Update Marlin_main.cpp

Changed level and leveling to compensation (except with "verbose_level" and "lcd_reset_alert_level").
This commit is contained in:
John Davis 2014-12-19 17:41:29 -05:00
parent f21c65918f
commit 4315c2547a

View file

@ -29,12 +29,12 @@
#include "Marlin.h"
#ifdef ENABLE_AUTO_BED_LEVELING
#ifdef ENABLE_AUTO_BED_COMPENSATION
#include "vector_3.h"
#ifdef AUTO_BED_LEVELING_GRID
#ifdef AUTO_BED_COMPENSATION_GRID
#include "qr_solve.h"
#endif
#endif // ENABLE_AUTO_BED_LEVELING
#endif // ENABLE_AUTO_BED_COMPENSATION
#include "ultralcd.h"
#include "planner.h"
@ -520,7 +520,7 @@ void servo_init()
}
#endif
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
#if defined (ENABLE_AUTO_BED_COMPENSATION) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
delay(PROBE_SERVO_DEACTIVATION_DELAY);
servos[servo_endstops[Z_AXIS]].detach();
#endif
@ -962,16 +962,16 @@ static void axis_is_at_home(int axis) {
#endif
}
#ifdef ENABLE_AUTO_BED_LEVELING
#ifdef AUTO_BED_LEVELING_GRID
static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
#ifdef ENABLE_AUTO_BED_COMPENSATION
#ifdef AUTO_BED_COMPENSATION_GRID
static void set_bed_compensation_equation_lsq(double *plane_equation_coefficients)
{
vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
planeNormal.debug("planeNormal");
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
//bedLevel.debug("bedLevel");
plan_bed_compensation_matrix = matrix_3x3::create_look_at(planeNormal);
//bedCompensation.debug("bedCompensation");
//plan_bed_level_matrix.debug("bed level before");
//plan_bed_compensation_matrix.debug("bed compensation before");
//vector_3 uncorrected_position = plan_get_position_mm();
//uncorrected_position.debug("position before");
@ -987,11 +987,11 @@ static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
#else // not AUTO_BED_LEVELING_GRID
#else // not AUTO_BED_COMPENSATION_GRID
static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
static void set_bed_compensation_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
plan_bed_level_matrix.set_to_identity();
plan_bed_compensation_matrix.set_to_identity();
vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
@ -1002,7 +1002,7 @@ static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float
vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
plan_bed_compensation_matrix = matrix_3x3::create_look_at(planeNormal);
vector_3 corrected_position = plan_get_position();
current_position[X_AXIS] = corrected_position.x;
@ -1016,10 +1016,10 @@ static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float
}
#endif // AUTO_BED_LEVELING_GRID
#endif // AUTO_BED_COMPENSATION_GRID
static void run_z_probe() {
plan_bed_level_matrix.set_to_identity();
plan_bed_compensation_matrix.set_to_identity();
feedrate = homing_feedrate[Z_AXIS];
// move down until you find the bed
@ -1088,11 +1088,11 @@ static void engage_z_probe() {
// Engage Z Servo endstop if enabled
#ifdef SERVO_ENDSTOPS
if (servo_endstops[Z_AXIS] > -1) {
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
#if defined (ENABLE_AUTO_BED_COMPENSATION) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
servos[servo_endstops[Z_AXIS]].attach(0);
#endif
servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
#if defined (ENABLE_AUTO_BED_COMPENSATION) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
delay(PROBE_SERVO_DEACTIVATION_DELAY);
servos[servo_endstops[Z_AXIS]].detach();
#endif
@ -1104,11 +1104,11 @@ static void retract_z_probe() {
// Retract Z Servo endstop if enabled
#ifdef SERVO_ENDSTOPS
if (servo_endstops[Z_AXIS] > -1) {
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
#if defined (ENABLE_AUTO_BED_COMPENSATION) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
servos[servo_endstops[Z_AXIS]].attach(0);
#endif
servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
#if defined (ENABLE_AUTO_BED_COMPENSATION) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
delay(PROBE_SERVO_DEACTIVATION_DELAY);
servos[servo_endstops[Z_AXIS]].detach();
#endif
@ -1142,7 +1142,7 @@ static float probe_pt(float x, float y, float z_before) {
return measured_z;
}
#endif // #ifdef ENABLE_AUTO_BED_LEVELING
#endif // #ifdef ENABLE_AUTO_BED_COMPENSATION
static void homeaxis(int axis) {
#define HOMEAXIS_DO(LETTER) \
@ -1165,7 +1165,7 @@ static void homeaxis(int axis) {
