|
|
|
@ -211,72 +211,37 @@ bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
|
|
|
|
|
int feedmultiply = 100; //100->1 200->2
|
|
|
|
|
int saved_feedmultiply;
|
|
|
|
|
int extrudemultiply = 100; //100->1 200->2
|
|
|
|
|
int extruder_multiply[EXTRUDERS] = { 100
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
, 100
|
|
|
|
|
#if EXTRUDERS > 2
|
|
|
|
|
, 100
|
|
|
|
|
#if EXTRUDERS > 3
|
|
|
|
|
, 100
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
};
|
|
|
|
|
int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
|
|
|
|
|
bool volumetric_enabled = false;
|
|
|
|
|
float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
, DEFAULT_NOMINAL_FILAMENT_DIA
|
|
|
|
|
#if EXTRUDERS > 2
|
|
|
|
|
, DEFAULT_NOMINAL_FILAMENT_DIA
|
|
|
|
|
#if EXTRUDERS > 3
|
|
|
|
|
, DEFAULT_NOMINAL_FILAMENT_DIA
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
};
|
|
|
|
|
float volumetric_multiplier[EXTRUDERS] = {1.0
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
, 1.0
|
|
|
|
|
#if EXTRUDERS > 2
|
|
|
|
|
, 1.0
|
|
|
|
|
#if EXTRUDERS > 3
|
|
|
|
|
, 1.0
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
};
|
|
|
|
|
float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
|
|
|
|
|
float home_offset[3] = { 0, 0, 0 };
|
|
|
|
|
float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
|
|
|
|
|
float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
|
|
|
|
|
float current_position[NUM_AXIS] = { 0.0 };
|
|
|
|
|
float home_offset[3] = { 0 };
|
|
|
|
|
#ifdef DELTA
|
|
|
|
|
float endstop_adj[3] = { 0, 0, 0 };
|
|
|
|
|
float endstop_adj[3] = { 0 };
|
|
|
|
|
#elif defined(Z_DUAL_ENDSTOPS)
|
|
|
|
|
float z_endstop_adj = 0;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
|
|
|
|
|
float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
|
|
|
|
|
bool axis_known_position[3] = { false, false, false };
|
|
|
|
|
bool axis_known_position[3] = { false };
|
|
|
|
|
|
|
|
|
|
// Extruder offset
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
#ifndef DUAL_X_CARRIAGE
|
|
|
|
|
#ifndef EXTRUDER_OFFSET_X
|
|
|
|
|
#define EXTRUDER_OFFSET_X 0
|
|
|
|
|
#endif
|
|
|
|
|
#ifndef EXTRUDER_OFFSET_Y
|
|
|
|
|
#define EXTRUDER_OFFSET_Y 0
|
|
|
|
|
#endif
|
|
|
|
|
#ifndef DUAL_X_CARRIAGE
|
|
|
|
|
#define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
|
|
|
|
|
#else
|
|
|
|
|
#else
|
|
|
|
|
#define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
|
|
|
|
|
#endif
|
|
|
|
|
float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
|
|
|
|
|
#if defined(EXTRUDER_OFFSET_X)
|
|
|
|
|
EXTRUDER_OFFSET_X
|
|
|
|
|
#else
|
|
|
|
|
0
|
|
|
|
|
#endif
|
|
|
|
|
,
|
|
|
|
|
#if defined(EXTRUDER_OFFSET_Y)
|
|
|
|
|
EXTRUDER_OFFSET_Y
|
|
|
|
|
#else
|
|
|
|
|
0
|
|
|
|
|
#endif
|
|
|
|
|
};
|
|
|
|
|
#define _EXY { EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y }
|
|
|
|
|
float extruder_offset[EXTRUDERS][NUM_EXTRUDER_OFFSETS] = ARRAY_BY_EXTRUDERS(_EXY, _EXY, _EXY, _EXY);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
uint8_t active_extruder = 0;
|
|
|
|
@ -295,28 +260,8 @@ int fanSpeed = 0;
|
|
|
|
|
#ifdef FWRETRACT
|
|
|
|
|
|
|
|
|
|
bool autoretract_enabled = false;
|
|
|
|
|
bool retracted[EXTRUDERS] = { false
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
, false
|
|
|
|
|
#if EXTRUDERS > 2
|
|
|
|
|
, false
|
|
|
|
|
#if EXTRUDERS > 3
|
|
|
|
|
, false
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
};
|
|
|
|
|
bool retracted_swap[EXTRUDERS] = { false
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
, false
|
|
|
|
|
#if EXTRUDERS > 2
|
|
|
|
|
, false
|
|
|
|
|
#if EXTRUDERS > 3
|
|
|
|
|
, false
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
};
|
|
|
|
|
bool retracted[EXTRUDERS] = { false };
|
|
|
|
|
bool retracted_swap[EXTRUDERS] = { false };
|
|
|
|
|
|
|
|
|
|
float retract_length = RETRACT_LENGTH;
|
|
|
|
|
float retract_length_swap = RETRACT_LENGTH_SWAP;
|
|
|
|
@ -385,9 +330,9 @@ const char errormagic[] PROGMEM = "Error:";
|
|
|
|
|
const char echomagic[] PROGMEM = "echo:";
|
|
|
|
|
|
|
|
|
|
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
|
|
|
|
|
static float destination[NUM_AXIS] = { 0, 0, 0, 0 };
|
|
|
|
|
static float destination[NUM_AXIS] = { 0 };
|
|
|
|
|
|
|
|
|
|
static float offset[3] = { 0, 0, 0 };
|
|
|
|
|
static float offset[3] = { 0 };
|
|
|
|
|
|
|
|
|
|
#ifndef DELTA
|
|
|
|
|
static bool home_all_axis = true;
|
|
|
|
@ -993,7 +938,7 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
|
|
|
|
|
// second X-carriage offset when homed - otherwise X2_HOME_POS is used.
