Merge pull request #244 from markfinn/pidbed

PID for heated bed
This commit is contained in:
ErikZalm 2012-10-08 11:15:16 -07:00
commit 36a746d7d5
6 changed files with 231 additions and 274 deletions

View file

@ -98,7 +98,7 @@
#define PID_MAX 255 // limits current to nozzle; 255=full current #define PID_MAX 255 // limits current to nozzle; 255=full current
#ifdef PIDTEMP #ifdef PIDTEMP
//#define PID_DEBUG // Sends debug data to the serial port. //#define PID_DEBUG // Sends debug data to the serial port.
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in % //#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
#define PID_INTEGRAL_DRIVE_MAX 255 //limit for the integral term #define PID_INTEGRAL_DRIVE_MAX 255 //limit for the integral term
#define K1 0.95 //smoothing factor withing the PID #define K1 0.95 //smoothing factor withing the PID
#define PID_dT ((16.0 * 8.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the #define PID_dT ((16.0 * 8.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the
@ -120,6 +120,44 @@
// #define DEFAULT_Kd 440 // #define DEFAULT_Kd 440
#endif // PIDTEMP #endif // PIDTEMP
// Bed Temperature Control
// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis
//
// uncomment this to enable PID on the bed. It uses the same ferquency PWM as the extruder.
// If your PID_dT above is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you proabaly
// shouldn't use bed PID until someone else verifies your hardware works.
// If this is enabled, find your own PID constants below.
//#define PIDTEMPBED
//
//#define BED_LIMIT_SWITCHING
// This sets the max power delived to the bed, and replaces the HEATER_BED_DUTY_CYCLE_DIVIDER option.
// all forms of bed control obey this (PID, bang-bang, bang-bang with hysteresis)
// setting this to anything other than 255 enables a form of PWM to the bed just like HEATER_BED_DUTY_CYCLE_DIVIDER did,
// so you shouldn't use it unless you are OK with PWM on your bed. (see the comment on enabling PIDTEMPBED)
#define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current
#ifdef PIDTEMPBED
//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, argressive factor of .15 (vs .1, 1, 10)
#define DEFAULT_bedKp 10.00
#define DEFAULT_bedKi .023
#define DEFAULT_bedKd 305.4
//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from pidautotune
// #define DEFAULT_bedKp 97.1
// #define DEFAULT_bedKi 1.41
// #define DEFAULT_bedKd 1675.16
// FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles.
#endif // PIDTEMPBED
//this prevents dangerous Extruder moves, i.e. if the temperature is under the limit //this prevents dangerous Extruder moves, i.e. if the temperature is under the limit
//can be software-disabled for whatever purposes by //can be software-disabled for whatever purposes by
#define PREVENT_DANGEROUS_EXTRUDE #define PREVENT_DANGEROUS_EXTRUDE

View file

@ -5,13 +5,10 @@
//=============================Thermal Settings ============================ //=============================Thermal Settings ============================
//=========================================================================== //===========================================================================
// Select one of these only to define how the bed temp is read.