#ifndef Z_PROBE_SLED
// Engage Servo endstop if enabled
#ifdef SERVO_ENDSTOPS
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
#if defined (ENABLE_AUTO_BED_COMPENSATION) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
if (axis==Z_AXIS) {
engage_z_probe();
}
@ -1216,7 +1216,7 @@ static void homeaxis(int axis) {
servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
}
#endif
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
#if defined (ENABLE_AUTO_BED_COMPENSATION) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
#ifndef Z_PROBE_SLED
if (axis==Z_AXIS) retract_z_probe();
#endif
@ -1325,7 +1325,7 @@ void process_commands()
{
unsigned long codenum; //throw away variable
char *starpos = NULL;
#ifdef ENABLE_AUTO_BED_LEVELING
#ifdef ENABLE_AUTO_BED_COMPENSATION
float x_tmp, y_tmp, z_tmp, real_z;
#endif
if(code_seen('G'))
@ -1399,9 +1399,9 @@ void process_commands()
break;
#endif //FWRETRACT
case 28: //G28 Home all Axis one at a time
#ifdef ENABLE_AUTO_BED_LEVELING
plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
#endif //ENABLE_AUTO_BED_LEVELING
#ifdef ENABLE_AUTO_BED_COMPENSATION
plan_bed_compensation_matrix.set_to_identity(); //Reset the plane ("erase" all compensation data)
#endif //ENABLE_AUTO_BED_COMPENSATION
saved_feedrate = feedrate;
saved_feedmultiply = feedmultiply;
@ -1605,7 +1605,7 @@ void process_commands()
current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
}
}
#ifdef ENABLE_AUTO_BED_LEVELING
#ifdef ENABLE_AUTO_BED_COMPENSATION
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
}
@ -1628,11 +1628,11 @@ void process_commands()
endstops_hit_on_purpose();
break;
#ifdef ENABLE_AUTO_BED_LEVELING
#ifdef ENABLE_AUTO_BED_COMPENSATION
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
{
#if Z_MIN_PIN == -1
#error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
#error "You must have a Z_MIN endstop in order to enable Auto Bed Compensation feature!!! Z_MIN_PIN must point to a valid hardware pin."
#endif
// Prevent user from running a G29 without first homing in X and Y
@ -1648,10 +1648,10 @@ void process_commands()
dock_sled(false);
#endif // Z_PROBE_SLED
st_synchronize();
// make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
// make sure the bed_compensation_rotation_matrix is identity or the planner will get it incorectly
//vector_3 corrected_position = plan_get_position_mm();
//corrected_position.debug("position before G29");
plan_bed_level_matrix.set_to_identity();
plan_bed_compensation_matrix.set_to_identity();
vector_3 uncorrected_position = plan_get_position();
//uncorrected_position.debug("position durring G29");
current_position[X_AXIS] = uncorrected_position.x;
@ -1661,11 +1661,11 @@ void process_commands()
setup_for_endstop_move();
feedrate = homing_feedrate[Z_AXIS];
#ifdef AUTO_BED_LEVELING_GRID
#ifdef AUTO_BED_COMPENSATION_GRID
// probe at the points of a lattice grid
int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_COMPENSATION_GRID_POINTS-1);
int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_COMPENSATION_GRID_POINTS-1);
// solve the plane equation ax + by + d = z
@ -1675,9 +1675,9 @@ void process_commands()
// so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
// "A" matrix of the linear system of equations
double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
double eqnAMatrix[AUTO_BED_COMPENSATION_GRID_POINTS*AUTO_BED_COMPENSATION_GRID_POINTS*3];
// "B" vector of Z points
double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
double eqnBVector[AUTO_BED_COMPENSATION_GRID_POINTS*AUTO_BED_COMPENSATION_GRID_POINTS];
int probePointCounter = 0;
@ -1700,7 +1700,7 @@ void process_commands()
zig = true;
}
for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
for (int xCount=0; xCount < AUTO_BED_COMPENSATION_GRID_POINTS; xCount++)
{
float z_before;
if (probePointCounter == 0)
@ -1717,9 +1717,9 @@ void process_commands()
eqnBVector[probePointCounter] = measured_z;
eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
eqnAMatrix[probePointCounter + 0*AUTO_BED_COMPENSATION_GRID_POINTS*AUTO_BED_COMPENSATION_GRID_POINTS] = xProbe;
eqnAMatrix[probePointCounter + 1*AUTO_BED_COMPENSATION_GRID_POINTS*AUTO_BED_COMPENSATION_GRID_POINTS] = yProbe;
eqnAMatrix[probePointCounter + 2*AUTO_BED_COMPENSATION_GRID_POINTS*AUTO_BED_COMPENSATION_GRID_POINTS] = 1;
