Add serial XON/XOFF handshaking

From @ejtagle, originally #7459
This commit is contained in:
Scott Lahteine 2017-10-02 02:47:30 -05:00
parent af15383578
commit 508d764d63
6 changed files with 279 additions and 104 deletions

View file

@ -108,8 +108,9 @@
* *
* 250000 works in most cases, but you might try a lower speed if * 250000 works in most cases, but you might try a lower speed if
* you commonly experience drop-outs during host printing. * you commonly experience drop-outs during host printing.
* You may try up to 1000000 to speed up SD file transfer.
* *
* :[2400, 9600, 19200, 38400, 57600, 115200, 250000] * :[2400, 9600, 19200, 38400, 57600, 115200, 250000, 500000, 1000000]
*/ */
#define BAUDRATE 250000 #define BAUDRATE 250000

View file

@ -751,7 +751,7 @@
#define MAX_CMD_SIZE 96 #define MAX_CMD_SIZE 96
#define BUFSIZE 4 #define BUFSIZE 4
// Transfer Buffer Size // Transmission to Host Buffer Size
// To save 386 bytes of PROGMEM (and TX_BUFFER_SIZE+3 bytes of RAM) set to 0. // To save 386 bytes of PROGMEM (and TX_BUFFER_SIZE+3 bytes of RAM) set to 0.
// To buffer a simple "ok" you need 4 bytes. // To buffer a simple "ok" you need 4 bytes.
// For ADVANCED_OK (M105) you need 32 bytes. // For ADVANCED_OK (M105) you need 32 bytes.
@ -760,6 +760,28 @@
// :[0, 2, 4, 8, 16, 32, 64, 128, 256] // :[0, 2, 4, 8, 16, 32, 64, 128, 256]
#define TX_BUFFER_SIZE 0 #define TX_BUFFER_SIZE 0
// Host Receive Buffer Size
// Without XON/XOFF flow control (see SERIAL_XON_XOFF below) 32 bytes should be enough.
// To use flow control, set this buffer size to at least 1024 bytes.
// :[0, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048]
//#define RX_BUFFER_SIZE 1024
#if RX_BUFFER_SIZE >= 1024
// Enable to have the controller send XON/XOFF control characters to
// the host to signal the RX buffer is becoming full.
//#define SERIAL_XON_XOFF
#endif
#if ENABLED(SDSUPPORT)
// Enable this option to collect and display the maximum
// RX queue usage after transferring a file to SD.
//#define SERIAL_STATS_MAX_RX_QUEUED
// Enable this option to collect and display the number
// of dropped bytes after a file transfer to SD.
//#define SERIAL_STATS_DROPPED_RX
#endif
// Enable an emergency-command parser to intercept certain commands as they // Enable an emergency-command parser to intercept certain commands as they
// enter the serial receive buffer, so they cannot be blocked. // enter the serial receive buffer, so they cannot be blocked.
// Currently handles M108, M112, M410 // Currently handles M108, M112, M410