//
//#define BED_LIMIT_SWITCHING
#ifdef BED_LIMIT_SWITCHING #ifdef BED_LIMIT_SWITCHING
#define BED_HYSTERESIS 2 //only disable heating if T>target+BED_HYSTERESIS and enable heating if T>target-BED_HYSTERESIS #define BED_HYSTERESIS 2 //only disable heating if T>target+BED_HYSTERESIS and enable heating if T>target-BED_HYSTERESIS
#endif #endif
#define BED_CHECK_INTERVAL 5000 //ms #define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control
//// Heating sanity check: //// Heating sanity check:
// This waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature // This waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature

View file

@ -115,6 +115,7 @@
// M301 - Set PID parameters P I and D // M301 - Set PID parameters P I and D
// M302 - Allow cold extrudes // M302 - Allow cold extrudes
// M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C) // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
// M304 - Set bed PID parameters P I and D
// M400 - Finish all moves // M400 - Finish all moves
// M500 - stores paramters in EEPROM // M500 - stores paramters in EEPROM
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily). // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
@ -986,10 +987,13 @@ void process_commands()
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS); SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
#endif #endif
#ifdef PIDTEMP
SERIAL_PROTOCOLPGM(" @:"); SERIAL_PROTOCOLPGM(" @:");
SERIAL_PROTOCOL(getHeaterPower(tmp_extruder)); SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
#endif
SERIAL_PROTOCOLPGM(" B@:");
SERIAL_PROTOCOL(getHeaterPower(-1));
SERIAL_PROTOCOLLN(""); SERIAL_PROTOCOLLN("");
return; return;
break; break;
@ -1386,6 +1390,24 @@ void process_commands()
} }
break; break;
#endif //PIDTEMP #endif //PIDTEMP
#ifdef PIDTEMPBED
case 304: // M304
{
if(code_seen('P')) bedKp = code_value();
if(code_seen('I')) bedKi = code_value()*PID_dT;
if(code_seen('D')) bedKd = code_value()/PID_dT;
updatePID();
SERIAL_PROTOCOL(MSG_OK);
SERIAL_PROTOCOL(" p:");
SERIAL_PROTOCOL(Kp);
SERIAL_PROTOCOL(" i:");
SERIAL_PROTOCOL(Ki/PID_dT);
SERIAL_PROTOCOL(" d:");
SERIAL_PROTOCOL(Kd*PID_dT);
SERIAL_PROTOCOLLN("");
}
break;
#endif //PIDTEMP
case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/ case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
{ {
#ifdef PHOTOGRAPH_PIN #ifdef PHOTOGRAPH_PIN
@ -1418,8 +1440,14 @@ void process_commands()
case 303: // M303 PID autotune case 303: // M303 PID autotune
{ {
float temp = 150.0; float temp = 150.0;
int e=0;
int c=5;
if (code_seen('E')) e=code_value();
if (e<0)
temp=70;
if (code_seen('S')) temp=code_value(); if (code_seen('S')) temp=code_value();
PID_autotune(temp); if (code_seen('C')) c=code_value();
PID_autotune(temp, e, c);
} }
break; break;
case 400: // M400 finish all moves case 400: // M400 finish all moves

View file

@ -58,15 +58,21 @@ int current_raw_bed = 0;
#endif #endif
#endif //PIDTEMP #endif //PIDTEMP
#ifdef PIDTEMPBED
// used external
float pid_setpoint_bed = { 0.0 };
float bedKp=DEFAULT_bedKp;
float bedKi=(DEFAULT_bedKi*PID_dT);
float bedKd=(DEFAULT_bedKd/PID_dT);
#endif //PIDTEMPBED
//=========================================================================== //===========================================================================
//=============================private variables============================ //=============================private variables============================
//=========================================================================== //===========================================================================
static volatile bool temp_meas_ready = false; static volatile bool temp_meas_ready = false;
static unsigned long previous_millis_bed_heater;
//static unsigned long previous_millis_heater;
#ifdef PIDTEMP #ifdef PIDTEMP
//static cannot be external: //static cannot be external:
static float temp_iState[EXTRUDERS] = { 0 }; static float temp_iState[EXTRUDERS] = { 0 };
@ -82,7 +88,22 @@ static unsigned long previous_millis_bed_heater;
// static float pid_output[EXTRUDERS]; // static float pid_output[EXTRUDERS];
static bool pid_reset[EXTRUDERS]; static bool pid_reset[EXTRUDERS];
#endif //PIDTEMP #endif //PIDTEMP
#ifdef PIDTEMPBED
//static cannot be external:
static float temp_iState_bed = { 0 };
static float temp_dState_bed = { 0 };
static float pTerm_bed;
static float iTerm_bed;
static float dTerm_bed;
//int output;
static float pid_error_bed;
static float temp_iState_min_bed;
static float temp_iState_max_bed;
#else //PIDTEMPBED
static unsigned long previous_millis_bed_heater;
#endif //PIDTEMPBED
static unsigned char soft_pwm[EXTRUDERS]; static unsigned char soft_pwm[EXTRUDERS];
static unsigned char soft_pwm_bed;
#ifdef WATCHPERIOD #ifdef WATCHPERIOD
int watch_raw[EXTRUDERS] = { -1000 }; // the first value used for all int watch_raw[EXTRUDERS] = { -1000 }; // the first value used for all
@ -122,7 +143,7 @@ static unsigned long previous_millis_bed_heater;
//============================= functions ============================ //============================= functions ============================
//=========================================================================== //===========================================================================
void PID_autotune(float temp) void PID_autotune(float temp, int extruder, int ncycles)
{ {
float input; float input;
int cycles=0; int cycles=0;
@ -134,17 +155,37 @@ void PID_autotune(float temp)
long t_high; long t_high;
long t_low; long t_low;
long bias=PID_MAX/2; long bias, d;
long d = PID_MAX/2;
float Ku, Tu; float Ku, Tu;
float Kp, Ki, Kd; float Kp, Ki, Kd;
float max, min; float max, min;
if ((extruder > EXTRUDERS)
#if (TEMP_BED_PIN <= -1)
||(extruder < 0)
#endif
){
SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
return;
}
SERIAL_ECHOLN("PID Autotune start"); SERIAL_ECHOLN("PID Autotune start");
disable_heater(); // switch off all heaters. disable_heater(); // switch off all heaters.