probePointCounter++;
xProbe += xInc;
}
@ -1727,7 +1727,7 @@ void process_commands()
clean_up_after_endstop_move();
// solve lsq problem
double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
double *plane_equation_coefficients = qr_solve(AUTO_BED_COMPENSATION_GRID_POINTS*AUTO_BED_COMPENSATION_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
SERIAL_PROTOCOL(plane_equation_coefficients[0]);
@ -1737,11 +1737,11 @@ void process_commands()
SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
set_bed_level_equation_lsq(plane_equation_coefficients);
set_bed_compensation_equation_lsq(plane_equation_coefficients);
free(plane_equation_coefficients);
#else // AUTO_BED_LEVELING_GRID not defined
#else // AUTO_BED_COMPENSATION_GRID not defined
// Probe at 3 arbitrary points
// probe 1
@ -1755,21 +1755,21 @@ void process_commands()
clean_up_after_endstop_move();
set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
set_bed_compensation_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
#endif // AUTO_BED_LEVELING_GRID
#endif // AUTO_BED_COMPENSATION_GRID
st_synchronize();
// The following code correct the Z height difference from z-probe position and hotend tip position.
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
// When the bed is uneven, this height must be corrected.
real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed compensation is already correcting the plane)
x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
z_tmp = current_position[Z_AXIS];
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
apply_rotation_xyz(plan_bed_compensation_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
#ifdef Z_PROBE_SLED
@ -1782,7 +1782,7 @@ void process_commands()
{
engage_z_probe(); // Engage Z Servo endstop if available
st_synchronize();
// TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
// TODO: make sure the bed_compensation_rotation_matrix is identity or the planner will get set incorectly
setup_for_endstop_move();
feedrate = homing_feedrate[Z_AXIS];
@ -1809,7 +1809,7 @@ void process_commands()
dock_sled(false);
break;
#endif // Z_PROBE_SLED
#endif // ENABLE_AUTO_BED_LEVELING
#endif // ENABLE_AUTO_BED_COMPENSATION
case 90: // G90
relative_mode = false;
break;
@ -2068,7 +2068,7 @@ void process_commands()
//
// This function assumes the bed has been homed. Specificaly, that a G28 command
// as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
// Any information generated by a prior G29 Bed leveling command will be lost and need to be
// Any information generated by a prior G29 Bed compensation command will be lost and need to be
// regenerated.
//
// The number of samples will default to 10 if not specified. You can use upper or lower case
@ -2076,7 +2076,7 @@ void process_commands()
// N for its communication protocol and will get horribly confused if you send it a capital N.
//
#ifdef ENABLE_AUTO_BED_LEVELING
#ifdef ENABLE_AUTO_BED_COMPENSATION
#ifdef Z_PROBE_REPEATABILITY_TEST
case 48: // M48 Z-Probe repeatability
@ -2154,7 +2154,7 @@ void process_commands()
//
st_synchronize();
plan_bed_level_matrix.set_to_identity();
plan_bed_compensation_matrix.set_to_identity();
plan_buffer_line( X_current, Y_current, Z_start_location,
ext_position,
homing_feedrate[Z_AXIS]/60,
@ -2333,7 +2333,7 @@ Sigma_Exit:
break;
}
#endif // Z_PROBE_REPEATABILITY_TEST
#endif // ENABLE_AUTO_BED_LEVELING
#endif // ENABLE_AUTO_BED_COMPENSATION
case 104: // M104
if(setTargetedHotend(104)){
@ -3093,11 +3093,11 @@ Sigma_Exit:
if (code_seen('S')) {
servo_position = code_value();
if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
#if defined (ENABLE_AUTO_BED_COMPENSATION) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
servos[servo_index].attach(0);
#endif
servos[servo_index].write(servo_position);
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
#if defined (ENABLE_AUTO_BED_COMPENSATION) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
delay(PROBE_SERVO_DEACTIVATION_DELAY);
servos[servo_index].detach();
#endif
@ -3362,7 +3362,7 @@ Sigma_Exit:
st_synchronize();
}
break;
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
#if defined(ENABLE_AUTO_BED_COMPENSATION) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
case 401:
{
engage_z_probe(); // Engage Z Servo endstop if available