View file

@ -27,16 +27,31 @@
* Modified 23 November 2006 by David A. Mellis * Modified 23 November 2006 by David A. Mellis
* Modified 28 September 2010 by Mark Sproul * Modified 28 September 2010 by Mark Sproul
* Modified 14 February 2016 by Andreas Hardtung (added tx buffer) * Modified 14 February 2016 by Andreas Hardtung (added tx buffer)
* Modified 01 October 2017 by Eduardo José Tagle (added XON/XOFF)
*/ */
#ifdef __AVR__ #ifdef __AVR__
#include "MarlinSerial.h"
#include "../../Marlin.h"
// Disable HardwareSerial.cpp to support chips without a UART (Attiny, etc.) // Disable HardwareSerial.cpp to support chips without a UART (Attiny, etc.)
#include "../../inc/MarlinConfig.h"
#if !defined(USBCON) && (defined(UBRRH) || defined(UBRR0H) || defined(UBRR1H) || defined(UBRR2H) || defined(UBRR3H)) #if !defined(USBCON) && (defined(UBRRH) || defined(UBRR0H) || defined(UBRR1H) || defined(UBRR2H) || defined(UBRR3H))
#include "MarlinSerial.h"
#include "../../Marlin.h"
struct ring_buffer_r {
unsigned char buffer[RX_BUFFER_SIZE];
volatile ring_buffer_pos_t head, tail;
};
#if TX_BUFFER_SIZE > 0
struct ring_buffer_t {
unsigned char buffer[TX_BUFFER_SIZE];
volatile uint8_t head, tail;
};
#endif
#if UART_PRESENT(SERIAL_PORT) #if UART_PRESENT(SERIAL_PORT)
ring_buffer_r rx_buffer = { { 0 }, 0, 0 }; ring_buffer_r rx_buffer = { { 0 }, 0, 0 };
#if TX_BUFFER_SIZE > 0 #if TX_BUFFER_SIZE > 0
@ -45,6 +60,23 @@
#endif #endif
#endif #endif
#if ENABLED(SERIAL_XON_XOFF)
uint8_t xon_xoff_state = XON_XOFF_CHAR_SENT | XON_CHAR;
constexpr uint8_t XON_XOFF_CHAR_SENT = 0x80; // XON / XOFF Character was sent
constexpr uint8_t XON_XOFF_CHAR_MASK = 0x1F; // XON / XOFF character to send
// XON / XOFF character definitions
constexpr uint8_t XON_CHAR = 17;
constexpr uint8_t XOFF_CHAR = 19;
#endif
#if ENABLED(SERIAL_STATS_DROPPED_RX)
uint8_t rx_dropped_bytes = 0;
#endif
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
ring_buffer_pos_t rx_max_enqueued = 0;
#endif
#if ENABLED(EMERGENCY_PARSER) #if ENABLED(EMERGENCY_PARSER)
#include "../../module/stepper.h" #include "../../module/stepper.h"
@ -136,20 +168,78 @@
#endif // EMERGENCY_PARSER #endif // EMERGENCY_PARSER
FORCE_INLINE void store_char(unsigned char c) { FORCE_INLINE void store_rxd_char() {
CRITICAL_SECTION_START; const ring_buffer_pos_t h = rx_buffer.head,
const uint8_t h = rx_buffer.head, i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
i = (uint8_t)(h + 1) & (RX_BUFFER_SIZE - 1);
// if we should be storing the received character into the location // If the character is to be stored at the index just before the tail
// just before the tail (meaning that the head would advance to the // (such that the head would advance to the current tail), the buffer is
// current location of the tail), we're about to overflow the buffer // critical, so don't write the character or advance the head.
// and so we don't write the character or advance the head.
if (i != rx_buffer.tail) { if (i != rx_buffer.tail) {
rx_buffer.buffer[h] = c; rx_buffer.buffer[h] = M_UDRx;
rx_buffer.head = i; rx_buffer.head = i;
} }
CRITICAL_SECTION_END; else {
(void)M_UDRx;
#if ENABLED(SERIAL_STATS_DROPPED_RX)
if (!++rx_dropped_bytes) ++rx_dropped_bytes;
#endif
}
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
// calculate count of bytes stored into the RX buffer
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
// Keep track of the maximum count of enqueued bytes
NOLESS(rx_max_enqueued, rx_count);
#endif
#if ENABLED(SERIAL_XON_XOFF)
// for high speed transfers, we can use XON/XOFF protocol to do
// software handshake and avoid overruns.
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) {
// calculate count of bytes stored into the RX buffer
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
// if we are above 12.5% of RX buffer capacity, send XOFF before
// we run out of RX buffer space .. We need 325 bytes @ 250kbits/s to
// let the host react and stop sending bytes. This translates to 13mS
// propagation time.
if (rx_count >= (RX_BUFFER_SIZE) / 8) {
// If TX interrupts are disabled and data register is empty,
// just write the byte to the data register and be done. This