soft_pwm[0] = PID_MAX/2; if (extruder<0)
{
soft_pwm_bed = (MAX_BED_POWER)/2;
bias = d = (MAX_BED_POWER)/2;
}
else
{
soft_pwm[extruder] = (PID_MAX)/2;
bias = d = (PID_MAX)/2;
}
for(;;) { for(;;) {
@ -152,14 +193,17 @@ void PID_autotune(float temp)
CRITICAL_SECTION_START; CRITICAL_SECTION_START;
temp_meas_ready = false; temp_meas_ready = false;
CRITICAL_SECTION_END; CRITICAL_SECTION_END;
input = analog2temp(current_raw[0], 0); input = (extruder<0)?analog2tempBed(current_raw_bed):analog2temp(current_raw[extruder], extruder);
max=max(max,input); max=max(max,input);
min=min(min,input); min=min(min,input);
if(heating == true && input > temp) { if(heating == true && input > temp) {
if(millis() - t2 > 5000) { if(millis() - t2 > 5000) {
heating=false; heating=false;
soft_pwm[0] = (bias - d) >> 1; if (extruder<0)
soft_pwm_bed = (bias - d) >> 1;
else
soft_pwm[extruder] = (bias - d) >> 1;
t1=millis(); t1=millis();
t_high=t1 - t2; t_high=t1 - t2;
max=temp; max=temp;
@ -172,8 +216,8 @@ void PID_autotune(float temp)
t_low=t2 - t1; t_low=t2 - t1;
if(cycles > 0) { if(cycles > 0) {
bias += (d*(t_high - t_low))/(t_low + t_high); bias += (d*(t_high - t_low))/(t_low + t_high);
bias = constrain(bias, 20 ,PID_MAX-20); bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
if(bias > PID_MAX/2) d = PID_MAX - 1 - bias; if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
else d = bias; else d = bias;
SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias); SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
@ -210,7 +254,10 @@ void PID_autotune(float temp)
*/ */
} }
} }
soft_pwm[0] = (bias + d) >> 1; if (extruder<0)
soft_pwm_bed = (bias + d) >> 1;
else
soft_pwm[extruder] = (bias + d) >> 1;
cycles++; cycles++;
min=temp; min=temp;
} }
@ -221,17 +268,26 @@ void PID_autotune(float temp)
return; return;
} }
if(millis() - temp_millis > 2000) { if(millis() - temp_millis > 2000) {
temp_millis = millis(); int p;
if (extruder<0){
p=soft_pwm_bed;
SERIAL_PROTOCOLPGM("ok B:");
}else{
p=soft_pwm[extruder];
SERIAL_PROTOCOLPGM("ok T:"); SERIAL_PROTOCOLPGM("ok T:");
SERIAL_PROTOCOL(degHotend(0)); }
SERIAL_PROTOCOL(input);
SERIAL_PROTOCOLPGM(" @:"); SERIAL_PROTOCOLPGM(" @:");
SERIAL_PROTOCOLLN(getHeaterPower(0)); SERIAL_PROTOCOLLN(p);
temp_millis = millis();
} }
if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) { if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) {
SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout"); SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
return; return;
} }
if(cycles > 5) { if(cycles > ncycles) {
SERIAL_PROTOCOLLNPGM("PID Autotune finished ! Place the Kp, Ki and Kd constants in the configuration.h"); SERIAL_PROTOCOLLNPGM("PID Autotune finished ! Place the Kp, Ki and Kd constants in the configuration.h");
return; return;
} }
@ -246,18 +302,19 @@ void updatePID()
temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki; temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
} }
#endif #endif
#ifdef PIDTEMPBED
temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
#endif
} }
int getHeaterPower(int heater) { int getHeaterPower(int heater) {
if (heater<0)
return soft_pwm_bed;
return soft_pwm[heater]; return soft_pwm[heater];
} }
void manage_heater() void manage_heater()
{ {
#ifdef HEATER_BED_DUTY_CYCLE_DIVIDER
static int bed_needs_heating=0;
static int bed_is_on=0;
#endif
#ifdef USE_WATCHDOG #ifdef USE_WATCHDOG
wd_reset(); wd_reset();
@ -298,12 +355,16 @@ void manage_heater()
temp_iState[e] += pid_error[e]; temp_iState[e] += pid_error[e];
temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]); temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
iTerm[e] = Ki * temp_iState[e]; iTerm[e] = Ki * temp_iState[e];
//K1 defined in Configuration.h in the PID settings //K1 defined in Configuration.h in the PID settings
#define K2 (1.0-K1) #define K2 (1.0-K1)
dTerm[e] = (Kd * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]); dTerm[e] = (Kd * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]);
temp_dState[e] = pid_input; temp_dState[e] = pid_input;
pid_output = constrain(pTerm[e] + iTerm[e] - dTerm[e], 0, PID_MAX); pid_output = constrain(pTerm[e] + iTerm[e] - dTerm[e], 0, PID_MAX);
} }
#else
pid_output = constrain(pid_setpoint[e], 0, PID_MAX);
#endif //PID_OPENLOOP #endif //PID_OPENLOOP
#ifdef PID_DEBUG #ifdef PID_DEBUG
SERIAL_ECHOLN(" PIDDEBUG "<<e<<": Input "<<pid_input<<" Output "<<pid_output" pTerm "<<pTerm[e]<<" iTerm "<<iTerm[e]<<" dTerm "<<dTerm[e]); SERIAL_ECHOLN(" PIDDEBUG "<<e<<": Input "<<pid_input<<" Output "<<pid_output" pTerm "<<pTerm[e]<<" iTerm "<<iTerm[e]<<" dTerm "<<dTerm[e]);
@ -338,42 +399,58 @@ void manage_heater()
} }
#endif #endif
#ifdef HEATER_BED_DUTY_CYCLE_DIVIDER
if (bed_needs_heating){
if (bed_is_on==0)
WRITE(HEATER_BED_PIN,HIGH);
if (bed_is_on==1)
WRITE(HEATER_BED_PIN,LOW);
bed_is_on=(bed_is_on+1) % HEATER_BED_DUTY_CYCLE_DIVIDER;
}
#endif
#ifndef PIDTEMPBED
if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL) if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
return; return;
previous_millis_bed_heater = millis(); previous_millis_bed_heater = millis();
#endif
#if TEMP_BED_PIN > -1 #if TEMP_BED_PIN > -1
#ifdef HEATER_BED_DUTY_CYCLE_DIVIDER #ifdef PIDTEMPBED
bed_needs_heating=0; pid_input = analog2tempBed(current_raw_bed);
#endif
#ifndef BED_LIMIT_SWITCHING #ifndef PID_OPENLOOP
pid_error_bed = pid_setpoint_bed - pid_input;
pTerm_bed = bedKp * pid_error_bed;
temp_iState_bed += pid_error_bed;
temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
iTerm_bed = bedKi * temp_iState_bed;
//K1 defined in Configuration.h in the PID settings
#define K2 (1.0-K1)
dTerm_bed= (bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
temp_dState_bed = pid_input;
pid_output = constrain(pTerm_bed + iTerm_bed - dTerm_bed, 0, MAX_BED_POWER);
#else
pid_output = constrain(pid_setpoint_bed, 0, MAX_BED_POWER);
#endif //PID_OPENLOOP
if((current_raw_bed > bed_minttemp) && (current_raw_bed < bed_maxttemp))
{
