Cleanups for STM32F7

This commit is contained in:
Scott Lahteine 2018-01-15 02:28:39 -06:00
parent a0246c5c96
commit 42933c804a
18 changed files with 988 additions and 1293 deletions

View file

@ -109,7 +109,7 @@
#define analogInputToDigitalPin(p) (p) #define analogInputToDigitalPin(p) (p)
#endif #endif
#define CRITICAL_SECTION_START noInterrupts(); #define CRITICAL_SECTION_START noInterrupts();
#define CRITICAL_SECTION_END interrupts(); #define CRITICAL_SECTION_END interrupts();
// On AVR this is in math.h? // On AVR this is in math.h?

View file

@ -26,8 +26,8 @@
* These use GPIO functions instead of Direct Port Manipulation, as on AVR. * These use GPIO functions instead of Direct Port Manipulation, as on AVR.
*/ */
#ifndef _FASTIO_STM32F1_H #ifndef _FASTIO_STM32F1_H
#define _FASTIO_STM32F1_H #define _FASTIO_STM32F1_H
#include <libmaple/gpio.h> #include <libmaple/gpio.h>
@ -49,9 +49,9 @@
#define GET_TIMER(IO) (PIN_MAP[IO].timer_device != NULL) #define GET_TIMER(IO) (PIN_MAP[IO].timer_device != NULL)
#define OUT_WRITE(IO, v) { _SET_OUTPUT(IO); WRITE(IO, v); } #define OUT_WRITE(IO, v) { _SET_OUTPUT(IO); WRITE(IO, v); }
/* /**
* TODO: Write a macro to test if PIN is PWM or not. * TODO: Write a macro to test if PIN is PWM or not.
*/ */
#define PWM_PIN(p) true #define PWM_PIN(p) true
#endif /* _FASTIO_STM32F1_H */ #endif // _FASTIO_STM32F1_H