// shortcut helps significantly improve the effective datarate
// at high (>500kbit/s) bitrates, where interrupt overhead
// becomes a slowdown.
if (!TEST(M_UCSRxB, M_UDRIEx) && TEST(M_UCSRxA, M_UDREx)) {
// Send an XOFF character
M_UDRx = XOFF_CHAR;
// clear the TXC bit -- "can be cleared by writing a one to its bit
// location". This makes sure flush() won't return until the bytes
// actually got written
SBI(M_UCSRxA, M_TXCx);
// And remember it was sent
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT;
}
else {
// TX interrupts disabled, but buffer still not empty ... or
// TX interrupts enabled. Reenable TX ints and schedule XOFF
// character to be sent
#if TX_BUFFER_SIZE > 0
SBI(M_UCSRxB, M_UDRIEx);
xon_xoff_state = XOFF_CHAR;
#else
// We are not using TX interrupts, we will have to send this manually
while (!TEST(M_UCSRxA, M_UDREx)) { /* nada */ };
M_UDRx = XOFF_CHAR;
// And remember we already sent it
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT;
#endif
}
}
}
#endif // SERIAL_XON_XOFF
#if ENABLED(EMERGENCY_PARSER) #if ENABLED(EMERGENCY_PARSER)
emergency_parser(c); emergency_parser(c);
@ -160,37 +250,41 @@
FORCE_INLINE void _tx_udr_empty_irq(void) { FORCE_INLINE void _tx_udr_empty_irq(void) {
// If interrupts are enabled, there must be more data in the output // If interrupts are enabled, there must be more data in the output
// buffer. Send the next byte // buffer.
const uint8_t t = tx_buffer.tail,
c = tx_buffer.buffer[t];
tx_buffer.tail = (t + 1) & (TX_BUFFER_SIZE - 1);
#if ENABLED(SERIAL_XON_XOFF)
// Do a priority insertion of an XON/XOFF char, if needed.
const uint8_t state = xon_xoff_state;
if (!(state & XON_XOFF_CHAR_SENT)) {
M_UDRx = state & XON_XOFF_CHAR_MASK;
xon_xoff_state = state | XON_XOFF_CHAR_SENT;
}
else
#endif
{ // Send the next byte
const uint8_t t = tx_buffer.tail, c = tx_buffer.buffer[t];
tx_buffer.tail = (t + 1) & (TX_BUFFER_SIZE - 1);
M_UDRx = c; M_UDRx = c;
}
// clear the TXC bit -- "can be cleared by writing a one to its bit // clear the TXC bit -- "can be cleared by writing a one to its bit
// location". This makes sure flush() won't return until the bytes // location". This makes sure flush() won't return until the bytes
// actually got written // actually got written
SBI(M_UCSRxA, M_TXCx); SBI(M_UCSRxA, M_TXCx);
if (tx_buffer.head == tx_buffer.tail) { // Disable interrupts if the buffer is empty
// Buffer empty, so disable interrupts if (tx_buffer.head == tx_buffer.tail)
CBI(M_UCSRxB, M_UDRIEx); CBI(M_UCSRxB, M_UDRIEx);
} }
}
#ifdef M_USARTx_UDRE_vect #ifdef M_USARTx_UDRE_vect
ISR(M_USARTx_UDRE_vect) { ISR(M_USARTx_UDRE_vect) { _tx_udr_empty_irq(); }
_tx_udr_empty_irq();
}
#endif #endif
#endif // TX_BUFFER_SIZE #endif // TX_BUFFER_SIZE
#ifdef M_USARTx_RX_vect #ifdef M_USARTx_RX_vect
ISR(M_USARTx_RX_vect) { ISR(M_USARTx_RX_vect) { store_rxd_char(); }
const unsigned char c = M_UDRx;
store_char(c);
}
#endif #endif
// Public Methods // Public Methods
@ -200,9 +294,9 @@
bool useU2X = true; bool useU2X = true;
#if F_CPU == 16000000UL && SERIAL_PORT == 0 #if F_CPU == 16000000UL && SERIAL_PORT == 0
// hard-coded exception for compatibility with the bootloader shipped // Hard-coded exception for compatibility with the bootloader shipped
// with the Duemilanove and previous boards and the firmware on the 8U2 // with the Duemilanove and previous boards, and the firmware on the
// on the Uno and Mega 2560. // 8U2 on the Uno and Mega 2560.
if (baud == 57600) useU2X = false; if (baud == 57600) useU2X = false;
#endif #endif
@ -237,8 +331,9 @@
void MarlinSerial::checkRx(void) { void MarlinSerial::checkRx(void) {
if (TEST(M_UCSRxA, M_RXCx)) { if (TEST(M_UCSRxA, M_RXCx)) {
const uint8_t c = M_UDRx; CRITICAL_SECTION_START;
store_char(c); store_rxd_char();
CRITICAL_SECTION_END;
} }
} }
@ -252,47 +347,76 @@
int MarlinSerial::read(void) { int MarlinSerial::read(void) {
int v; int v;
CRITICAL_SECTION_START; CRITICAL_SECTION_START;
const uint8_t t = rx_buffer.tail; const ring_buffer_pos_t t = rx_buffer.tail;
if (rx_buffer.head == t) if (rx_buffer.head == t)
v = -1; v = -1;
else { else {
v = rx_buffer.buffer[t]; v = rx_buffer.buffer[t];