|
|
|
|
|
// This allow soft recalibration of the second extruder offset position without firmware reflash
|
|
|
|
|
// (through the M218 command).
|
|
|
|
|
return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
|
|
|
|
|
return (extruder_offset[1][X_AXIS] > 0) ? extruder_offset[1][X_AXIS] : X2_HOME_POS;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int x_home_dir(int extruder) {
|
|
|
|
@ -1017,14 +962,14 @@ static void axis_is_at_home(int axis) {
|
|
|
|
|
if (active_extruder != 0) {
|
|
|
|
|
current_position[X_AXIS] = x_home_pos(active_extruder);
|
|
|
|
|
min_pos[X_AXIS] = X2_MIN_POS;
|
|
|
|
|
max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
|
|
|
|
|
max_pos[X_AXIS] = max(extruder_offset[1][X_AXIS], X2_MAX_POS);
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
|
|
|
|
|
current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
|
|
|
|
|
min_pos[X_AXIS] = base_min_pos(X_AXIS) + home_offset[X_AXIS];
|
|
|
|
|
max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + home_offset[X_AXIS],
|
|
|
|
|
max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
|
|
|
|
|
max(extruder_offset[1][X_AXIS], X2_MAX_POS) - duplicate_extruder_x_offset);
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
@ -1077,12 +1022,18 @@ static void axis_is_at_home(int axis) {
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Shorthand to tell the planner our current position (in mm).
|
|
|
|
|
*/
|
|
|
|
|
inline void sync_plan_position() {
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
|
#ifdef AUTO_BED_LEVELING_GRID
|
|
|
|
|
|
|
|
|
|
#ifndef DELTA
|
|
|
|
|
static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
|
|
|
|
|
{
|
|
|
|
|
static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
|
|
|
|
|
vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
|
|
|
|
|
planeNormal.debug("planeNormal");
|
|
|
|
|
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
|
|
|
@ -1093,13 +1044,13 @@ static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
|
|
|
|
|
//uncorrected_position.debug("position before");
|
|
|
|
|
|
|
|
|
|
vector_3 corrected_position = plan_get_position();
|
|
|
|
|
// corrected_position.debug("position after");
|
|
|
|
|
//corrected_position.debug("position after");
|
|
|
|
|
current_position[X_AXIS] = corrected_position.x;
|
|
|
|
|
current_position[Y_AXIS] = corrected_position.y;
|
|
|
|
|
current_position[Z_AXIS] = corrected_position.z;
|
|
|
|
|
current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z
|
|
|
|
|
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
}
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#else // not AUTO_BED_LEVELING_GRID
|
|
|
|
@ -1124,9 +1075,9 @@ static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float
|
|
|
|
|
vector_3 corrected_position = plan_get_position();
|
|
|
|
|
current_position[X_AXIS] = corrected_position.x;
|
|
|
|
|
current_position[Y_AXIS] = corrected_position.y;
|
|
|
|
|
current_position[Z_AXIS] = corrected_position.z;
|
|
|
|
|
current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z
|
|
|
|
|
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif // AUTO_BED_LEVELING_GRID
|
|
|
|
@ -1172,18 +1123,14 @@ static void run_z_probe() {
|
|
|
|
|
endstops_hit_on_purpose();
|
|
|
|
|
|
|
|
|
|
// move back down slowly to find bed
|
|
|
|
|
|
|
|
|
|
if (homing_bump_divisor[Z_AXIS] >= 1)
|
|
|
|
|
{
|
|
|
|
|
if (homing_bump_divisor[Z_AXIS] >= 1) {
|
|
|
|
|
feedrate = homing_feedrate[Z_AXIS]/homing_bump_divisor[Z_AXIS];
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
else {
|
|
|
|
|
feedrate = homing_feedrate[Z_AXIS]/10;
|
|
|
|
|
SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
zPosition -= home_retract_mm(Z_AXIS) * 2;
|
|
|
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
@ -1191,7 +1138,7 @@ static void run_z_probe() {
|
|
|
|
|
|
|
|
|
|
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
|
|
|
|
|
// make sure the planner knows where we are as it may be a bit different than we last said to move to
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
@ -1471,7 +1418,7 @@ static void homeaxis(int axis) {
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
current_position[axis] = 0;
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef Z_PROBE_SLED
|
|
|
|