View file

@ -78,8 +78,7 @@ static uint16_t EE_VerifyPageFullyErased(uint32_t Address);
* @retval - Flash error code: on write Flash error * @retval - Flash error code: on write Flash error
* - FLASH_COMPLETE: on success * - FLASH_COMPLETE: on success
*/ */
uint16_t EE_Initialise(void) uint16_t EE_Initialise(void) {
{
uint16_t PageStatus0 = 6, PageStatus1 = 6; uint16_t PageStatus0 = 6, PageStatus1 = 6;
uint16_t VarIdx = 0; uint16_t VarIdx = 0;
uint16_t EepromStatus = 0, ReadStatus = 0; uint16_t EepromStatus = 0, ReadStatus = 0;
@ -100,209 +99,141 @@ uint16_t EE_Initialise(void)
pEraseInit.VoltageRange = VOLTAGE_RANGE; pEraseInit.VoltageRange = VOLTAGE_RANGE;
/* Check for invalid header states and repair if necessary */ /* Check for invalid header states and repair if necessary */
switch (PageStatus0) switch (PageStatus0) {
{
case ERASED: case ERASED:
if (PageStatus1 == VALID_PAGE) /* Page0 erased, Page1 valid */ if (PageStatus1 == VALID_PAGE) { /* Page0 erased, Page1 valid */
{
/* Erase Page0 */ /* Erase Page0 */
if(!EE_VerifyPageFullyErased(PAGE0_BASE_ADDRESS)) if(!EE_VerifyPageFullyErased(PAGE0_BASE_ADDRESS)) {
{
FlashStatus = HAL_FLASHEx_Erase(&pEraseInit, &SectorError); FlashStatus = HAL_FLASHEx_Erase(&pEraseInit, &SectorError);
/* If erase operation was failed, a Flash error code is returned */ /* If erase operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK) if (FlashStatus != HAL_OK) {
{
return FlashStatus; return FlashStatus;
} }
} }
} }
else if (PageStatus1 == RECEIVE_DATA) /* Page0 erased, Page1 receive */ else if (PageStatus1 == RECEIVE_DATA) { /* Page0 erased, Page1 receive */
{
/* Erase Page0 */ /* Erase Page0 */
if(!EE_VerifyPageFullyErased(PAGE0_BASE_ADDRESS)) if (!EE_VerifyPageFullyErased(PAGE0_BASE_ADDRESS)) {
{
FlashStatus = HAL_FLASHEx_Erase(&pEraseInit, &SectorError); FlashStatus = HAL_FLASHEx_Erase(&pEraseInit, &SectorError);
/* If erase operation was failed, a Flash error code is returned */ /* If erase operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK) if (FlashStatus != HAL_OK) return FlashStatus;
{
return FlashStatus;
}
} }
/* Mark Page1 as valid */ /* Mark Page1 as valid */
FlashStatus = HAL_FLASH_Program(TYPEPROGRAM_HALFWORD, PAGE1_BASE_ADDRESS, VALID_PAGE); FlashStatus = HAL_FLASH_Program(TYPEPROGRAM_HALFWORD, PAGE1_BASE_ADDRESS, VALID_PAGE);
/* If program operation was failed, a Flash error code is returned */ /* If program operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK) if (FlashStatus != HAL_OK) return FlashStatus;
{
return FlashStatus;
}
} }
else /* First EEPROM access (Page0&1 are erased) or invalid state -> format EEPROM */ else { /* First EEPROM access (Page0&1 are erased) or invalid state -> format EEPROM */
{
/* Erase both Page0 and Page1 and set Page0 as valid page */ /* Erase both Page0 and Page1 and set Page0 as valid page */
FlashStatus = EE_Format(); FlashStatus = EE_Format();
/* If erase/program operation was failed, a Flash error code is returned */ /* If erase/program operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK) if (FlashStatus != HAL_OK) return FlashStatus;
{
return FlashStatus;
}
} }
break; break;
case RECEIVE_DATA: case RECEIVE_DATA:
if (PageStatus1 == VALID_PAGE) /* Page0 receive, Page1 valid */ if (PageStatus1 == VALID_PAGE) { /* Page0 receive, Page1 valid */
{
/* Transfer data from Page1 to Page0 */ /* Transfer data from Page1 to Page0 */
for (VarIdx = 0; VarIdx < NB_OF_VAR; VarIdx++) for (VarIdx = 0; VarIdx < NB_OF_VAR; VarIdx++) {
{
if (( *(__IO uint16_t*)(PAGE0_BASE_ADDRESS + 6)) == VirtAddVarTab[VarIdx]) if (( *(__IO uint16_t*)(PAGE0_BASE_ADDRESS + 6)) == VirtAddVarTab[VarIdx])
{
x = VarIdx; x = VarIdx;
} if (VarIdx != x) {
if (VarIdx != x)
{
/* Read the last variables' updates */ /* Read the last variables' updates */
ReadStatus = EE_ReadVariable(VirtAddVarTab[VarIdx], &DataVar); ReadStatus = EE_ReadVariable(VirtAddVarTab[VarIdx], &DataVar);
/* In case variable corresponding to the virtual address was found */ /* In case variable corresponding to the virtual address was found */
if (ReadStatus != 0x1) if (ReadStatus != 0x1) {
{
/* Transfer the variable to the Page0 */ /* Transfer the variable to the Page0 */
EepromStatus = EE_VerifyPageFullWriteVariable(VirtAddVarTab[VarIdx], DataVar); EepromStatus = EE_VerifyPageFullWriteVariable(VirtAddVarTab[VarIdx], DataVar);
/* If program operation was failed, a Flash error code is returned */ /* If program operation was failed, a Flash error code is returned */
if (EepromStatus != HAL_OK) if (EepromStatus != HAL_OK) return EepromStatus;
{
return EepromStatus;
}
} }
} }
} }
/* Mark Page0 as valid */ /* Mark Page0 as valid */
FlashStatus = HAL_FLASH_Program(TYPEPROGRAM_HALFWORD, PAGE0_BASE_ADDRESS, VALID_PAGE); FlashStatus = HAL_FLASH_Program(TYPEPROGRAM_HALFWORD, PAGE0_BASE_ADDRESS, VALID_PAGE);
/* If program operation was failed, a Flash error code is returned */ /* If program operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK) if (FlashStatus != HAL_OK) return FlashStatus;
{
return FlashStatus;
}
pEraseInit.Sector = PAGE1_ID; pEraseInit.Sector = PAGE1_ID;
pEraseInit.NbSectors = 1; pEraseInit.NbSectors = 1;
pEraseInit.VoltageRange = VOLTAGE_RANGE; pEraseInit.VoltageRange = VOLTAGE_RANGE;
/* Erase Page1 */ /* Erase Page1 */
if(!EE_VerifyPageFullyErased(PAGE1_BASE_ADDRESS)) if (!EE_VerifyPageFullyErased(PAGE1_BASE_ADDRESS)) {
{
FlashStatus = HAL_FLASHEx_Erase(&pEraseInit, &SectorError); FlashStatus = HAL_FLASHEx_Erase(&pEraseInit, &SectorError);
/* If erase operation was failed, a Flash error code is returned */ /* If erase operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK) if (FlashStatus != HAL_OK) return FlashStatus;
{
return FlashStatus;
}
} }
} }
else if (PageStatus1 == ERASED) /* Page0 receive, Page1 erased */ else if (PageStatus1 == ERASED) { /* Page0 receive, Page1 erased */
{
pEraseInit.Sector = PAGE1_ID; pEraseInit.Sector = PAGE1_ID;
pEraseInit.NbSectors = 1; pEraseInit.NbSectors = 1;
pEraseInit.VoltageRange = VOLTAGE_RANGE; pEraseInit.VoltageRange = VOLTAGE_RANGE;
/* Erase Page1 */ /* Erase Page1 */
if(!EE_VerifyPageFullyErased(PAGE1_BASE_ADDRESS)) if (!EE_VerifyPageFullyErased(PAGE1_BASE_ADDRESS)) {
{
FlashStatus = HAL_FLASHEx_Erase(&pEraseInit, &SectorError); FlashStatus = HAL_FLASHEx_Erase(&pEraseInit, &SectorError);
/* If erase operation was failed, a Flash error code is returned */ /* If erase operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK) if (FlashStatus != HAL_OK) return FlashStatus;
{
return FlashStatus;
}
} }
/* Mark Page0 as valid */ /* Mark Page0 as valid */
FlashStatus = HAL_FLASH_Program(TYPEPROGRAM_HALFWORD, PAGE0_BASE_ADDRESS, VALID_PAGE); FlashStatus = HAL_FLASH_Program(TYPEPROGRAM_HALFWORD, PAGE0_BASE_ADDRESS, VALID_PAGE);
/* If program operation was failed, a Flash error code is returned */ /* If program operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK) if (FlashStatus != HAL_OK) return FlashStatus;
{
return FlashStatus;
}
} }
else /* Invalid state -> format eeprom */ else { /* Invalid state -> format eeprom */
{
/* Erase both Page0 and Page1 and set Page0 as valid page */ /* Erase both Page0 and Page1 and set Page0 as valid page */
FlashStatus = EE_Format(); FlashStatus = EE_Format();
/* If erase/program operation was failed, a Flash error code is returned */ /* If erase/program operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK) if (FlashStatus != HAL_OK) return FlashStatus;
{
return FlashStatus;
}
} }
break; break;
case VALID_PAGE: case VALID_PAGE:
if (PageStatus1 == VALID_PAGE) /* Invalid state -> format eeprom */ if (PageStatus1 == VALID_PAGE) { /* Invalid state -> format eeprom */
{
/* Erase both Page0 and Page1 and set Page0 as valid page */ /* Erase both Page0 and Page1 and set Page0 as valid page */
FlashStatus = EE_Format(); FlashStatus = EE_Format();
/* If erase/program operation was failed, a Flash error code is returned */ /* If erase/program operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK) if (FlashStatus != HAL_OK) return FlashStatus;
{
return FlashStatus;
}
} }
else if (PageStatus1 == ERASED) /* Page0 valid, Page1 erased */ else if (PageStatus1 == ERASED) { /* Page0 valid, Page1 erased */
{
pEraseInit.Sector = PAGE1_ID; pEraseInit.Sector = PAGE1_ID;
pEraseInit.NbSectors = 1; pEraseInit.NbSectors = 1;
pEraseInit.VoltageRange = VOLTAGE_RANGE; pEraseInit.VoltageRange = VOLTAGE_RANGE;
/* Erase Page1 */ /* Erase Page1 */
if(!EE_VerifyPageFullyErased(PAGE1_BASE_ADDRESS)) if (!EE_VerifyPageFullyErased(PAGE1_BASE_ADDRESS)) {
{
FlashStatus = HAL_FLASHEx_Erase(&pEraseInit, &SectorError); FlashStatus = HAL_FLASHEx_Erase(&pEraseInit, &SectorError);
/* If erase operation was failed, a Flash error code is returned */ /* If erase operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK) if (FlashStatus != HAL_OK) return FlashStatus;
{
return FlashStatus;
}
} }
} }
else /* Page0 valid, Page1 receive */ else { /* Page0 valid, Page1 receive */
{
/* Transfer data from Page0 to Page1 */ /* Transfer data from Page0 to Page1 */
for (VarIdx = 0; VarIdx < NB_OF_VAR; VarIdx++) for (VarIdx = 0; VarIdx < NB_OF_VAR; VarIdx++) {
{
if ((*(__IO uint16_t*)(PAGE1_BASE_ADDRESS + 6)) == VirtAddVarTab[VarIdx]) if ((*(__IO uint16_t*)(PAGE1_BASE_ADDRESS + 6)) == VirtAddVarTab[VarIdx])
{
x = VarIdx; x = VarIdx;
}
if (VarIdx != x) if (VarIdx != x) {
{
/* Read the last variables' updates */ /* Read the last variables' updates */
ReadStatus = EE_ReadVariable(VirtAddVarTab[VarIdx], &DataVar); ReadStatus = EE_ReadVariable(VirtAddVarTab[VarIdx], &DataVar);
/* In case variable corresponding to the virtual address was found */ /* In case variable corresponding to the virtual address was found */
if (ReadStatus != 0x1) if (ReadStatus != 0x1) {
{
/* Transfer the variable to the Page1 */ /* Transfer the variable to the Page1 */
EepromStatus = EE_VerifyPageFullWriteVariable(VirtAddVarTab[VarIdx], DataVar); EepromStatus = EE_VerifyPageFullWriteVariable(VirtAddVarTab[VarIdx], DataVar);
/* If program operation was failed, a Flash error code is returned */ /* If program operation was failed, a Flash error code is returned */
if (EepromStatus != HAL_OK) if (EepromStatus != HAL_OK) return EepromStatus;
{
return EepromStatus;
}
} }
} }
} }
/* Mark Page1 as valid */ /* Mark Page1 as valid */
FlashStatus = HAL_FLASH_Program(TYPEPROGRAM_HALFWORD, PAGE1_BASE_ADDRESS, VALID_PAGE); FlashStatus = HAL_FLASH_Program(TYPEPROGRAM_HALFWORD, PAGE1_BASE_ADDRESS, VALID_PAGE);
/* If program operation was failed, a Flash error code is returned */ /* If program operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK) if (FlashStatus != HAL_OK) return FlashStatus;
{
return FlashStatus;
}
pEraseInit.Sector = PAGE0_ID; pEraseInit.Sector = PAGE0_ID;
pEraseInit.NbSectors = 1; pEraseInit.NbSectors = 1;
pEraseInit.VoltageRange = VOLTAGE_RANGE; pEraseInit.VoltageRange = VOLTAGE_RANGE;
/* Erase Page0 */ /* Erase Page0 */
if(!EE_VerifyPageFullyErased(PAGE0_BASE_ADDRESS)) if (!EE_VerifyPageFullyErased(PAGE0_BASE_ADDRESS)) {
{
FlashStatus = HAL_FLASHEx_Erase(&pEraseInit, &SectorError); FlashStatus = HAL_FLASHEx_Erase(&pEraseInit, &SectorError);
/* If erase operation was failed, a Flash error code is returned */ /* If erase operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK) if (FlashStatus != HAL_OK) return FlashStatus;
{
return FlashStatus;
}
} }
} }
break; break;
@ -311,10 +242,7 @@ uint16_t EE_Initialise(void)
/* Erase both Page0 and Page1 and set Page0 as valid page */ /* Erase both Page0 and Page1 and set Page0 as valid page */
FlashStatus = EE_Format(); FlashStatus = EE_Format();
/* If erase/program operation was failed, a Flash error code is returned */ /* If erase/program operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK) if (FlashStatus != HAL_OK) return FlashStatus;
{
return FlashStatus;
}
break; break;
} }
@ -322,55 +250,46 @@ uint16_t EE_Initialise(void)
} }
/** /**
* @brief Verify if specified page is fully erased. * @brief Verify if specified page is fully erased.
* @param Address: page address * @param Address: page address
* This parameter can be one of the following values: * This parameter can be one of the following values:
* @arg PAGE0_BASE_ADDRESS: Page0 base address * @arg PAGE0_BASE_ADDRESS: Page0 base address
* @arg PAGE1_BASE_ADDRESS: Page1 base address * @arg PAGE1_BASE_ADDRESS: Page1 base address
* @retval page fully erased status: * @retval page fully erased status:
* - 0: if Page not erased * - 0: if Page not erased
* - 1: if Page erased * - 1: if Page erased
*/ */
uint16_t EE_VerifyPageFullyErased(uint32_t Address) uint16_t EE_VerifyPageFullyErased(uint32_t Address) {
{
uint32_t ReadStatus = 1; uint32_t ReadStatus = 1;
uint16_t AddressValue = 0x5555; uint16_t AddressValue = 0x5555;
/* Check each active page address starting from end */ /* Check each active page address starting from end */
while (Address <= PAGE0_END_ADDRESS) while (Address <= PAGE0_END_ADDRESS) {
{
/* Get the current location content to be compared with virtual address */ /* Get the current location content to be compared with virtual address */
AddressValue = (*(__IO uint16_t*)Address); AddressValue = (*(__IO uint16_t*)Address);
/* Compare the read address with the virtual address */ /* Compare the read address with the virtual address */
if (AddressValue != ERASED) if (AddressValue != ERASED) {
{
/* In case variable value is read, reset ReadStatus flag */ /* In case variable value is read, reset ReadStatus flag */
ReadStatus = 0; ReadStatus = 0;
break; break;
} }
/* Next address location */ /* Next address location */
Address = Address + 4; Address += 4;
} }
/* Return ReadStatus value: (0: Page not erased, 1: Sector erased) */ /* Return ReadStatus value: (0: Page not erased, 1: Sector erased) */
return ReadStatus; return ReadStatus;
} }
/** /**
* @brief Returns the last stored variable data, if found, which correspond to * @brief Returns the last stored variable data, if found, which correspond to
* the passed virtual address * the passed virtual address
* @param VirtAddress: Variable virtual address * @param VirtAddress: Variable virtual address
* @param Data: Global variable contains the read variable value * @param Data: Global variable contains the read variable value
* @retval Success or error status: * @retval Success or error status:
* - 0: if variable was found * - 0: if variable was found
* - 1: if the variable was not found * - 1: if the variable was not found
* - NO_VALID_PAGE: if no valid page was found. * - NO_VALID_PAGE: if no valid page was found.
*/ */
uint16_t EE_ReadVariable(uint16_t VirtAddress, uint16_t* Data) uint16_t EE_ReadVariable(uint16_t VirtAddress, uint16_t* Data) {
{
uint16_t ValidPage = PAGE0; uint16_t ValidPage = PAGE0;
uint16_t AddressValue = 0x5555, ReadStatus = 1; uint16_t AddressValue = 0x5555, ReadStatus = 1;
uint32_t Address = EEPROM_START_ADDRESS, PageStartAddress = EEPROM_START_ADDRESS; uint32_t Address = EEPROM_START_ADDRESS, PageStartAddress = EEPROM_START_ADDRESS;
@ -379,10 +298,7 @@ uint16_t EE_ReadVariable(uint16_t VirtAddress, uint16_t* Data)
ValidPage = EE_FindValidPage(READ_FROM_VALID_PAGE); ValidPage = EE_FindValidPage(READ_FROM_VALID_PAGE);
/* Check if there is no valid page */ /* Check if there is no valid page */
if (ValidPage == NO_VALID_PAGE) if (ValidPage == NO_VALID_PAGE) return NO_VALID_PAGE;
{
return NO_VALID_PAGE;
}
/* Get the valid Page start Address */ /* Get the valid Page start Address */
PageStartAddress = (uint32_t)(EEPROM_START_ADDRESS + (uint32_t)(ValidPage * PAGE_SIZE)); PageStartAddress = (uint32_t)(EEPROM_START_ADDRESS + (uint32_t)(ValidPage * PAGE_SIZE));
@ -391,69 +307,54 @@ uint16_t EE_ReadVariable(uint16_t VirtAddress, uint16_t* Data)
Address = (uint32_t)((EEPROM_START_ADDRESS - 2) + (uint32_t)((1 + ValidPage) * PAGE_SIZE)); Address = (uint32_t)((EEPROM_START_ADDRESS - 2) + (uint32_t)((1 + ValidPage) * PAGE_SIZE));
/* Check each active page address starting from end */ /* Check each active page address starting from end */
while (Address > (PageStartAddress + 2)) while (Address > (PageStartAddress + 2)) {
{
/* Get the current location content to be compared with virtual address */ /* Get the current location content to be compared with virtual address */
AddressValue = (*(__IO uint16_t*)Address); AddressValue = (*(__IO uint16_t*)Address);
/* Compare the read address with the virtual address */ /* Compare the read address with the virtual address */
if (AddressValue == VirtAddress) if (AddressValue == VirtAddress) {
{
/* Get content of Address-2 which is variable value */ /* Get content of Address-2 which is variable value */
*Data = (*(__IO uint16_t*)(Address - 2)); *Data = (*(__IO uint16_t*)(Address - 2));
/* In case variable value is read, reset ReadStatus flag */ /* In case variable value is read, reset ReadStatus flag */
ReadStatus = 0; ReadStatus = 0;
break; break;
} }
else else /* Next address location */
{ Address -= 4;