rx_buffer.tail = (uint8_t)(t + 1) & (RX_BUFFER_SIZE - 1); rx_buffer.tail = (ring_buffer_pos_t)(t + 1) & (RX_BUFFER_SIZE - 1);
#if ENABLED(SERIAL_XON_XOFF)
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
// Get count of bytes in the RX buffer
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
// When below 10% of RX buffer capacity, send XON before
// running out of RX buffer bytes
if (rx_count < (RX_BUFFER_SIZE) / 10) {
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
CRITICAL_SECTION_END; // End critical section before returning!
writeNoHandshake(XON_CHAR);
return v;
}
}
#endif
} }
CRITICAL_SECTION_END; CRITICAL_SECTION_END;
return v; return v;
} }
uint8_t MarlinSerial::available(void) { ring_buffer_pos_t MarlinSerial::available(void) {
CRITICAL_SECTION_START; CRITICAL_SECTION_START;
const uint8_t h = rx_buffer.head, const ring_buffer_pos_t h = rx_buffer.head, t = rx_buffer.tail;
t = rx_buffer.tail;
CRITICAL_SECTION_END; CRITICAL_SECTION_END;
return (uint8_t)(RX_BUFFER_SIZE + h - t) & (RX_BUFFER_SIZE - 1); return (ring_buffer_pos_t)(RX_BUFFER_SIZE + h - t) & (RX_BUFFER_SIZE - 1);
} }
void MarlinSerial::flush(void) { void MarlinSerial::flush(void) {
// RX // Don't change this order of operations. If the RX interrupt occurs between
// don't reverse this or there may be problems if the RX interrupt // reading rx_buffer_head and updating rx_buffer_tail, the previous rx_buffer_head
// occurs after reading the value of rx_buffer_head but before writing // may be written to rx_buffer_tail, making the buffer appear full rather than empty.
// the value to rx_buffer_tail; the previous value of rx_buffer_head
// may be written to rx_buffer_tail, making it appear as if the buffer
// were full, not empty.
CRITICAL_SECTION_START; CRITICAL_SECTION_START;
rx_buffer.head = rx_buffer.tail; rx_buffer.head = rx_buffer.tail;
CRITICAL_SECTION_END; CRITICAL_SECTION_END;
#if ENABLED(SERIAL_XON_XOFF)
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
writeNoHandshake(XON_CHAR);
}
#endif
} }
#if TX_BUFFER_SIZE > 0 #if TX_BUFFER_SIZE > 0
uint8_t MarlinSerial::availableForWrite(void) { uint8_t MarlinSerial::availableForWrite(void) {
CRITICAL_SECTION_START; CRITICAL_SECTION_START;
const uint8_t h = tx_buffer.head, const uint8_t h = tx_buffer.head, t = tx_buffer.tail;
t = tx_buffer.tail;
CRITICAL_SECTION_END; CRITICAL_SECTION_END;
return (uint8_t)(TX_BUFFER_SIZE + h - t) & (TX_BUFFER_SIZE - 1); return (uint8_t)(TX_BUFFER_SIZE + h - t) & (TX_BUFFER_SIZE - 1);
} }
void MarlinSerial::write(const uint8_t c) { void MarlinSerial::write(const uint8_t c) {
#if ENABLED(SERIAL_XON_XOFF)
const uint8_t state = xon_xoff_state;
if (!(state & XON_XOFF_CHAR_SENT)) {
// Send 2 chars: XON/XOFF, then a user-specified char
writeNoHandshake(state & XON_XOFF_CHAR_MASK);
xon_xoff_state = state | XON_XOFF_CHAR_SENT;
}
#endif
writeNoHandshake(c);
}
void MarlinSerial::writeNoHandshake(const uint8_t c) {
_written = true; _written = true;
CRITICAL_SECTION_START; CRITICAL_SECTION_START;
bool emty = (tx_buffer.head == tx_buffer.tail); bool emty = (tx_buffer.head == tx_buffer.tail);
@ -355,18 +479,32 @@
// the hardware finished tranmission (TXC is set). // the hardware finished tranmission (TXC is set).
} }
#else #else // TX_BUFFER_SIZE == 0
void MarlinSerial::write(uint8_t c) {
while (!TEST(M_UCSRxA, M_UDREx)) void MarlinSerial::write(const uint8_t c) {
; while (!TEST(M_UCSRxA, M_UDREx)) { /* nada */ }
M_UDRx = c; M_UDRx = c;
#if ENABLED(SERIAL_XON_XOFF)
// Do a priority insertion of an XON/XOFF char, if needed.
const uint8_t state = xon_xoff_state;
if (!(state & XON_XOFF_CHAR_SENT)) {
writeNoHandshake(state & XON_XOFF_CHAR_MASK);
xon_xoff_state = state | XON_XOFF_CHAR_SENT;
} }
#endif #endif
writeNoHandshake(c);
}
// end NEW void MarlinSerial::writeNoHandshake(const uint8_t c) {
while (!TEST(M_UCSRxA, M_UDREx)) ;
M_UDRx = c;
}
/// imports from print.h #endif // TX_BUFFER_SIZE == 0
/**
* Imports from print.h
*/
void MarlinSerial::print(char c, int base) { void MarlinSerial::print(char c, int base) {
print((long)c, base); print((long)c, base);
@ -516,4 +654,4 @@
HardwareSerial bluetoothSerial; HardwareSerial bluetoothSerial;
#endif #endif
#endif #endif // __AVR__