soft_pwm_bed = (int)pid_output >> 1;
}
else {
soft_pwm_bed = 0;
}
#elif not defined BED_LIMIT_SWITCHING
// Check if temperature is within the correct range // Check if temperature is within the correct range
if((current_raw_bed > bed_minttemp) && (current_raw_bed < bed_maxttemp)) { if((current_raw_bed > bed_minttemp) && (current_raw_bed < bed_maxttemp)) {
if(current_raw_bed >= target_raw_bed) if(current_raw_bed >= target_raw_bed)
{ {
WRITE(HEATER_BED_PIN,LOW); soft_pwm_bed = 0;
} }
else else
{ {
#ifdef HEATER_BED_DUTY_CYCLE_DIVIDER soft_pwm_bed = MAX_BED_POWER>>1;
bed_needs_heating=1;
#endif
WRITE(HEATER_BED_PIN,HIGH);
} }
} }
else { else {
soft_pwm_bed = 0;
WRITE(HEATER_BED_PIN,LOW); WRITE(HEATER_BED_PIN,LOW);
} }
#else //#ifdef BED_LIMIT_SWITCHING #else //#ifdef BED_LIMIT_SWITCHING
@ -381,18 +458,16 @@ void manage_heater()
if((current_raw_bed > bed_minttemp) && (current_raw_bed < bed_maxttemp)) { if((current_raw_bed > bed_minttemp) && (current_raw_bed < bed_maxttemp)) {
if(current_raw_bed > target_bed_high_temp) if(current_raw_bed > target_bed_high_temp)
{ {
WRITE(HEATER_BED_PIN,LOW); soft_pwm_bed = 0;
} }
else else
if(current_raw_bed <= target_bed_low_temp) if(current_raw_bed <= target_bed_low_temp)
{ {
#ifdef HEATER_BED_DUTY_CYCLE_DIVIDER soft_pwm_bed = MAX_BED_POWER>>1;
bed_needs_heating=1;
#endif
WRITE(HEATER_BED_PIN,HIGH);
} }
} }
else { else {
soft_pwm_bed = 0;
WRITE(HEATER_BED_PIN,LOW); WRITE(HEATER_BED_PIN,LOW);
} }
#endif #endif
@ -568,6 +643,10 @@ void tp_init()
temp_iState_min[e] = 0.0; temp_iState_min[e] = 0.0;
temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki; temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
#endif //PIDTEMP #endif //PIDTEMP
#ifdef PIDTEMPBED
temp_iState_min_bed = 0.0;
temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
#endif //PIDTEMPBED
} }
#if (HEATER_0_PIN > -1) #if (HEATER_0_PIN > -1)
@ -728,6 +807,7 @@ void disable_heater()
#if TEMP_BED_PIN > -1 #if TEMP_BED_PIN > -1
target_raw_bed=0; target_raw_bed=0;
soft_pwm_bed=0;
#if HEATER_BED_PIN > -1 #if HEATER_BED_PIN > -1
WRITE(HEATER_BED_PIN,LOW); WRITE(HEATER_BED_PIN,LOW);
#endif #endif
@ -832,6 +912,7 @@ ISR(TIMER0_COMPB_vect)
static unsigned char soft_pwm_0; static unsigned char soft_pwm_0;
static unsigned char soft_pwm_1; static unsigned char soft_pwm_1;
static unsigned char soft_pwm_2; static unsigned char soft_pwm_2;
static unsigned char soft_pwm_b;
if(pwm_count == 0){ if(pwm_count == 0){
soft_pwm_0 = soft_pwm[0]; soft_pwm_0 = soft_pwm[0];
@ -844,6 +925,10 @@ ISR(TIMER0_COMPB_vect)
soft_pwm_2 = soft_pwm[2]; soft_pwm_2 = soft_pwm[2];
if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1);
#endif #endif
#if HEATER_BED_PIN > -1
soft_pwm_b = soft_pwm_bed;
if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1);
#endif
} }
if(soft_pwm_0 <= pwm_count) WRITE(HEATER_0_PIN,0); if(soft_pwm_0 <= pwm_count) WRITE(HEATER_0_PIN,0);
#if EXTRUDERS > 1 #if EXTRUDERS > 1
@ -852,6 +937,9 @@ ISR(TIMER0_COMPB_vect)
#if EXTRUDERS > 2 #if EXTRUDERS > 2
