHOLNPGM(")"); + SERIAL_ECHOPAIR(" ubl_line_to_destination(xe=", end[X_AXIS]); + SERIAL_ECHOPAIR(", ye=", end[Y_AXIS]); + SERIAL_ECHOPAIR(", ze=", end[Z_AXIS]); + SERIAL_ECHOPAIR(", ee=", end[E_AXIS]); + SERIAL_CHAR(')'); + SERIAL_EOL; debug_current_and_destination((char*)"Start of ubl_line_to_destination()"); } @@ -142,12 +135,12 @@ * But we detect it and isolate it. For now, we just pass along the request. */ - if (cell_dest_xi < 0 || cell_dest_yi < 0 || cell_dest_xi >= UBL_MESH_NUM_X_POINTS || cell_dest_yi >= UBL_MESH_NUM_Y_POINTS) { + if (!WITHIN(cell_dest_xi, 0, UBL_MESH_NUM_X_POINTS - 1) || !WITHIN(cell_dest_yi, 0, UBL_MESH_NUM_Y_POINTS - 1)) { // Note: There is no Z Correction in this case. We are off the grid and don't know what // a reasonable correction would be. - planner.buffer_line(x_end, y_end, z_end + ubl.state.z_offset, e_end, feed_rate, extruder); + planner.buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder); set_current_to_destination(); if (ubl.g26_debug_flag) @@ -167,7 +160,7 @@ * to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide. */ - const float xratio = (RAW_X_POSITION(x_end) - ubl.mesh_index_to_xpos[cell_dest_xi]) * (1.0 / (MESH_X_DIST)), + const float xratio = (RAW_X_POSITION(end[X_AXIS]) - ubl.mesh_index_to_xpos[cell_dest_xi]) * (1.0 / (MESH_X_DIST)), z1 = ubl.z_values[cell_dest_xi ][cell_dest_yi ] + xratio * (ubl.z_values[cell_dest_xi + 1][cell_dest_yi ] - ubl.z_values[cell_dest_xi][cell_dest_yi ]), z2 = ubl.z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio * @@ -176,7 +169,7 @@ // we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we // are going to apply the Y-Distance into the cell to interpolate the final Z correction. - const float yratio = (RAW_Y_POSITION(y_end) - ubl.mesh_index_to_ypos[cell_dest_yi]) * (1.0 / (MESH_Y_DIST)); + const float yratio = (RAW_Y_POSITION(end[Y_AXIS]) - ubl.mesh_index_to_ypos[cell_dest_yi]) * (1.0 / (MESH_Y_DIST)); float z0 = z1 + (z2 - z1) * yratio; @@ -186,20 +179,20 @@ */ /* z_optimized = z0; - z0 = ubl.get_z_correction(x_end, y_end); + z0 = ubl.get_z_correction(end[X_AXIS], end[Y_AXIS]); if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) { debug_current_and_destination((char*)"FINAL_MOVE: z_correction()"); if (isnan(z0)) SERIAL_ECHO(" z0==NAN "); if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN "); - SERIAL_ECHOPAIR(" x_end=", x_end); - SERIAL_ECHOPAIR(" y_end=", y_end); + SERIAL_ECHOPAIR(" end[X_AXIS]=", end[X_AXIS]); + SERIAL_ECHOPAIR(" end[Y_AXIS]=", end[Y_AXIS]); SERIAL_ECHOPAIR(" z0=", z0); SERIAL_ECHOPAIR(" z_optimized=", z_optimized); SERIAL_ECHOPAIR(" err=",fabs(z_optimized - z0)); SERIAL_EOL; } //*/ - z0 *= ubl.fade_scaling_factor_for_z(z_end); + z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); /** * If part of the Mesh is undefined, it will show up as NAN @@ -210,7 +203,7 @@ */ if (isnan(z0)) z0 = 0.0; - planner.buffer_line(x_end, y_end, z_end + z0 + ubl.state.z_offset, e_end, feed_rate, extruder); + planner.buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0 + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder); if (ubl.g26_debug_flag) debug_current_and_destination((char*)"FINAL_MOVE in ubl_line_to_destination()"); @@ -227,8 +220,8 @@ * blocks of code: */ - const float dx = x_end - x_start, - dy = y_end - y_start; + const float dx = end[X_AXIS] - start[X_AXIS], + dy = end[Y_AXIS] - start[Y_AXIS]; const int left_flag = dx < 0.0 ? 1 : 0, down_flag = dy < 0.0 ? 1 : 0; @@ -251,8 +244,8 @@ const bool use_x_dist = adx > ady; float on_axis_distance = use_x_dist ? dx : dy, - e_position = e_end - e_start, - z_position = z_end - z_start; + e_position = end[E_AXIS] - start[E_AXIS], + z_position = end[Z_AXIS] - start[Z_AXIS]; const float e_normalized_dist = e_position / on_axis_distance, z_normalized_dist = z_position / on_axis_distance; @@ -260,7 +253,7 @@ int current_xi = cell_start_xi, current_yi = cell_start_yi; const float m = dy / dx, - c = y_start - m * x_start; + c = start[Y_AXIS] - m * start[X_AXIS]; const bool inf_normalized_flag = NEAR_ZERO(on_axis_distance), inf_m_flag = NEAR_ZERO(dx); @@ -281,9 +274,9 @@ * else, we know the next X is the same so we can recover and continue! * Calculate X at the next Y mesh line */ - const float x = inf_m_flag ? x_start : (next_mesh_line_y - c) / m; + const float x = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m; - float z0 = ubl.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi, current_yi); + float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi, current_yi); /** * Debug code to use non-optimized get_z_correction() and to do a sanity check @@ -305,7 +298,7 @@ } //*/ - z0 *= ubl.fade_scaling_factor_for_z(z_end); + z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); /** * If part of the Mesh is undefined, it will show up as NAN @@ -324,15 +317,15 @@ * happens, it might be best to remove the check and always 'schedule' the move because * the planner.buffer_line() routine will filter it if that happens. */ - if (y != y_start) { + if (y != start[Y_AXIS]) { if (!inf_normalized_flag) { - on_axis_distance = y - y_start; // we don't need to check if the extruder position - e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a vertical move - z_position = z_start + on_axis_distance * z_normalized_dist; + on_axis_distance = y - start[Y_AXIS]; // we don't need to check if the extruder position + e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a vertical move + z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist; } else { - e_position = e_start; - z_position = z_start; + e_position = start[E_AXIS]; + z_position = start[Z_AXIS]; } planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder); @@ -345,7 +338,7 @@ // // Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done. // - if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end) + if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS]) goto FINAL_MOVE; set_current_to_destination(); @@ -368,7 +361,7 @@ const float next_mesh_line_x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi]), y = m * next_mesh_line_x + c; // Calculate X at the next Y mesh line - float z0 = ubl.