View file

@ -21,13 +21,13 @@
*/ */
/** /**
MarlinSerial.h - Hardware serial library for Wiring * MarlinSerial.h - Hardware serial library for Wiring
Copyright (c) 2006 Nicholas Zambetti. All right reserved. * Copyright (c) 2006 Nicholas Zambetti. All right reserved.
*
Modified 28 September 2010 by Mark Sproul * Modified 28 September 2010 by Mark Sproul
Modified 14 February 2016 by Andreas Hardtung (added tx buffer) * Modified 14 February 2016 by Andreas Hardtung (added tx buffer)
* Modified 01 October 2017 by Eduardo José Tagle (added XON/XOFF)
*/ */
#ifndef MARLINSERIAL_H #ifndef MARLINSERIAL_H
#define MARLINSERIAL_H #define MARLINSERIAL_H
@ -89,32 +89,31 @@
#ifndef TX_BUFFER_SIZE #ifndef TX_BUFFER_SIZE
#define TX_BUFFER_SIZE 32 #define TX_BUFFER_SIZE 32
#endif #endif
#if !((RX_BUFFER_SIZE == 256) ||(RX_BUFFER_SIZE == 128) ||(RX_BUFFER_SIZE == 64) ||(RX_BUFFER_SIZE == 32) ||(RX_BUFFER_SIZE == 16) ||(RX_BUFFER_SIZE == 8) ||(RX_BUFFER_SIZE == 4) ||(RX_BUFFER_SIZE == 2))
#error "RX_BUFFER_SIZE has to be a power of 2 and >= 2" #if ENABLED(SERIAL_XON_XOFF) && RX_BUFFER_SIZE < 1024
#endif #error "XON/XOFF requires RX_BUFFER_SIZE >= 1024 for reliable transfers without drops."
#if !((TX_BUFFER_SIZE == 256) ||(TX_BUFFER_SIZE == 128) ||(TX_BUFFER_SIZE == 64) ||(TX_BUFFER_SIZE == 32) ||(TX_BUFFER_SIZE == 16) ||(TX_BUFFER_SIZE == 8) ||(TX_BUFFER_SIZE == 4) ||(TX_BUFFER_SIZE == 2) ||(TX_BUFFER_SIZE == 0))
#error TX_BUFFER_SIZE has to be a power of 2 or 0
#endif #endif
struct ring_buffer_r { #if !IS_POWER_OF_2(RX_BUFFER_SIZE) || RX_BUFFER_SIZE < 2
unsigned char buffer[RX_BUFFER_SIZE]; #error "RX_BUFFER_SIZE must be a power of 2 greater than 1."
volatile uint8_t head;
volatile uint8_t tail;
};
#if TX_BUFFER_SIZE > 0
struct ring_buffer_t {
unsigned char buffer[TX_BUFFER_SIZE];
volatile uint8_t head;
volatile uint8_t tail;
};
#endif #endif
#if UART_PRESENT(SERIAL_PORT) #if TX_BUFFER_SIZE && (TX_BUFFER_SIZE < 2 || TX_BUFFER_SIZE > 256 || !IS_POWER_OF_2(TX_BUFFER_SIZE))
extern ring_buffer_r rx_buffer; #error "TX_BUFFER_SIZE must be 0 or a power of 2 greater than 1."
#if TX_BUFFER_SIZE > 0
extern ring_buffer_t tx_buffer;
#endif #endif
#if RX_BUFFER_SIZE > 256
typedef uint16_t ring_buffer_pos_t;
#else
typedef uint8_t ring_buffer_pos_t;
#endif
#if ENABLED(SERIAL_STATS_DROPPED_RX)
extern uint8_t rx_dropped_bytes;
#endif
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
extern ring_buffer_pos_t rx_max_enqueued;
#endif #endif
class MarlinSerial { //: public Stream class MarlinSerial { //: public Stream
@ -126,19 +125,23 @@
static int peek(void); static int peek(void);
static int read(void); static int read(void);
static void flush(void); static void flush(void);
static uint8_t available(void); static ring_buffer_pos_t available(void);
static void checkRx(void); static void checkRx(void);
static void write(const uint8_t c); static void write(const uint8_t c);
#if TX_BUFFER_SIZE > 0 #if TX_BUFFER_SIZE > 0
static uint8_t availableForWrite(void); static uint8_t availableForWrite(void);
static void flushTX(void); static void flushTX(void);
#endif #endif
static void writeNoHandshake(const uint8_t c);
private: #if ENABLED(SERIAL_STATS_DROPPED_RX)
static void printNumber(unsigned long, const uint8_t); FORCE_INLINE static uint32_t dropped() { return rx_dropped_bytes; }
static void printFloat(double, uint8_t); #endif
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
FORCE_INLINE static ring_buffer_pos_t rxMaxEnqueued() { return rx_max_enqueued; }
#endif
public:
static FORCE_INLINE void write(const char* str) { while (*str) write(*str++); } static FORCE_INLINE void write(const char* str) { while (*str) write(*str++); }
static FORCE_INLINE void write(const uint8_t* buffer, size_t size) { while (size--) write(*buffer++); } static FORCE_INLINE void write(const uint8_t* buffer, size_t size) { while (size--) write(*buffer++); }
static FORCE_INLINE void print(const String& s) { for (int i = 0; i < (int)s.length(); i++) write(s[i]); } static FORCE_INLINE void print(const String& s) { for (int i = 0; i < (int)s.length(); i++) write(s[i]); }
@ -163,6 +166,10 @@
static void println(double, int = 2); static void println(double, int = 2);
static void println(void); static void println(void);
operator bool() { return true; } operator bool() { return true; }
private:
static void printNumber(unsigned long, const uint8_t);
static void printFloat(double, uint8_t);
}; };
extern MarlinSerial customizedSerial; extern MarlinSerial customizedSerial;