/* Next address location */
Address = Address - 4;
}
} }
/* Return ReadStatus value: (0: variable exist, 1: variable doesn't exist) */ /* Return ReadStatus value: (0: variable exist, 1: variable doesn't exist) */
return ReadStatus; return ReadStatus;
} }
/** /**
* @brief Writes/upadtes variable data in EEPROM. * @brief Writes/upadtes variable data in EEPROM.
* @param VirtAddress: Variable virtual address * @param VirtAddress: Variable virtual address
* @param Data: 16 bit data to be written * @param Data: 16 bit data to be written
* @retval Success or error status: * @retval Success or error status:
* - FLASH_COMPLETE: on success * - FLASH_COMPLETE: on success
* - PAGE_FULL: if valid page is full * - PAGE_FULL: if valid page is full
* - NO_VALID_PAGE: if no valid page was found * - NO_VALID_PAGE: if no valid page was found
* - Flash error code: on write Flash error * - Flash error code: on write Flash error
*/ */
uint16_t EE_WriteVariable(uint16_t VirtAddress, uint16_t Data) uint16_t EE_WriteVariable(uint16_t VirtAddress, uint16_t Data) {
{
uint16_t Status = 0;
/* Write the variable virtual address and value in the EEPROM */ /* Write the variable virtual address and value in the EEPROM */
Status = EE_VerifyPageFullWriteVariable(VirtAddress, Data); uint16_t Status = EE_VerifyPageFullWriteVariable(VirtAddress, Data);
/* In case the EEPROM active page is full */ /* In case the EEPROM active page is full */
if (Status == PAGE_FULL) if (Status == PAGE_FULL) /* Perform Page transfer */
{
/* Perform Page transfer */
Status = EE_PageTransfer(VirtAddress, Data); Status = EE_PageTransfer(VirtAddress, Data);
}
/* Return last operation status */ /* Return last operation status */
return Status; return Status;
} }
/** /**
* @brief Erases PAGE and PAGE1 and writes VALID_PAGE header to PAGE * @brief Erases PAGE and PAGE1 and writes VALID_PAGE header to PAGE
* @param None * @param None
* @retval Status of the last operation (Flash write or erase) done during * @retval Status of the last operation (Flash write or erase) done during
* EEPROM formating * EEPROM formating
*/ */
static HAL_StatusTypeDef EE_Format(void) static HAL_StatusTypeDef EE_Format(void) {
{
HAL_StatusTypeDef FlashStatus = HAL_OK; HAL_StatusTypeDef FlashStatus = HAL_OK;
uint32_t SectorError = 0; uint32_t SectorError = 0;
FLASH_EraseInitTypeDef pEraseInit; FLASH_EraseInitTypeDef pEraseInit;
@ -463,49 +364,37 @@ static HAL_StatusTypeDef EE_Format(void)
pEraseInit.NbSectors = 1; pEraseInit.NbSectors = 1;
pEraseInit.VoltageRange = VOLTAGE_RANGE; pEraseInit.VoltageRange = VOLTAGE_RANGE;
/* Erase Page0 */ /* Erase Page0 */
if(!EE_VerifyPageFullyErased(PAGE0_BASE_ADDRESS)) if (!EE_VerifyPageFullyErased(PAGE0_BASE_ADDRESS)) {
{
FlashStatus = HAL_FLASHEx_Erase(&pEraseInit, &SectorError); FlashStatus = HAL_FLASHEx_Erase(&pEraseInit, &SectorError);
/* If erase operation was failed, a Flash error code is returned */ /* If erase operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK) if (FlashStatus != HAL_OK) return FlashStatus;
{
return FlashStatus;
}
} }
/* Set Page0 as valid page: Write VALID_PAGE at Page0 base address */ /* Set Page0 as valid page: Write VALID_PAGE at Page0 base address */
FlashStatus = HAL_FLASH_Program(TYPEPROGRAM_HALFWORD, PAGE0_BASE_ADDRESS, VALID_PAGE); FlashStatus = HAL_FLASH_Program(TYPEPROGRAM_HALFWORD, PAGE0_BASE_ADDRESS, VALID_PAGE);
/* If program operation was failed, a Flash error code is returned */ /* If program operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK) if (FlashStatus != HAL_OK) return FlashStatus;
{
return FlashStatus;
}
pEraseInit.Sector = PAGE1_ID; pEraseInit.Sector = PAGE1_ID;
/* Erase Page1 */ /* Erase Page1 */
if(!EE_VerifyPageFullyErased(PAGE1_BASE_ADDRESS)) if (!EE_VerifyPageFullyErased(PAGE1_BASE_ADDRESS)) {
{
FlashStatus = HAL_FLASHEx_Erase(&pEraseInit, &SectorError); FlashStatus = HAL_FLASHEx_Erase(&pEraseInit, &SectorError);
/* If erase operation was failed, a Flash error code is returned */ /* If erase operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK) if (FlashStatus != HAL_OK) return FlashStatus;
{
return FlashStatus;
}
} }
return HAL_OK; return HAL_OK;
} }
/** /**
* @brief Find valid Page for write or read operation * @brief Find valid Page for write or read operation
* @param Operation: operation to achieve on the valid page. * @param Operation: operation to achieve on the valid page.
* This parameter can be one of the following values: * This parameter can be one of the following values:
* @arg READ_FROM_VALID_PAGE: read operation from valid page * @arg READ_FROM_VALID_PAGE: read operation from valid page
* @arg WRITE_IN_VALID_PAGE: write operation from valid page * @arg WRITE_IN_VALID_PAGE: write operation from valid page
* @retval Valid page number (PAGE or PAGE1) or NO_VALID_PAGE in case * @retval Valid page number (PAGE or PAGE1) or NO_VALID_PAGE in case
* of no valid page was found * of no valid page was found
*/ */
static uint16_t EE_FindValidPage(uint8_t Operation) static uint16_t EE_FindValidPage(uint8_t Operation) {
{
uint16_t PageStatus0 = 6, PageStatus1 = 6; uint16_t PageStatus0 = 6, PageStatus1 = 6;
/* Get Page0 actual status */ /* Get Page0 actual status */
@ -515,51 +404,28 @@ static uint16_t EE_FindValidPage(uint8_t Operation)
PageStatus1 = (*(__IO uint16_t*)PAGE1_BASE_ADDRESS); PageStatus1 = (*(__IO uint16_t*)PAGE1_BASE_ADDRESS);
/* Write or read operation */ /* Write or read operation */
switch (Operation) switch (Operation) {
{
case WRITE_IN_VALID_PAGE: /* ---- Write operation ---- */ case WRITE_IN_VALID_PAGE: /* ---- Write operation ---- */
if (PageStatus1 == VALID_PAGE) if (PageStatus1 == VALID_PAGE) {
{
/* Page0 receiving data */ /* Page0 receiving data */
if (PageStatus0 == RECEIVE_DATA) if (PageStatus0 == RECEIVE_DATA) return PAGE0; /* Page0 valid */
{ else return PAGE1; /* Page1 valid */
return PAGE0; /* Page0 valid */
}
else
{
return PAGE1; /* Page1 valid */
}
} }
else if (PageStatus0 == VALID_PAGE) else if (PageStatus0 == VALID_PAGE) {
{
/* Page1 receiving data */ /* Page1 receiving data */
if (PageStatus1 == RECEIVE_DATA) if (PageStatus1 == RECEIVE_DATA) return PAGE1; /* Page1 valid */
{ else return PAGE0; /* Page0 valid */
return PAGE1; /* Page1 valid */
}
else
{
return PAGE0; /* Page0 valid */
}
} }
else else
{
return NO_VALID_PAGE; /* No valid Page */ return NO_VALID_PAGE; /* No valid Page */
}
case READ_FROM_VALID_PAGE: /* ---- Read operation ---- */ case READ_FROM_VALID_PAGE: /* ---- Read operation ---- */
if (PageStatus0 == VALID_PAGE) if (PageStatus0 == VALID_PAGE)
{
return PAGE0; /* Page0 valid */ return PAGE0; /* Page0 valid */
}
else if (PageStatus1 == VALID_PAGE) else if (PageStatus1 == VALID_PAGE)
{
return PAGE1; /* Page1 valid */ return PAGE1; /* Page1 valid */
}
else else
{ return NO_VALID_PAGE; /* No valid Page */
return NO_VALID_PAGE ; /* No valid Page */
}
default: default:
return PAGE0; /* Page0 valid */ return PAGE0; /* Page0 valid */
@ -567,17 +433,16 @@ static uint16_t EE_FindValidPage(uint8_t Operation)
} }
/** /**
* @brief Verify if active page is full and Writes variable in EEPROM. * @brief Verify if active page is full and Writes variable in EEPROM.
* @param VirtAddress: 16 bit virtual address of the variable * @param VirtAddress: 16 bit virtual address of the variable
* @param Data: 16 bit data to be written as variable value * @param Data: 16 bit data to be written as variable value
* @retval Success or error status: * @retval Success or error status:
* - FLASH_COMPLETE: on success * - FLASH_COMPLETE: on success
* - PAGE_FULL: if valid page is full * - PAGE_FULL: if valid page is full
* - NO_VALID_PAGE: if no valid page was found * - NO_VALID_PAGE: if no valid page was found
* - Flash error code: on write Flash error * - Flash error code: on write Flash error
*/ */
static uint16_t EE_VerifyPageFullWriteVariable(uint16_t VirtAddress, uint16_t Data) static uint16_t EE_VerifyPageFullWriteVariable(uint16_t VirtAddress, uint16_t Data) {
{
HAL_StatusTypeDef FlashStatus = HAL_OK; HAL_StatusTypeDef FlashStatus = HAL_OK;
uint16_t ValidPage = PAGE0; uint16_t ValidPage = PAGE0;
uint32_t Address = EEPROM_START_ADDRESS, PageEndAddress = EEPROM_START_ADDRESS+PAGE_SIZE; uint32_t Address = EEPROM_START_ADDRESS, PageEndAddress = EEPROM_START_ADDRESS+PAGE_SIZE;
@ -586,10 +451,7 @@ static uint16_t EE_VerifyPageFullWriteVariable(uint16_t VirtAddress, uint16_t Da
ValidPage = EE_FindValidPage(WRITE_IN_VALID_PAGE); ValidPage = EE_FindValidPage(WRITE_IN_VALID_PAGE);
/* Check if there is no valid page */ /* Check if there is no valid page */
if (ValidPage == NO_VALID_PAGE) if (ValidPage == NO_VALID_PAGE) return NO_VALID_PAGE;
{
return NO_VALID_PAGE;
}
/* Get the valid Page start Address */ /* Get the valid Page start Address */
Address = (uint32_t)(EEPROM_START_ADDRESS + (uint32_t)(ValidPage * PAGE_SIZE)); Address = (uint32_t)(EEPROM_START_ADDRESS + (uint32_t)(ValidPage * PAGE_SIZE));
@ -598,28 +460,20 @@ static uint16_t EE_VerifyPageFullWriteVariable(uint16_t VirtAddress, uint16_t Da
PageEndAddress = (uint32_t)((EEPROM_START_ADDRESS - 1) + (uint32_t)((ValidPage + 1) * PAGE_SIZE)); PageEndAddress = (uint32_t)((EEPROM_START_ADDRESS - 1) + (uint32_t)((ValidPage + 1) * PAGE_SIZE));
/* Check each active page address starting from begining */ /* Check each active page address starting from begining */
while (Address < PageEndAddress) while (Address < PageEndAddress) {
{
/* Verify if Address and Address+2 contents are 0xFFFFFFFF */ /* Verify if Address and Address+2 contents are 0xFFFFFFFF */
if ((*(__IO uint32_t*)Address) == 0xFFFFFFFF) if ((*(__IO uint32_t*)Address) == 0xFFFFFFFF) {
{
/* Set variable data */ /* Set variable data */
FlashStatus = HAL_FLASH_Program(TYPEPROGRAM_HALFWORD, Address, Data); FlashStatus = HAL_FLASH_Program(TYPEPROGRAM_HALFWORD, Address, Data);
/* If program operation was failed, a Flash error code is returned */ /* If program operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK) if (FlashStatus != HAL_OK) return FlashStatus;
{
return FlashStatus;
}
/* Set variable virtual address */ /* Set variable virtual address */
FlashStatus = HAL_FLASH_Program(TYPEPROGRAM_HALFWORD, Address + 2, VirtAddress); FlashStatus = HAL_FLASH_Program(TYPEPROGRAM_HALFWORD, Address + 2, VirtAddress);
/* Return program operation status */ /* Return program operation status */
return FlashStatus; return FlashStatus;
} }
else else /* Next address location */
{ Address += 4;
/* Next address location */
Address = Address + 4;
}
} }
/* Return PAGE_FULL in case the valid page is full */ /* Return PAGE_FULL in case the valid page is full */
@ -627,18 +481,17 @@ static uint16_t EE_VerifyPageFullWriteVariable(uint16_t VirtAddress, uint16_t Da
} }
/** /**
* @brief Transfers last updated variables data from the full Page to * @brief Transfers last updated variables data from the full Page to
* an empty one. * an empty one.
* @param VirtAddress: 16 bit virtual address of the variable * @param VirtAddress: 16 bit virtual address of the variable
* @param Data: 16 bit data to be written as variable value * @param Data: 16 bit data to be written as variable value
* @retval Success or error status: * @retval Success or error status:
* - FLASH_COMPLETE: on success * - FLASH_COMPLETE: on success
* - PAGE_FULL: if valid page is full * - PAGE_FULL: if valid page is full
* - NO_VALID_PAGE: if no valid page was found * - NO_VALID_PAGE: if no valid page was found
* - Flash error code: on write Flash error * - Flash error code: on write Flash error
*/ */
static uint16_t EE_PageTransfer(uint16_t VirtAddress, uint16_t Data) static uint16_t EE_PageTransfer(uint16_t VirtAddress, uint16_t Data) {
{
HAL_StatusTypeDef FlashStatus = HAL_OK; HAL_StatusTypeDef FlashStatus = HAL_OK;
uint32_t NewPageAddress = EEPROM_START_ADDRESS; uint32_t NewPageAddress = EEPROM_START_ADDRESS;
uint16_t OldPageId=0; uint16_t OldPageId=0;
@ -650,60 +503,42 @@ static uint16_t EE_PageTransfer(uint16_t VirtAddress, uint16_t Data)
/* Get active Page for read operation */ /* Get active Page for read operation */
ValidPage = EE_FindValidPage(READ_FROM_VALID_PAGE); ValidPage = EE_FindValidPage(READ_FROM_VALID_PAGE);
if (ValidPage == PAGE1) /* Page1 valid */ if (ValidPage == PAGE1) { /* Page1 valid */
{
/* New page address where variable will be moved to */ /* New page address where variable will be moved to */
NewPageAddress = PAGE0_BASE_ADDRESS; NewPageAddress = PAGE0_BASE_ADDRESS;
/* Old page ID where variable will be taken from */ /* Old page ID where variable will be taken from */
OldPageId = PAGE1_ID; OldPageId = PAGE1_ID;
} }
else if (ValidPage == PAGE0) /* Page0 valid */ else if (ValidPage == PAGE0) { /* Page0 valid */
{
/* New page address where variable will be moved to */ /* New page address where variable will be moved to */
NewPageAddress = PAGE1_BASE_ADDRESS; NewPageAddress = PAGE1_BASE_ADDRESS;
/* Old page ID where variable will be taken from */ /* Old page ID where variable will be taken from */
OldPageId = PAGE0_ID; OldPageId = PAGE0_ID;
} }
else else
{
return NO_VALID_PAGE; /* No valid Page */ return NO_VALID_PAGE; /* No valid Page */
}
/* Set the new Page status to RECEIVE_DATA status */ /* Set the new Page status to RECEIVE_DATA status */
FlashStatus = HAL_FLASH_Program(TYPEPROGRAM_HALFWORD, NewPageAddress, RECEIVE_DATA); FlashStatus = HAL_FLASH_Program(TYPEPROGRAM_HALFWORD, NewPageAddress, RECEIVE_DATA);
/* If program operation was failed, a Flash error code is returned */ /* If program operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK) if (FlashStatus != HAL_OK) return FlashStatus;
{
return FlashStatus;
}
/* Write the variable passed as parameter in the new active page */ /* Write the variable passed as parameter in the new active page */
EepromStatus = EE_VerifyPageFullWriteVariable(VirtAddress, Data); EepromStatus = EE_VerifyPageFullWriteVariable(VirtAddress, Data);
/* If program operation was failed, a Flash error code is returned */ /* If program operation was failed, a Flash error code is returned */
if (EepromStatus != HAL_OK) if (EepromStatus != HAL_OK) return EepromStatus;
{
return EepromStatus;
}
/* Transfer process: transfer variables from old to the new active page */ /* Transfer process: transfer variables from old to the new active page */
for (VarIdx = 0; VarIdx < NB_OF_VAR; VarIdx++) for (VarIdx = 0; VarIdx < NB_OF_VAR; VarIdx++) {
{ if (VirtAddVarTab[VarIdx] != VirtAddress) { /* Check each variable except the one passed as parameter */
if (VirtAddVarTab[VarIdx] != VirtAddress) /* Check each variable except the one passed as parameter */
{
/* Read the other last variable updates */ /* Read the other last variable updates */
ReadStatus = EE_ReadVariable(VirtAddVarTab[VarIdx], &DataVar); ReadStatus = EE_ReadVariable(VirtAddVarTab[VarIdx], &DataVar);
/* In case variable corresponding to the virtual address was found */ /* In case variable corresponding to the virtual address was found */
if (ReadStatus != 0x1) if (ReadStatus != 0x1) {
{
/* Transfer the variable to the new active page */ /* Transfer the variable to the new active page */
EepromStatus = EE_VerifyPageFullWriteVariable(VirtAddVarTab[VarIdx], DataVar); EepromStatus = EE_VerifyPageFullWriteVariable(VirtAddVarTab[VarIdx], DataVar);
/* If program operation was failed, a Flash error code is returned */ /* If program operation was failed, a Flash error code is returned */
if (EepromStatus != HAL_OK) if (EepromStatus != HAL_OK) return EepromStatus;
{
return EepromStatus;
}
} }
} }
} }
@ -716,18 +551,12 @@ static uint16_t EE_PageTransfer(uint16_t VirtAddress, uint16_t Data)
/* Erase the old Page: Set old Page status to ERASED status */ /* Erase the old Page: Set old Page status to ERASED status */
FlashStatus = HAL_FLASHEx_Erase(&pEraseInit, &SectorError); FlashStatus = HAL_FLASHEx_Erase(&pEraseInit, &SectorError);
/* If erase operation was failed, a Flash error code is returned */ /* If erase operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK) if (FlashStatus != HAL_OK) return FlashStatus;
{
return FlashStatus;
}
/* Set new Page status to VALID_PAGE status */ /* Set new Page status to VALID_PAGE status */
FlashStatus = HAL_FLASH_Program(TYPEPROGRAM_HALFWORD, NewPageAddress, VALID_PAGE); FlashStatus = HAL_FLASH_Program(TYPEPROGRAM_HALFWORD, NewPageAddress, VALID_PAGE);
/* If program operation was failed, a Flash error code is returned */ /* If program operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK) if (FlashStatus != HAL_OK) return FlashStatus;
{
return FlashStatus;
}
/* Return last operation flash status */ /* Return last operation flash status */
return FlashStatus; return FlashStatus;
@ -736,7 +565,7 @@ static uint16_t EE_PageTransfer(uint16_t VirtAddress, uint16_t Data)
#endif // STM32F7 #endif // STM32F7
/** /**
* @} * @}
*/ */
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/ /******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/