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi, current_yi); + float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi); /** * Debug code to use non-optimized get_z_correction() and to do a sanity check @@ -390,7 +383,7 @@ } //*/ - z0 = z0 * ubl.fade_scaling_factor_for_z(z_end); + z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); /** * If part of the Mesh is undefined, it will show up as NAN @@ -409,15 +402,15 @@ * that happens, it might be best to remove the check and always 'schedule' the move because * the planner.buffer_line() routine will filter it if that happens. */ - if (x != x_start) { + if (x != start[X_AXIS]) { if (!inf_normalized_flag) { - on_axis_distance = x - x_start; // we don't need to check if the extruder position - e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move - z_position = z_start + on_axis_distance * z_normalized_dist; + on_axis_distance = x - start[X_AXIS]; // we don't need to check if the extruder position + e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move + z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist; } else { - e_position = e_start; - z_position = z_start; + e_position = start[E_AXIS]; + z_position = start[Z_AXIS]; } planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder); @@ -427,7 +420,7 @@ if (ubl.g26_debug_flag) debug_current_and_destination((char*)"horizontal move done in ubl_line_to_destination()"); - if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end) + if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS]) goto FINAL_MOVE; set_current_to_destination(); @@ -454,16 +447,16 @@ const float next_mesh_line_x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi + dxi]), next_mesh_line_y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi + dyi]), y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line - x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line (we don't have to worry - // about m being equal to 0.0 If this was the case, we would have - // detected this as a vertical line move up above and we wouldn't - // be down here doing a generic type of move. + x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line + // (No need to worry about m being zero. + // If that was the case, it was already detected + // as a vertical line move above.) if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first // // Yes! Crossing a Y Mesh Line next // - float z0 = ubl.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi - left_flag, current_yi + dyi); + float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi - left_flag, current_yi + dyi); /** * Debug code to use non-optimized get_z_correction() and to do a sanity check @@ -486,7 +479,7 @@ } //*/ - z0 *= ubl.fade_scaling_factor_for_z(z_end); + z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); /** * If part of the Mesh is undefined, it will show up as NAN @@ -498,13 +491,13 @@ if (isnan(z0)) z0 = 0.0; if (!inf_normalized_flag) { - on_axis_distance = use_x_dist ? x - x_start : next_mesh_line_y - y_start; - e_position = e_start + on_axis_distance * e_normalized_dist; - z_position = z_start + on_axis_distance * z_normalized_dist; + on_axis_distance = use_x_dist ? x - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS]; + e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; + z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist; } else { - e_position = e_start; - z_position = z_start; + e_position = start[E_AXIS]; + z_position = start[Z_AXIS]; } planner.buffer_line(x, next_mesh_line_y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder); current_yi += dyi; @@ -514,7 +507,7 @@ // // Yes! Crossing a X Mesh Line next // - float z0 = ubl.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi + dxi, current_yi - down_flag); + float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi + dxi, current_yi - down_flag); /** * Debug code to use non-optimized get_z_correction() and to do a sanity check @@ -536,7 +529,7 @@ } //*/ - z0 *= ubl.fade_scaling_factor_for_z(z_end); + z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); /** * If part of the Mesh is undefined, it will show up as NAN @@ -548,13 +541,13 @@ if (isnan(z0)) z0 = 0.0; if (!inf_normalized_flag) { - on_axis_distance = use_x_dist ? next_mesh_line_x - x_start : y - y_start; - e_position = e_start + on_axis_distance * e_normalized_dist; - z_position = z_start + on_axis_distance * z_normalized_dist; + on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : y - start[Y_AXIS]; + e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; + z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist; } else { - e_position = e_start; - z_position = z_start; + e_position = start[E_AXIS]; + z_position = start[Z_AXIS]; } planner.buffer_line(next_mesh_line_x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder); @@ -566,7 +559,7 @@ if (ubl.g26_debug_flag) debug_current_and_destination((char*)"generic move done in ubl_line_to_destination()"); - if (current_position[0] != x_end || current_position[1] != y_end) + if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS]) goto FINAL_MOVE; set_current_to_destination();