if(soft_pwm_2 <= pwm_count) WRITE(HEATER_2_PIN,0); if(soft_pwm_2 <= pwm_count) WRITE(HEATER_2_PIN,0);
#endif #endif
#if HEATER_BED_PIN > -1
if(soft_pwm_b <= pwm_count) WRITE(HEATER_BED_PIN,0);
#endif
pwm_count++; pwm_count++;
pwm_count &= 0x7f; pwm_count &= 0x7f;

View file

@ -46,11 +46,15 @@ extern int current_raw_bed;
extern int target_bed_low_temp ; extern int target_bed_low_temp ;
extern int target_bed_high_temp ; extern int target_bed_high_temp ;
#endif #endif
extern float Kp,Ki,Kd,Kc;
#ifdef PIDTEMP #ifdef PIDTEMP
extern float Kp,Ki,Kd,Kc;
extern float pid_setpoint[EXTRUDERS]; extern float pid_setpoint[EXTRUDERS];
#endif #endif
#ifdef PIDTEMPBED
extern float bedKp,bedKi,bedKd;
extern float pid_setpoint_bed;
#endif
// #ifdef WATCHPERIOD // #ifdef WATCHPERIOD
extern int watch_raw[EXTRUDERS] ; extern int watch_raw[EXTRUDERS] ;
@ -88,7 +92,9 @@ FORCE_INLINE void setTargetHotend(const float &celsius, uint8_t extruder) {
FORCE_INLINE void setTargetBed(const float &celsius) { FORCE_INLINE void setTargetBed(const float &celsius) {
target_raw_bed = temp2analogBed(celsius); target_raw_bed = temp2analogBed(celsius);
#ifdef BED_LIMIT_SWITCHING #ifdef PIDTEMPBED
pid_setpoint_bed = celsius;
#elif defined BED_LIMIT_SWITCHING
if(celsius>BED_HYSTERESIS) if(celsius>BED_HYSTERESIS)
{ {
target_bed_low_temp= temp2analogBed(celsius-BED_HYSTERESIS); target_bed_low_temp= temp2analogBed(celsius-BED_HYSTERESIS);
@ -163,7 +169,7 @@ FORCE_INLINE void autotempShutdown(){
#endif #endif
} }
void PID_autotune(float temp); void PID_autotune(float temp, int extruder, int ncycles);
#endif #endif

222
README.md
View file

@ -1,222 +1,22 @@
WARNING: WARNING:
-------- --------
THIS IS RELEASE CANDIDATE 2 FOR MARLIN 1.0.0 This is an experimental modification to allow PID on your bed heater.
The configuration is now split in two files This will run at the same frequency as the main PID loop. Make sure you heater FET or SSR can do this. I use a fotek SSR-10DA and it's fine
Configuration.h for the normal settings
Configuration_adv.h for the advanced settings
Gen7T is not supported. add something like this to you configuration (pulling this branch will get you this
Quick Information ~~~~~~~~~~~~~~~~~~~~
=================== #define PIDTEMPBED
This RepRap firmware is a mashup between <a href="https://github.com/kliment/Sprinter">Sprinter</a>, <a href="https://github.com/simen/grbl/tree">grbl</a> and many original parts.
Derived from Sprinter and Grbl by Erik van der Zalm. //from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, argressive factor of .15 (vs .1, 1, 10)
Sprinters lead developers are Kliment and caru. #define DEFAULT_bedKp 10.00
Grbls lead developer is Simen Svale Skogsrud. Sonney Jeon (Chamnit) improved some parts of grbl #define DEFAULT_bedKi .023
A fork by bkubicek for the Ultimaker was merged, and further development was aided by him. #define DEFAULT_bedKd 305.4
Some features have been added by: ~~~~~~~~~~~~~~~~~~~~
Lampmaker, Bradley Feldman, and others...