View file

@ -18,7 +18,7 @@
*/ */
#ifdef STM32F7 #ifdef STM32F7
/** /**
* Description: functions for I2C connected external EEPROM. * Description: functions for I2C connected external EEPROM.
* Not platform dependent. * Not platform dependent.

View file

@ -81,18 +81,17 @@ void sei(void) { interrupts(); }
void HAL_clear_reset_source(void) { __HAL_RCC_CLEAR_RESET_FLAGS(); } void HAL_clear_reset_source(void) { __HAL_RCC_CLEAR_RESET_FLAGS(); }
uint8_t HAL_get_reset_source (void) { uint8_t HAL_get_reset_source (void) {
if(__HAL_RCC_GET_FLAG(RCC_FLAG_IWDGRST) != RESET) if (__HAL_RCC_GET_FLAG(RCC_FLAG_IWDGRST) != RESET)
return RST_WATCHDOG; return RST_WATCHDOG;
if(__HAL_RCC_GET_FLAG(RCC_FLAG_SFTRST) != RESET) if (__HAL_RCC_GET_FLAG(RCC_FLAG_SFTRST) != RESET)
return RST_SOFTWARE; return RST_SOFTWARE;
if(__HAL_RCC_GET_FLAG(RCC_FLAG_PINRST) != RESET) if (__HAL_RCC_GET_FLAG(RCC_FLAG_PINRST) != RESET)
return RST_EXTERNAL; return RST_EXTERNAL;
if(__HAL_RCC_GET_FLAG(RCC_FLAG_PORRST) != RESET) if (__HAL_RCC_GET_FLAG(RCC_FLAG_PORRST) != RESET)
return RST_POWER_ON; return RST_POWER_ON;
return 0; return 0;
} }
@ -102,8 +101,6 @@ extern "C" {
extern unsigned int _ebss; // end of bss section extern unsigned int _ebss; // end of bss section
} }
// return free memory between end of heap (or end bss) and whatever is current // return free memory between end of heap (or end bss) and whatever is current
/* /*

View file

@ -57,7 +57,7 @@
#error "SERIAL_PORT must be from -1 to 6" #error "SERIAL_PORT must be from -1 to 6"
#endif #endif
#if SERIAL_PORT == -1 #if SERIAL_PORT == -1
#define MYSERIAL0 SerialUSB #define MYSERIAL0 SerialUSB
#elif SERIAL_PORT == 1 #elif SERIAL_PORT == 1
#define MYSERIAL0 SerialUART1 #define MYSERIAL0 SerialUART1
#elif SERIAL_PORT == 2 #elif SERIAL_PORT == 2
@ -79,7 +79,7 @@
#error "SERIAL_PORT_2 must be different than SERIAL_PORT" #error "SERIAL_PORT_2 must be different than SERIAL_PORT"
#endif #endif
#define NUM_SERIAL 2 #define NUM_SERIAL 2
#if SERIAL_PORT_2 == -1 #if SERIAL_PORT_2 == -1
#define MYSERIAL1 SerialUSB #define MYSERIAL1 SerialUSB
#elif SERIAL_PORT_2 == 1 #elif SERIAL_PORT_2 == 1
#define MYSERIAL1 SerialUART1 #define MYSERIAL1 SerialUART1
@ -98,7 +98,7 @@
#define NUM_SERIAL 1 #define NUM_SERIAL 1
#endif #endif
#define _BV(bit) (1 << (bit)) #define _BV(bit) (1 << (bit))
/** /**
* TODO: review this to return 1 for pins that are not analog input * TODO: review this to return 1 for pins that are not analog input
@ -107,7 +107,7 @@
#define analogInputToDigitalPin(p) (p) #define analogInputToDigitalPin(p) (p)
#endif #endif
#define CRITICAL_SECTION_START noInterrupts(); #define CRITICAL_SECTION_START noInterrupts();
#define CRITICAL_SECTION_END interrupts(); #define CRITICAL_SECTION_END interrupts();
// On AVR this is in math.h? // On AVR this is in math.h?