View file

@ -106,6 +106,7 @@
#define CIRCLE_CIRC(R) (2.0 * M_PI * (R)) #define CIRCLE_CIRC(R) (2.0 * M_PI * (R))
#define SIGN(a) ((a>0)-(a<0)) #define SIGN(a) ((a>0)-(a<0))
#define IS_POWER_OF_2(x) ((x) && !((x) & ((x) - 1)))
// Macros to contrain values // Macros to contrain values
#define NOLESS(v,n) do{ if (v < n) v = n; }while(0) #define NOLESS(v,n) do{ if (v < n) v = n; }while(0)

View file

@ -221,9 +221,9 @@ inline void get_serial_commands() {
/** /**
* Loop while serial characters are incoming and the queue is not full * Loop while serial characters are incoming and the queue is not full
*/ */
while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) { int c;
while (commands_in_queue < BUFSIZE && (c = MYSERIAL.read()) >= 0) {
char serial_char = MYSERIAL.read(); char serial_char = c;
/** /**
* If the character ends the line * If the character ends the line
@ -323,12 +323,9 @@ inline void get_serial_commands() {
// The command will be injected when EOL is reached // The command will be injected when EOL is reached
} }
else if (serial_char == '\\') { // Handle escapes else if (serial_char == '\\') { // Handle escapes
if (MYSERIAL.available() > 0) {
// if we have one more character, copy it over // if we have one more character, copy it over
serial_char = MYSERIAL.read(); if ((c = MYSERIAL.read()) >= 0 && !serial_comment_mode)
if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char; serial_line_buffer[serial_count++] = serial_char;
}
// otherwise do nothing
} }
else { // it's not a newline, carriage return or escape char else { // it's not a newline, carriage return or escape char
if (serial_char == ';') serial_comment_mode = true; if (serial_char == ';') serial_comment_mode = true;
@ -448,6 +445,15 @@ void advance_command_queue() {
// M29 closes the file // M29 closes the file
card.closefile(); card.closefile();
SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED); SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
#if ENABLED(SERIAL_STATS_DROPPED_RX)
SERIAL_ECHOLNPAIR("Dropped bytes: ", customizedSerial.dropped());
#endif
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
SERIAL_ECHOLNPAIR("Max RX Queue Size: ", customizedSerial.rxMaxEnqueued());
#endif
ok_to_send(); ok_to_send();
} }
else { else {