Features: Autotune works for the bed. Give it an "M303 E-1 C8 S90" to run autotune on the bed at 90 degrees for 8 cycles.
* Interrupt based movement with real linear acceleration
* High steprate
* Look ahead (Keep the speed high when possible. High cornering speed)
* Interrupt based temperature protection
* preliminary support for Matthew Roberts advance algorithm
For more info see: http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
* Full endstop support
* SD Card support
* SD Card folders (works in pronterface)
* SD Card autostart support
* LCD support (ideally 20x4)
* LCD menu system for autonomous SD card printing, controlled by an click-encoder.
* EEPROM storage of e.g. max-velocity, max-acceleration, and similar variables
* many small but handy things originating from bkubicek's fork.
* Arc support
* Temperature oversampling
* Dynamic Temperature setpointing aka "AutoTemp"
* Support for QTMarlin, a very beta GUI for PID-tuning and velocity-acceleration testing. https://github.com/bkubicek/QTMarlin
* Endstop trigger reporting to the host software.
* Updated sdcardlib
* Heater power reporting. Useful for PID monitoring.
* PID tuning
* CoreXY kinematics (www.corexy.com/theory.html)
The default baudrate is 250000. This baudrate has less jitter and hence errors than the usual 115200 baud, but is less supported by drivers and host-environments.
Differences and additions to the already good Sprinter firmware:
================================================================
*Look-ahead:*
Marlin has look-ahead. While sprinter has to break and re-accelerate at each corner,
lookahead will only decelerate and accelerate to a velocity,
so that the change in vectorial velocity magnitude is less than the xy_jerk_velocity.
This is only possible, if some future moves are already processed, hence the name.
It leads to less over-deposition at corners, especially at flat angles.
*Arc support:*
Slic3r can find curves that, although broken into segments, were ment to describe an arc.
Marlin is able to print those arcs. The advantage is the firmware can choose the resolution,
and can perform the arc with nearly constant velocity, resulting in a nice finish.
Also, less serial communication is needed.
*Temperature Oversampling:*
To reduce noise and make the PID-differential term more useful, 16 ADC conversion results are averaged.
*AutoTemp:*
If your gcode contains a wide spread of extruder velocities, or you realtime change the building speed, the temperature should be changed accordingly.
Usually, higher speed requires higher temperature.
This can now be performed by the AutoTemp function
By calling M109 S<mintemp> T<maxtemp> F<factor> you enter the autotemp mode.
You can leave it by calling M109 without any F.
If active, the maximal extruder stepper rate of all buffered moves will be calculated, and named "maxerate" [steps/sec].
The wanted temperature then will be set to t=tempmin+factor*maxerate, while being limited between tempmin and tempmax.
If the target temperature is set manually or by gcode to a value less then tempmin, it will be kept without change.
Ideally, your gcode can be completely free of temperature controls, apart from a M109 S T F in the start.gcode, and a M109 S0 in the end.gcode.
*EEPROM:*
If you know your PID values, the acceleration and max-velocities of your unique machine, you can set them, and finally store them in the EEPROM.
After each reboot, it will magically load them from EEPROM, independent what your Configuration.h says.
*LCD Menu:*
If your hardware supports it, you can build yourself a LCD-CardReader+Click+encoder combination. It will enable you to realtime tune temperatures,
accelerations, velocities, flow rates, select and print files from the SD card, preheat, disable the steppers, and do other fancy stuff.
One working hardware is documented here: http://www.thingiverse.com/thing:12663
Also, with just a 20x4 or 16x2 display, useful data is shown.
*SD card folders:*
If you have an SD card reader attached to your controller, also folders work now. Listing the files in pronterface will show "/path/subpath/file.g".
You can write to file in a subfolder by specifying a similar text using small letters in the path.
Also, backup copies of various operating systems are hidden, as well as files not ending with ".g".
*SD card folders:*
If you place a file auto[0-9].g into the root of the sd card, it will be automatically executed if you boot the printer. The same file will be executed by selecting "Autostart" from the menu.