View file

@ -82,20 +82,17 @@ void spiBegin(void) {
#if !PIN_EXISTS(SS) #if !PIN_EXISTS(SS)
#error SS_PIN not defined! #error SS_PIN not defined!
#endif #endif
SET_OUTPUT(SS_PIN); SET_OUTPUT(SS_PIN);
WRITE(SS_PIN, HIGH); WRITE(SS_PIN, HIGH);
} }
/** Configure SPI for specified SPI speed */ /** Configure SPI for specified SPI speed */
void spiInit(uint8_t spiRate) { void spiInit(uint8_t spiRate) {
// Use datarates Marlin uses // Use datarates Marlin uses
uint32_t clock; uint32_t clock;
switch (spiRate) { switch (spiRate) {
case SPI_FULL_SPEED: clock = 20000000; break; //13.9mhz=20000000 6.75mhz=10000000 3.38mhz=5000000 .833mhz=1000000 case SPI_FULL_SPEED: clock = 20000000; break; // 13.9mhz=20000000 6.75mhz=10000000 3.38mhz=5000000 .833mhz=1000000
case SPI_HALF_SPEED: clock = 5000000; break; case SPI_HALF_SPEED: clock = 5000000; break;
case SPI_QUARTER_SPEED: clock = 2500000; break; case SPI_QUARTER_SPEED: clock = 2500000; break;
case SPI_EIGHTH_SPEED: clock = 1250000; break; case SPI_EIGHTH_SPEED: clock = 1250000; break;
@ -108,8 +105,6 @@ void spiInit(uint8_t spiRate) {
SPI.begin(); SPI.begin();
} }
/** /**
* @brief Receives a single byte from the SPI port. * @brief Receives a single byte from the SPI port.
* *
@ -133,8 +128,6 @@ uint8_t spiRec(void) {
* *
* @details Uses DMA * @details Uses DMA
*/ */
void spiRead(uint8_t* buf, uint16_t nbyte) { void spiRead(uint8_t* buf, uint16_t nbyte) {
SPI.beginTransaction(spiConfig); SPI.beginTransaction(spiConfig);
SPI.dmaTransfer(0, const_cast<uint8_t*>(buf), nbyte); SPI.dmaTransfer(0, const_cast<uint8_t*>(buf), nbyte);
@ -162,8 +155,6 @@ void spiSend(uint8_t b) {
* *
* @details Use DMA * @details Use DMA
*/ */
void spiSendBlock(uint8_t token, const uint8_t* buf) { void spiSendBlock(uint8_t token, const uint8_t* buf) {
SPI.beginTransaction(spiConfig); SPI.beginTransaction(spiConfig);
SPI.transfer(token); SPI.transfer(token);
@ -171,8 +162,6 @@ void spiSendBlock(uint8_t token, const uint8_t* buf) {
SPI.endTransaction(); SPI.endTransaction();
} }
#endif // SOFTWARE_SPI #endif // SOFTWARE_SPI
#endif // STM32F7 #endif // STM32F7

View file

@ -20,8 +20,8 @@
* *
*/ */
#ifdef STM32F7 #ifdef STM32F7
// -------------------------------------------------------------------------- // --------------------------------------------------------------------------
// Includes // Includes
// -------------------------------------------------------------------------- // --------------------------------------------------------------------------
@ -71,12 +71,12 @@ tTimerConfig timerConfig[NUM_HARDWARE_TIMERS];
bool timers_initialised[NUM_HARDWARE_TIMERS] = {false}; bool timers_initialised[NUM_HARDWARE_TIMERS] = {false};
void HAL_timer_start(uint8_t timer_num, uint32_t frequency) { void HAL_timer_start(const uint8_t timer_num, const uint32_t frequency) {
if(!timers_initialised[timer_num]) { if (!timers_initialised[timer_num]) {
switch (timer_num) { switch (timer_num) {
case STEP_TIMER_NUM: case STEP_TIMER_NUM:
//STEPPER TIMER TIM5 //use a 32bit timer //STEPPER TIMER TIM5 //use a 32bit timer
__HAL_RCC_TIM5_CLK_ENABLE(); __HAL_RCC_TIM5_CLK_ENABLE();
timerConfig[0].timerdef.Instance = TIM5; timerConfig[0].timerdef.Instance = TIM5;
timerConfig[0].timerdef.Init.Prescaler = (STEPPER_TIMER_PRESCALE); timerConfig[0].timerdef.Init.Prescaler = (STEPPER_TIMER_PRESCALE);
@ -92,8 +92,8 @@ void HAL_timer_start(uint8_t timer_num, uint32_t frequency) {
//TEMP TIMER TIM7 // any available 16bit Timer (1 already used for PWM) //TEMP TIMER TIM7 // any available 16bit Timer (1 already used for PWM)
__HAL_RCC_TIM7_CLK_ENABLE(); __HAL_RCC_TIM7_CLK_ENABLE();
timerConfig[1].timerdef.Instance = TIM7; timerConfig[1].timerdef.Instance = TIM7;
timerConfig[1].timerdef.Init.Prescaler = (TEMP_TIMER_PRESCALE); timerConfig[1].timerdef.Init.Prescaler = (TEMP_TIMER_PRESCALE);
timerConfig[1].timerdef.Init.CounterMode = TIM_COUNTERMODE_UP; timerConfig[1].timerdef.Init.CounterMode = TIM_COUNTERMODE_UP;
timerConfig[1].timerdef.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; timerConfig[1].timerdef.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
timerConfig[1].IRQ_Id = TIM7_IRQn; timerConfig[1].IRQ_Id = TIM7_IRQn;
timerConfig[1].callback = (uint32_t)TC7_Handler; timerConfig[1].callback = (uint32_t)TC7_Handler;
@ -103,52 +103,48 @@ void HAL_timer_start(uint8_t timer_num, uint32_t frequency) {
timers_initialised[timer_num] = true; timers_initialised[timer_num] = true;
} }
timerConfig[timer_num].timerdef.Init.Period = ((HAL_TIMER_RATE / timerConfig[timer_num].timerdef.Init.Prescaler) / (frequency)) - 1; timerConfig[timer_num].timerdef.Init.Period = (((HAL_TIMER_RATE) / timerConfig[timer_num].timerdef.Init.Prescaler) / frequency) - 1;
if(HAL_TIM_Base_Init(&timerConfig[timer_num].timerdef) == HAL_OK ){ if (HAL_TIM_Base_Init(&timerConfig[timer_num].timerdef) == HAL_OK)
HAL_TIM_Base_Start_IT(&timerConfig[timer_num].timerdef); HAL_TIM_Base_Start_IT(&timerConfig[timer_num].timerdef);
}
} }
//forward the interrupt //forward the interrupt
extern "C" void TIM5_IRQHandler() extern "C" void TIM5_IRQHandler() {
{ ((void(*)(void))timerConfig[0].callback)();
((void(*)(void))timerConfig[0].callback)();
} }
extern "C" void TIM7_IRQHandler() extern "C" void TIM7_IRQHandler() {
{ ((void(*)(void))timerConfig[1].callback)();
((void(*)(void))timerConfig[1].callback)();
} }
void HAL_timer_set_count (uint8_t timer_num, uint32_t count) { void HAL_timer_set_count(const uint8_t timer_num, const uint32_t count) {
__HAL_TIM_SetAutoreload(&timerConfig[timer_num].timerdef, count); __HAL_TIM_SetAutoreload(&timerConfig[timer_num].timerdef, count);
} }
void HAL_timer_set_current_count (uint8_t timer_num, uint32_t count) { void HAL_timer_set_current_count(const uint8_t timer_num, const uint32_t count) {
__HAL_TIM_SetAutoreload(&timerConfig[timer_num].timerdef, count); __HAL_TIM_SetAutoreload(&timerConfig[timer_num].timerdef, count);
} }
void HAL_timer_enable_interrupt (uint8_t timer_num) { void HAL_timer_enable_interrupt(const uint8_t timer_num) {
HAL_NVIC_EnableIRQ(timerConfig[timer_num].IRQ_Id); HAL_NVIC_EnableIRQ(timerConfig[timer_num].IRQ_Id);
} }
void HAL_timer_disable_interrupt (uint8_t timer_num) { void HAL_timer_disable_interrupt(const uint8_t timer_num) {
HAL_NVIC_DisableIRQ(timerConfig[timer_num].IRQ_Id); HAL_NVIC_DisableIRQ(timerConfig[timer_num].IRQ_Id);
} }
hal_timer_t HAL_timer_get_count (uint8_t timer_num) { hal_timer_t HAL_timer_get_count(const uint8_t timer_num) {
return __HAL_TIM_GetAutoreload(&timerConfig[timer_num].timerdef); return __HAL_TIM_GetAutoreload(&timerConfig[timer_num].timerdef);
} }
uint32_t HAL_timer_get_current_count(uint8_t timer_num) { uint32_t HAL_timer_get_current_count(const uint8_t timer_num) {
return __HAL_TIM_GetCounter(&timerConfig[timer_num].timerdef); return __HAL_TIM_GetCounter(&timerConfig[timer_num].timerdef);
} }
void HAL_timer_isr_prologue (uint8_t timer_num) { void HAL_timer_isr_prologue(const uint8_t timer_num) {
if (__HAL_TIM_GET_FLAG(&timerConfig[timer_num].timerdef, TIM_FLAG_UPDATE) == SET) { if (__HAL_TIM_GET_FLAG(&timerConfig[timer_num].timerdef, TIM_FLAG_UPDATE) == SET) {
__HAL_TIM_CLEAR_FLAG(&timerConfig[timer_num].timerdef, TIM_FLAG_UPDATE); __HAL_TIM_CLEAR_FLAG(&timerConfig[timer_num].timerdef, TIM_FLAG_UPDATE);
} }
} }
#endif #endif // STM32F7

View file

@ -20,8 +20,6 @@
* *
*/ */
#ifndef _HAL_TIMERS_STM32F7_H #ifndef _HAL_TIMERS_STM32F7_H
#define _HAL_TIMERS_STM32F7_H #define _HAL_TIMERS_STM32F7_H
@ -35,16 +33,15 @@
// Defines // Defines
// -------------------------------------------------------------------------- // --------------------------------------------------------------------------
#define FORCE_INLINE __attribute__((always_inline)) inline #define FORCE_INLINE __attribute__((always_inline)) inline
#define hal_timer_t uint32_t //hal_timer_t uint32_t //TODO: One is 16-bit, one 32-bit - does this need to be checked? #define hal_timer_t uint32_t // TODO: One is 16-bit, one 32-bit - does this need to be checked?
#define HAL_TIMER_TYPE_MAX 0xFFFF #define HAL_TIMER_TYPE_MAX 0xFFFF
#define STEP_TIMER_NUM 0 // index of timer to use for stepper #define STEP_TIMER_NUM 0 // index of timer to use for stepper
#define TEMP_TIMER_NUM 1 // index of timer to use for temperature #define TEMP_TIMER_NUM 1 // index of timer to use for temperature
#define HAL_TIMER_RATE (HAL_RCC_GetSysClockFreq()/2) // frequency of timer peripherals #define HAL_TIMER_RATE (HAL_RCC_GetSysClockFreq() / 2) // frequency of timer peripherals
#define STEPPER_TIMER_PRESCALE 54 // was 40,prescaler for setting stepper timer, 2Mhz #define STEPPER_TIMER_PRESCALE 54 // was 40,prescaler for setting stepper timer, 2Mhz
#define HAL_STEPPER_TIMER_RATE (HAL_TIMER_RATE / STEPPER_TIMER_PRESCALE) // frequency of stepper timer (HAL_TIMER_RATE / STEPPER_TIMER_PRESCALE) #define HAL_STEPPER_TIMER_RATE (HAL_TIMER_RATE / STEPPER_TIMER_PRESCALE) // frequency of stepper timer (HAL_TIMER_RATE / STEPPER_TIMER_PRESCALE)
#define HAL_TICKS_PER_US ((HAL_STEPPER_TIMER_RATE) / 1000000) // stepper timer ticks per us #define HAL_TICKS_PER_US ((HAL_STEPPER_TIMER_RATE) / 1000000) // stepper timer ticks per us
@ -55,11 +52,11 @@
#define TEMP_TIMER_PRESCALE 1000 // prescaler for setting Temp timer, 72Khz #define TEMP_TIMER_PRESCALE 1000 // prescaler for setting Temp timer, 72Khz
#define TEMP_TIMER_FREQUENCY 1000 // temperature interrupt frequency #define TEMP_TIMER_FREQUENCY 1000 // temperature interrupt frequency
#define ENABLE_STEPPER_DRIVER_INTERRUPT() HAL_timer_enable_interrupt (STEP_TIMER_NUM) #define ENABLE_STEPPER_DRIVER_INTERRUPT() HAL_timer_enable_interrupt(STEP_TIMER_NUM)
#define DISABLE_STEPPER_DRIVER_INTERRUPT() HAL_timer_disable_interrupt (STEP_TIMER_NUM) #define DISABLE_STEPPER_DRIVER_INTERRUPT() HAL_timer_disable_interrupt(STEP_TIMER_NUM)
#define ENABLE_TEMPERATURE_INTERRUPT() HAL_timer_enable_interrupt (TEMP_TIMER_NUM) #define ENABLE_TEMPERATURE_INTERRUPT() HAL_timer_enable_interrupt(TEMP_TIMER_NUM)
#define DISABLE_TEMPERATURE_INTERRUPT() HAL_timer_disable_interrupt (TEMP_TIMER_NUM) #define DISABLE_TEMPERATURE_INTERRUPT() HAL_timer_disable_interrupt(TEMP_TIMER_NUM)
#define HAL_ENABLE_ISRs() do { if (thermalManager.in_temp_isr)DISABLE_TEMPERATURE_INTERRUPT(); else ENABLE_TEMPERATURE_INTERRUPT(); ENABLE_STEPPER_DRIVER_INTERRUPT(); } while(0) #define HAL_ENABLE_ISRs() do { if (thermalManager.in_temp_isr)DISABLE_TEMPERATURE_INTERRUPT(); else ENABLE_TEMPERATURE_INTERRUPT(); ENABLE_STEPPER_DRIVER_INTERRUPT(); } while(0)
// TODO change this // TODO change this
@ -86,27 +83,23 @@ typedef struct {
//extern const tTimerConfig timerConfig[]; //extern const tTimerConfig timerConfig[];
// -------------------------------------------------------------------------- // --------------------------------------------------------------------------
// Public functions // Public functions
// -------------------------------------------------------------------------- // --------------------------------------------------------------------------
void HAL_timer_start (uint8_t timer_num, uint32_t frequency); void HAL_timer_start(const uint8_t timer_num, const uint32_t frequency);
void HAL_timer_enable_interrupt(uint8_t timer_num); void HAL_timer_enable_interrupt(const uint8_t timer_num);
void HAL_timer_disable_interrupt(uint8_t timer_num); void HAL_timer_disable_interrupt(const uint8_t timer_num);
void HAL_timer_set_count(const uint8_t timer_num, const uint32_t count);
hal_timer_t HAL_timer_get_count(const uint8_t timer_num);
uint32_t HAL_timer_get_current_count(const uint8_t timer_num);
void HAL_timer_set_current_count(const uint8_t timer_num, const uint32_t count); // New
void HAL_timer_set_count (uint8_t timer_num, uint32_t count);
hal_timer_t HAL_timer_get_count (uint8_t timer_num);
uint32_t HAL_timer_get_current_count(uint8_t timer_num);
void HAL_timer_set_current_count (uint8_t timer_num, uint32_t count); //New
/*FORCE_INLINE static void HAL_timer_set_current_count(const uint8_t timer_num, const hal_timer_t count) { /*FORCE_INLINE static void HAL_timer_set_current_count(const uint8_t timer_num, const hal_timer_t count) {
// To do ?? // To do ??
}*/ }*/
void HAL_timer_isr_prologue (uint8_t timer_num); void HAL_timer_isr_prologue(const uint8_t timer_num);
#endif // _HAL_TIMERS_STM32F7_H #endif // _HAL_TIMERS_STM32F7_H