First *0 will be performed, than *1 and so on. That way, you can heat up or even print automatically without user interaction.
*Endstop trigger reporting:*
If an endstop is hit while moving towards the endstop, the location at which the firmware thinks that the endstop was triggered is outputed on the serial port.
This is useful, because the user gets a warning message.
However, also tools like QTMarlin can use this for finding acceptable combinations of velocity+acceleration.
*Coding paradigm:*
Not relevant from a user side, but Marlin was split into thematic junks, and has tried to partially enforced private variables.
This is intended to make it clearer, what interacts which what, and leads to a higher level of modularization.
We think that this is a useful prestep for porting this firmware to e.g. an ARM platform in the future.
A lot of RAM (with enabled LCD ~2200 bytes) was saved by storing char []="some message" in Program memory.
In the serial communication, a #define based level of abstraction was enforced, so that it is clear that
some transfer is information (usually beginning with "echo:"), an error "error:", or just normal protocol,
necessary for backwards compatibility.
*Interrupt based temperature measurements:*
An interrupt is used to manage ADC conversions, and enforce checking for critical temperatures.
This leads to less blocking in the heater management routine.
Non-standard M-Codes, different to an old version of sprinter:
==============================================================
Movement:
* G2 - CW ARC
* G3 - CCW ARC
General:
* M17 - Enable/Power all stepper motors. Compatibility to ReplicatorG.
* M18 - Disable all stepper motors; same as M84.Compatibility to ReplicatorG.
* M30 - Print time since last M109 or SD card start to serial
* M42 - Change pin status via gcode
* M80 - Turn on Power Supply
* M81 - Turn off Power Supply
* M114 - Output current position to serial port
* M119 - Output Endstop status to serial port
Movement variables:
* M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
* M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
* M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
* M206 - set home offsets. This sets the X,Y,Z coordinates of the endstops (and is added to the {X,Y,Z}_HOME_POS configuration options (and is also added to the coordinates, if any, provided to G82, as with earlier firmware)
* M220 - set build speed mulitplying S:factor in percent ; aka "realtime tuneing in the gcode". So you can slow down if you have islands in one height-range, and speed up otherwise.
* M221 - set the extrude multiplying S:factor in percent
* M400 - Finish all buffered moves.
Temperature variables:
* M301 - Set PID parameters P I and D
* M302 - Allow cold extrudes
* M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
Advance:
* M200 - Set filament diameter for advance
* M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
EEPROM:
* M500 - stores paramters in EEPROM. This parameters are stored: axis_steps_per_unit, max_feedrate, max_acceleration ,acceleration,retract_acceleration,
minimumfeedrate,mintravelfeedrate,minsegmenttime, jerk velocities, PID
* M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
* M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
* M503 - print the current settings (from memory not from eeprom)
MISC:
* M240 - Trigger a camera to take a photograph
* M999 - Restart after being stopped by error
Configuring and compilation:
============================
Install the arduino software IDE/toolset v22
http://www.arduino.cc/en/Main/Software
For gen6 and sanguinololu the Sanguino directory in the Marlin dir needs to be copied to the arduino environment.
copy Marlin\sanguino <arduino home>\hardware\Sanguino
Install Ultimaker's RepG 25 build
http://software.ultimaker.com
For SD handling and as better substitute (apart from stl manipulation) download
the very nice Kliment's printrun/pronterface https://github.com/kliment/Printrun
Copy the Ultimaker Marlin firmware
https://github.com/ErikZalm/Marlin/tree/Marlin_v1
(Use the download button)
Start the arduino IDE.
Select Tools -> Board -> Arduino Mega 2560 or your microcontroller
Select the correct serial port in Tools ->Serial Port
Open Marlin.pde
Click the Verify/Compile button
Click the Upload button
If all goes well the firmware is uploading
Start Ultimaker's Custom RepG 25
Make sure Show Experimental Profiles is enabled in Preferences
Select Sprinter as the Driver
Press the Connect button.
KNOWN ISSUES: RepG will display: Unknown: marlin x.y.z
That's ok. Enjoy Silky Smooth Printing.