File diff suppressed because it is too large Load diff

View file

@ -1,37 +1,35 @@
/* /**
TMC26XStepper.cpp - - TMC26X Stepper library for Wiring/Arduino * TMC26XStepper.h - - TMC26X Stepper library for Wiring/Arduino
*
based on the stepper library by Tom Igoe, et. al. * based on the stepper library by Tom Igoe, et. al.
*
Copyright (c) 2011, Interactive Matter, Marcus Nowotny * Copyright (c) 2011, Interactive Matter, Marcus Nowotny
*
Permission is hereby granted, free of charge, to any person obtaining a copy * Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal * of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights * in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is * copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions: * furnished to do so, subject to the following conditions:
*
The above copyright notice and this permission notice shall be included in * The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software. * all copies or substantial portions of the Software.
*
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE. * THE SOFTWARE.
*
*/ */
#include "../../inc/MarlinConfig.h" #include "../../inc/MarlinConfig.h"
// ensure this library description is only included once // ensure this library description is only included once
#ifndef TMC26XStepper_h #ifndef _TMC26XSTEPPER_H_
#define TMC26XStepper_h #define _TMC26XSTEPPER_H_
//! return value for TMC26XStepper.getOverTemperature() if there is a overtemperature situation in the TMC chip //! return value for TMC26XStepper.getOverTemperature() if there is a overtemperature situation in the TMC chip
/*! /*!
@ -124,8 +122,8 @@ class TMC26XStepper {
* You can select a different stepping with setMicrosteps() to aa different value. * You can select a different stepping with setMicrosteps() to aa different value.
* \sa start(), setMicrosteps() * \sa start(), setMicrosteps()
*/ */
TMC26XStepper(int number_of_steps, int cs_pin, int dir_pin, int step_pin, unsigned int current, unsigned int resistor=100); //resistor=150 TMC26XStepper(int number_of_steps, int cs_pin, int dir_pin, int step_pin, unsigned int current, unsigned int resistor=100); //resistor=150
/*! /*!
* \brief configures and starts the TMC26X stepper driver. Before you called this function the stepper driver is in nonfunctional mode. * \brief configures and starts the TMC26X stepper driver. Before you called this function the stepper driver is in nonfunctional mode.
* *
@ -133,7 +131,7 @@ class TMC26XStepper {
* Most member functions are non functional if the driver has not been started. * Most member functions are non functional if the driver has not been started.
* Therefore it is best to call this in your Arduino setup() function. * Therefore it is best to call this in your Arduino setup() function.
*/ */
void start(); void start();
/*! /*!
* \brief resets the stepper in unconfigured mode. * \brief resets the stepper in unconfigured mode.
@ -145,7 +143,7 @@ class TMC26XStepper {
* this has to be configured back by yourself. * this has to be configured back by yourself.
* (Hint: Normally you do not need this function) * (Hint: Normally you do not need this function)
*/ */
void un_start(); void un_start();
/*! /*!
@ -168,9 +166,9 @@ class TMC26XStepper {
* If you give any other value it will be rounded to the next smaller number (3 would give a microstepping of 2). * If you give any other value it will be rounded to the next smaller number (3 would give a microstepping of 2).
* You can always check the current microstepping with getMicrosteps(). * You can always check the current microstepping with getMicrosteps().
*/ */
void setMicrosteps(int number_of_steps); void setMicrosteps(int number_of_steps);
/*! /*!
* \brief returns the effective current number of microsteps selected. * \brief returns the effective current number of microsteps selected.
* *
* This function always returns the effective number of microsteps. * This function always returns the effective number of microsteps.
@ -178,7 +176,7 @@ class TMC26XStepper {
* *
* \sa setMicrosteps() * \sa setMicrosteps()
*/ */
int getMicrosteps(void); int getMicrosteps(void);
/*! /*!
* \brief Initiate a movement for the given number of steps. Positive numbers move in one, negative numbers in the other direction. * \brief Initiate a movement for the given number of steps. Positive numbers move in one, negative numbers in the other direction.
@ -187,7 +185,7 @@ class TMC26XStepper {
* \return 0 if the motor was not moving and moves now. -1 if the motor is moving and the new steps could not be set. * \return 0 if the motor was not moving and moves now. -1 if the motor is moving and the new steps could not be set.
* *
* If the previous movement is not finished yet the function will return -1 and not change the steps to move the motor. * If the previous movement is not finished yet the function will return -1 and not change the steps to move the motor.
* If the motor does not move it return 0 * If the motor does not move it return 0
* *
* The direction of the movement is indicated by the sign of the steps parameter. It is not determinable if positive values are right * The direction of the movement is indicated by the sign of the steps parameter. It is not determinable if positive values are right
* or left This depends on the internal construction of the motor and how you connected it to the stepper driver. * or left This depends on the internal construction of the motor and how you connected it to the stepper driver.
@ -264,7 +262,7 @@ class TMC26XStepper {
* \sa setSpreadCycleChoper() for other alternatives. * \sa setSpreadCycleChoper() for other alternatives.
* \sa setRandomOffTime() for spreading the noise over a wider spectrum * \sa setRandomOffTime() for spreading the noise over a wider spectrum
*/ */
void setConstantOffTimeChopper(char constant_off_time, char blank_time, char fast_decay_time_setting, char sine_wave_offset, unsigned char use_current_comparator); void setConstantOffTimeChopper(char constant_off_time, char blank_time, char fast_decay_time_setting, char sine_wave_offset, unsigned char use_current_comparator);
/*! /*!
* \brief Sets and configures with spread cycle chopper. * \brief Sets and configures with spread cycle chopper.
@ -286,9 +284,9 @@ class TMC26XStepper {
* *
* \sa setRandomOffTime() for spreading the noise over a wider spectrum * \sa setRandomOffTime() for spreading the noise over a wider spectrum
*/ */
void setSpreadCycleChopper(char constant_off_time, char blank_time, char hysteresis_start, char hysteresis_end, char hysteresis_decrement); void setSpreadCycleChopper(char constant_off_time, char blank_time, char hysteresis_start, char hysteresis_end, char hysteresis_decrement);
/*! /*!
* \brief Use random off time for noise reduction (0 for off, -1 for on). * \brief Use random off time for noise reduction (0 for off, -1 for on).
* \param value 0 for off, -1 for on * \param value 0 for off, -1 for on
* *
@ -303,16 +301,16 @@ class TMC26XStepper {
* It modulates the slow decay time setting when switched on. The random off time feature further spreads the chopper spectrum, * It modulates the slow decay time setting when switched on. The random off time feature further spreads the chopper spectrum,
* reducing electromagnetic emission on single frequencies. * reducing electromagnetic emission on single frequencies.
*/ */
void setRandomOffTime(char value); void setRandomOffTime(char value);
/*! /*!
* \brief set the maximum motor current in mA (1000 is 1 Amp) * \brief set the maximum motor current in mA (1000 is 1 Amp)
* Keep in mind this is the maximum peak Current. The RMS current will be 1/sqrt(2) smaller. The actual current can also be smaller * Keep in mind this is the maximum peak Current. The RMS current will be 1/sqrt(2) smaller. The actual current can also be smaller
* by employing CoolStep. * by employing CoolStep.
* \param current the maximum motor current in mA * \param current the maximum motor current in mA
* \sa getCurrent(), getCurrentCurrent() * \sa getCurrent(), getCurrentCurrent()
*/ */
void setCurrent(unsigned int current); void setCurrent(unsigned int current);
/*! /*!
* \brief readout the motor maximum current in mA (1000 is an Amp) * \brief readout the motor maximum current in mA (1000 is an Amp)
@ -322,7 +320,7 @@ class TMC26XStepper {
*/ */
unsigned int getCurrent(void); unsigned int getCurrent(void);
/*! /*!
* \brief set the StallGuard threshold in order to get sensible StallGuard readings. * \brief set the StallGuard threshold in order to get sensible StallGuard readings.
* \param stall_guard_threshold -64 63 the StallGuard threshold * \param stall_guard_threshold -64 63 the StallGuard threshold
* \param stall_guard_filter_enabled 0 if the filter is disabled, -1 if it is enabled * \param stall_guard_filter_enabled 0 if the filter is disabled, -1 if it is enabled
@ -337,7 +335,7 @@ class TMC26XStepper {
* *
* \sa getCurrentStallGuardReading() to read out the current value. * \sa getCurrentStallGuardReading() to read out the current value.
*/ */
void setStallGuardThreshold(char stall_guard_threshold, char stall_guard_filter_enabled); void setStallGuardThreshold(char stall_guard_threshold, char stall_guard_filter_enabled);
/*! /*!
* \brief reads out the StallGuard threshold * \brief reads out the StallGuard threshold
@ -416,13 +414,13 @@ class TMC26XStepper {
*/ */
unsigned char getCoolStepLowerCurrentLimit(); unsigned char getCoolStepLowerCurrentLimit();
/*! /*!
* \brief Get the current microstep position for phase A * \brief Get the current microstep position for phase A
* \return The current microstep position for phase A 0255 * \return The current microstep position for phase A 0255
* *
* Keep in mind that this routine reads and writes a value via SPI - so this may take a bit time. * Keep in mind that this routine reads and writes a value via SPI - so this may take a bit time.
*/ */
int getMotorPosition(void); int getMotorPosition(void);
/*! /*!
* \brief Reads the current StallGuard value. * \brief Reads the current StallGuard value.
@ -430,7 +428,7 @@ class TMC26XStepper {
* Keep in mind that this routine reads and writes a value via SPI - so this may take a bit time. * Keep in mind that this routine reads and writes a value via SPI - so this may take a bit time.
* \sa setStallGuardThreshold() for tuning the readout to sensible ranges. * \sa setStallGuardThreshold() for tuning the readout to sensible ranges.
*/ */
int getCurrentStallGuardReading(void); int getCurrentStallGuardReading(void);
/*! /*!
* \brief Reads the current current setting value as fraction of the maximum current * \brief Reads the current current setting value as fraction of the maximum current
@ -463,7 +461,7 @@ class TMC26XStepper {
* *
* \sa setStallGuardThreshold() for tuning the readout to sensible ranges. * \sa setStallGuardThreshold() for tuning the readout to sensible ranges.
*/ */
boolean isStallGuardOverThreshold(void); boolean isStallGuardOverThreshold(void);
/*! /*!
* \brief Return over temperature status of the last status readout * \brief Return over temperature status of the last status readout
@ -471,7 +469,7 @@ class TMC26XStepper {
* Keep in mind that this method does not enforce a readout but uses the value of the last status readout. * Keep in mind that this method does not enforce a readout but uses the value of the last status readout.
* You may want to use getMotorPosition() or getCurrentStallGuardReading() to enforce an updated status readout. * You may want to use getMotorPosition() or getCurrentStallGuardReading() to enforce an updated status readout.
*/ */
char getOverTemperature(void); char getOverTemperature(void);
/*! /*!
* \brief Is motor channel A shorted to ground detected in the last status readout. * \brief Is motor channel A shorted to ground detected in the last status readout.
@ -480,7 +478,7 @@ class TMC26XStepper {
* You may want to use getMotorPosition() or getCurrentStallGuardReading() to enforce an updated status readout. * You may want to use getMotorPosition() or getCurrentStallGuardReading() to enforce an updated status readout.
*/ */
boolean isShortToGroundA(void); boolean isShortToGroundA(void);
/*! /*!
* \brief Is motor channel B shorted to ground detected in the last status readout. * \brief Is motor channel B shorted to ground detected in the last status readout.
@ -488,22 +486,22 @@ class TMC26XStepper {
* Keep in mind that this method does not enforce a readout but uses the value of the last status readout. * Keep in mind that this method does not enforce a readout but uses the value of the last status readout.
* You may want to use getMotorPosition() or getCurrentStallGuardReading() to enforce an updated status readout. * You may want to use getMotorPosition() or getCurrentStallGuardReading() to enforce an updated status readout.
*/ */
boolean isShortToGroundB(void); boolean isShortToGroundB(void);
/*! /*!
* \brief iIs motor channel A connected according to the last statu readout. * \brief iIs motor channel A connected according to the last statu readout.
* \return true is yes, false if not. * \return true is yes, false if not.
* Keep in mind that this method does not enforce a readout but uses the value of the last status readout. * Keep in mind that this method does not enforce a readout but uses the value of the last status readout.
* You may want to use getMotorPosition() or getCurrentStallGuardReading() to enforce an updated status readout. * You may want to use getMotorPosition() or getCurrentStallGuardReading() to enforce an updated status readout.
*/ */
boolean isOpenLoadA(void); boolean isOpenLoadA(void);
/*! /*!
* \brief iIs motor channel A connected according to the last statu readout. * \brief iIs motor channel A connected according to the last statu readout.
* \return true is yes, false if not. * \return true is yes, false if not.
* Keep in mind that this method does not enforce a readout but uses the value of the last status readout. * Keep in mind that this method does not enforce a readout but uses the value of the last status readout.
* You may want to use getMotorPosition() or getCurrentStallGuardReading() to enforce an updated status readout. * You may want to use getMotorPosition() or getCurrentStallGuardReading() to enforce an updated status readout.
*/ */
boolean isOpenLoadB(void); boolean isOpenLoadB(void);
/*! /*!
* \brief Is chopper inactive since 2^20 clock cycles - defaults to ~0,08s * \brief Is chopper inactive since 2^20 clock cycles - defaults to ~0,08s
@ -511,7 +509,7 @@ class TMC26XStepper {
* Keep in mind that this method does not enforce a readout but uses the value of the last status readout. * Keep in mind that this method does not enforce a readout but uses the value of the last status readout.
* You may want to use getMotorPosition() or getCurrentStallGuardReading() to enforce an updated status readout. * You may want to use getMotorPosition() or getCurrentStallGuardReading() to enforce an updated status readout.
*/ */
boolean isStandStill(void); boolean isStandStill(void);
/*! /*!
* \brief checks if there is a StallGuard warning in the last status * \brief checks if there is a StallGuard warning in the last status
@ -524,7 +522,7 @@ class TMC26XStepper {
* *
* \sa setStallGuardThreshold() for tuning the readout to sensible ranges. * \sa setStallGuardThreshold() for tuning the readout to sensible ranges.
*/ */
boolean isStallGuardReached(void); boolean isStallGuardReached(void);
/*! /*!
*\brief enables or disables the motor driver bridges. If disabled the motor can run freely. If enabled not. *\brief enables or disables the motor driver bridges. If disabled the motor can run freely. If enabled not.
@ -539,7 +537,7 @@ class TMC26XStepper {
*/ */
boolean isEnabled(); boolean isEnabled();
/*! /*!
* \brief Manually read out the status register * \brief Manually read out the status register
* This function sends a byte to the motor driver in order to get the current readout. The parameter read_value * This function sends a byte to the motor driver in order to get the current readout. The parameter read_value
* seletcs which value will get returned. If the read_vlaue changes in respect to the previous readout this method * seletcs which value will get returned. If the read_vlaue changes in respect to the previous readout this method
@ -548,7 +546,7 @@ class TMC26XStepper {
* \param read_value selects which value to read out (0..3). You can use the defines TMC26X_READOUT_POSITION, TMC_262_READOUT_STALLGUARD, or TMC_262_READOUT_CURRENT * \param read_value selects which value to read out (0..3). You can use the defines TMC26X_READOUT_POSITION, TMC_262_READOUT_STALLGUARD, or TMC_262_READOUT_CURRENT
* \sa TMC26X_READOUT_POSITION, TMC_262_READOUT_STALLGUARD, TMC_262_READOUT_CURRENT * \sa TMC26X_READOUT_POSITION, TMC_262_READOUT_STALLGUARD, TMC_262_READOUT_CURRENT
*/ */
void readStatus(char read_value); void readStatus(char read_value);
/*! /*!
* \brief Returns the current sense resistor value in milliohm. * \brief Returns the current sense resistor value in milliohm.
@ -560,51 +558,50 @@ class TMC26XStepper {
* \brief Prints out all the information that can be found in the last status read out - it does not force a status readout. * \brief Prints out all the information that can be found in the last status read out - it does not force a status readout.
* The result is printed via Serial * The result is printed via Serial
*/ */
void debugLastStatus(void); void debugLastStatus(void);
/*! /*!
* \brief library version * \brief library version
* \return the version number as int. * \return the version number as int.
*/ */
int version(void); int version(void);
private: private:
unsigned int steps_left; //the steps the motor has to do to complete the movement unsigned int steps_left; // The steps the motor has to do to complete the movement
int direction; // Direction of rotation int direction; // Direction of rotation
unsigned long step_delay; // delay between steps, in ms, based on speed unsigned long step_delay; // Delay between steps, in ms, based on speed
int number_of_steps; // total number of steps this motor can take int number_of_steps; // Total number of steps this motor can take
unsigned int speed; // we need to store the current speed in order to change the speed after changing microstepping unsigned int speed; // Store the current speed in order to change the speed after changing microstepping
unsigned int resistor; //current sense resitor value in milliohm unsigned int resistor; // Current sense resitor value in milliohm
unsigned long last_step_time; // time stamp in ms of when the last step was taken unsigned long last_step_time; // Time stamp in ms of when the last step was taken
unsigned long next_step_time; // time stamp in ms of when the last step was taken unsigned long next_step_time; // Time stamp in ms of when the last step was taken
//driver control register copies to easily set & modify the registers // Driver control register copies to easily set & modify the registers
unsigned long driver_control_register_value; unsigned long driver_control_register_value;
unsigned long chopper_config_register; unsigned long chopper_config_register;
unsigned long cool_step_register_value; unsigned long cool_step_register_value;
unsigned long stall_guard2_current_register_value; unsigned long stall_guard2_current_register_value;
unsigned long driver_configuration_register_value; unsigned long driver_configuration_register_value;
//the driver status result // The driver status result
unsigned long driver_status_result; unsigned long driver_status_result;
//helper routione to get the top 10 bit of the readout // Helper routione to get the top 10 bit of the readout
inline int getReadoutValue(); inline int getReadoutValue();
//the pins for the stepper driver // The pins for the stepper driver
unsigned char cs_pin; unsigned char cs_pin;
unsigned char step_pin; unsigned char step_pin;
unsigned char dir_pin; unsigned char dir_pin;
//status values // Status values
boolean started; //if the stepper has been started yet boolean started; // If the stepper has been started yet
int microsteps; //the current number of micro steps int microsteps; // The current number of micro steps
char constant_off_time; //we need to remember this value in order to enable and disable the motor char constant_off_time; // We need to remember this value in order to enable and disable the motor
unsigned char cool_step_lower_threshold; // we need to remember the threshold to enable and disable the CoolStep feature unsigned char cool_step_lower_threshold; // we need to remember the threshold to enable and disable the CoolStep feature
boolean cool_step_enabled; //we need to remember this to configure the coolstep if it si enabled boolean cool_step_enabled; // We need to remember this to configure the coolstep if it si enabled
//SPI sender // SPI sender
inline void send262(unsigned long datagram); inline void send262(unsigned long datagram);
}; };
#endif #endif // _TMC26XSTEPPER_H_

View file

@ -26,10 +26,10 @@
* These use GPIO functions instead of Direct Port Manipulation, as on AVR. * These use GPIO functions instead of Direct Port Manipulation, as on AVR.
*/ */
#ifndef _FASTIO_STM32F7_H #ifndef _FASTIO_STM32F7_H
#define _FASTIO_STM32F7_H #define _FASTIO_STM32F7_H
#define _BV(bit) (1 << (bit)) #define _BV(bit) (1 << (bit))
#define READ(IO) digitalRead(IO) #define READ(IO) digitalRead(IO)
#define WRITE(IO, v) digitalWrite(IO,v) #define WRITE(IO, v) digitalWrite(IO,v)
@ -38,17 +38,17 @@
#define _GET_MODE(IO) #define _GET_MODE(IO)
#define _SET_MODE(IO,M) pinMode(IO, M) #define _SET_MODE(IO,M) pinMode(IO, M)
#define _SET_OUTPUT(IO) pinMode(IO, OUTPUT) /*!< Output Push Pull Mode & GPIO_NOPULL */ #define _SET_OUTPUT(IO) pinMode(IO, OUTPUT) /*!< Output Push Pull Mode & GPIO_NOPULL */
#define SET_INPUT(IO) _SET_MODE(IO, INPUT) /*!< Input Floating Mode */ #define SET_INPUT(IO) _SET_MODE(IO, INPUT) /*!< Input Floating Mode */
#define SET_INPUT_PULLUP(IO) _SET_MODE(IO, INPUT_PULLUP) /*!< Input with Pull-up activation */ #define SET_INPUT_PULLUP(IO) _SET_MODE(IO, INPUT_PULLUP) /*!< Input with Pull-up activation */
#define SET_INPUT_PULLDOW(IO) _SET_MODE(IO, INPUT_PULLDOWN) /*!< Input with Pull-down activation */ #define SET_INPUT_PULLDOW(IO) _SET_MODE(IO, INPUT_PULLDOWN) /*!< Input with Pull-down activation */
#define SET_OUTPUT(IO) do{ _SET_OUTPUT(IO); WRITE(IO, LOW); }while(0) #define SET_OUTPUT(IO) do{ _SET_OUTPUT(IO); WRITE(IO, LOW); }while(0)
#define GET_INPUT(IO) #define GET_INPUT(IO)
#define GET_OUTPUT(IO) #define GET_OUTPUT(IO)
#define GET_TIMER(IO) #define GET_TIMER(IO)
#define OUT_WRITE(IO, v) { _SET_OUTPUT(IO); WRITE(IO, v); } #define OUT_WRITE(IO, v) { _SET_OUTPUT(IO); WRITE(IO, v); }
#endif /* _FASTIO_STM32F7_H */ #endif // _FASTIO_STM32F7_H

View file

@ -1,24 +1,24 @@
/** /**
* Marlin 3D Printer Firmware * Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
* *
* Based on Sprinter and grbl. * Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
* *
* This program is free software: you can redistribute it and/or modify * This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by * it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or * the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version. * (at your option) any later version.
* *
* This program is distributed in the hope that it will be useful, * This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of * but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details. * GNU General Public License for more details.
* *
* You should have received a copy of the GNU General Public License * You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>. * along with this program. If not, see <http://www.gnu.org/licenses/>.
* *
*/ */
#ifdef STM32F7 #ifdef STM32F7
@ -26,29 +26,26 @@
#if ENABLED(USE_WATCHDOG) #if ENABLED(USE_WATCHDOG)
#include "watchdog_STM32F7.h" #include "watchdog_STM32F7.h"
IWDG_HandleTypeDef hiwdg; IWDG_HandleTypeDef hiwdg;
void watchdog_init() { void watchdog_init() {
hiwdg.Instance = IWDG; hiwdg.Instance = IWDG;
hiwdg.Init.Prescaler = IWDG_PRESCALER_32; //32kHz LSI clock and 32x prescalar = 1024Hz IWDG clock hiwdg.Init.Prescaler = IWDG_PRESCALER_32; //32kHz LSI clock and 32x prescalar = 1024Hz IWDG clock
hiwdg.Init.Reload = 4095; //4095 counts = 4 seconds at 1024Hz hiwdg.Init.Reload = 4095; //4095 counts = 4 seconds at 1024Hz
if (HAL_IWDG_Init(&hiwdg) != HAL_OK) if (HAL_IWDG_Init(&hiwdg) != HAL_OK) {
{ //Error_Handler();
//Error_Handler();
}
} }
}
void watchdog_reset() { void watchdog_reset() {
/* Refresh IWDG: reload counter */ /* Refresh IWDG: reload counter */
if (HAL_IWDG_Refresh(&hiwdg) != HAL_OK) if (HAL_IWDG_Refresh(&hiwdg) != HAL_OK) {
{ /* Refresh Error */
/* Refresh Error */ //Error_Handler();
//Error_Handler();
}
} }
}
#endif // USE_WATCHDOG #endif // USE_WATCHDOG

View file

@ -37,10 +37,10 @@
#elif defined(__STM32F1__) #elif defined(__STM32F1__)
#include "HAL_STM32F1/SanityCheck_Stm32f1.h" #include "HAL_STM32F1/SanityCheck_Stm32f1.h"
#elif defined(STM32F7) #elif defined(STM32F7)
#include "HAL_STM32F7/SanityCheck_STM32F7.h" #include "HAL_STM32F7/SanityCheck_STM32F7.h"
#else #else
#error Unsupported Platform! #error Unsupported Platform!
#endif #endif

View file

@ -41,7 +41,7 @@
#elif defined(STM32F7) #elif defined(STM32F7)
#include "HAL_STM32F7/spi_pins.h" #include "HAL_STM32F7/spi_pins.h"
#else #else
#error "Unsupported Platform!" #error "Unsupported Platform!"
#endif #endif

View file

@ -120,6 +120,7 @@
// Macros to contrain values // Macros to contrain values
#define NOLESS(v,n) do{ if (v < n) v = n; }while(0) #define NOLESS(v,n) do{ if (v < n) v = n; }while(0)
#define NOMORE(v,n) do{ if (v > n) v = n; }while(0) #define NOMORE(v,n) do{ if (v > n) v = n; }while(0)
#define LIMIT(v,n1,n2) do{ if (v < n1) v = n1; else if (v > n2) v = n2; }while(0)
// Macros to support option testing // Macros to support option testing
#define _CAT(a, ...) a ## __VA_ARGS__ #define _CAT(a, ...) a ## __VA_ARGS__

View file

@ -42,7 +42,7 @@
#include <SPI.h> #include <SPI.h>
#if defined(STM32F7) #ifdef STM32F7
#include "../HAL/HAL_STM32F7/TMC2660.h" #include "../HAL/HAL_STM32F7/TMC2660.h"
#else #else
#include <TMC26XStepper.h> #include <TMC26XStepper.h>

View file

@ -49,7 +49,7 @@
// TMC26X drivers have STEP/DIR on normal pins, but ENABLE via SPI // TMC26X drivers have STEP/DIR on normal pins, but ENABLE via SPI
#if ENABLED(HAVE_TMCDRIVER) #if ENABLED(HAVE_TMCDRIVER)
#include <SPI.h> #include <SPI.h>
#if defined(STM32F7) #ifdef STM32F7
#include "../HAL/HAL_STM32F7/TMC2660.h" #include "../HAL/HAL_STM32F7/TMC2660.h"
#else #else
#include <TMC26XStepper.h> #include <TMC26XStepper.h>