@ -1497,7 +1444,7 @@ static void homeaxis(int axis) {
|
|
|
|
|
st_synchronize();
|
|
|
|
|
|
|
|
|
|
current_position[axis] = 0;
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
destination[axis] = -home_retract_mm(axis) * axis_home_dir;
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
@ -1520,7 +1467,7 @@ static void homeaxis(int axis) {
|
|
|
|
|
if (axis==Z_AXIS)
|
|
|
|
|
{
|
|
|
|
|
feedrate = homing_feedrate[axis];
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
if (axis_home_dir > 0)
|
|
|
|
|
{
|
|
|
|
|
destination[axis] = (-1) * fabs(z_endstop_adj);
|
|
|
|
@ -1540,7 +1487,7 @@ static void homeaxis(int axis) {
|
|
|
|
|
#ifdef DELTA
|
|
|
|
|
// retrace by the amount specified in endstop_adj
|
|
|
|
|
if (endstop_adj[axis] * axis_home_dir < 0) {
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
destination[axis] = endstop_adj[axis];
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
@ -1596,7 +1543,7 @@ void refresh_cmd_timeout(void)
|
|
|
|
|
calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
|
|
|
|
|
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
#else
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
#endif
|
|
|
|
|
prepare_move();
|
|
|
|
|
}
|
|
|
|
@ -1612,7 +1559,7 @@ void refresh_cmd_timeout(void)
|
|
|
|
|
calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
|
|
|
|
|
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
#else
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
#endif
|
|
|
|
|
//prepare_move();
|
|
|
|
|
}
|
|
|
|
@ -1789,7 +1736,7 @@ inline void gcode_G28() {
|
|
|
|
|
|
|
|
|
|
// Move all carriages up together until the first endstop is hit.
|
|
|
|
|
for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
|
|
|
|
|
for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
|
|
|
|
|
feedrate = 1.732 * homing_feedrate[X_AXIS];
|
|
|
|
@ -1829,7 +1776,7 @@ inline void gcode_G28() {
|
|
|
|
|
extruder_duplication_enabled = false;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
|
|
|
|
|
destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
|
|
|
|
|
feedrate = homing_feedrate[X_AXIS];
|
|
|
|
@ -1844,7 +1791,7 @@ inline void gcode_G28() {
|
|
|
|
|
|
|
|
|
|
axis_is_at_home(X_AXIS);
|
|
|
|
|
axis_is_at_home(Y_AXIS);
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
destination[X_AXIS] = current_position[X_AXIS];
|
|
|
|
|
destination[Y_AXIS] = current_position[Y_AXIS];
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
@ -1921,7 +1868,7 @@ inline void gcode_G28() {
|
|
|
|
|
feedrate = XY_TRAVEL_SPEED / 60;
|
|
|
|
|
current_position[Z_AXIS] = 0;
|
|
|
|
|
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
current_position[X_AXIS] = destination[X_AXIS];
|
|
|
|
@ -1973,7 +1920,7 @@ inline void gcode_G28() {
|
|
|
|
|
if (home_all_axis || code_seen(axis_codes[Z_AXIS]))
|
|
|
|
|
current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
|
|
|
|
|
#endif
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
|
|
|
|
|
#endif // else DELTA
|
|
|
|
|
|
|
|
|
@ -1998,7 +1945,7 @@ inline void gcode_G28() {
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
mbl.active = 1;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
@ -2069,7 +2016,7 @@ inline void gcode_G28() {
|
|
|
|
|
int ix, iy;
|
|
|
|
|
if (probe_point == 0) {
|
|
|
|
|
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
} else {
|
|
|
|
|
ix = (probe_point-1) % MESH_NUM_X_POINTS;
|
|
|
|
|
iy = (probe_point-1) / MESH_NUM_X_POINTS;
|
|
|
|
@ -2242,7 +2189,7 @@ inline void gcode_G28() {
|
|
|
|
|
current_position[X_AXIS] = uncorrected_position.x;
|
|
|
|
|
current_position[Y_AXIS] = uncorrected_position.y;
|
|
|
|
|
current_position[Z_AXIS] = uncorrected_position.z;
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
@ -2443,7 +2390,7 @@ inline void gcode_G28() {
|
|
|
|
|
|
|
|
|
|
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
|
|
|
|
|
current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
}
|
|
|
|
|
#endif // !DELTA
|
|
|
|
|
|
|
|
|
@ -2494,15 +2441,17 @@ inline void gcode_G92() {
|
|
|
|
|
if (!code_seen(axis_codes[E_AXIS]))
|
|
|
|
|
st_synchronize();
|
|
|
|
|
|
|
|
|
|
bool didXYZ = false;
|
|
|
|
|
for (int i = 0; i < NUM_AXIS; i++) {
|
|
|
|
|
if (code_seen(axis_codes[i])) {
|
|
|
|
|
current_position[i] = code_value();
|
|
|
|
|
float v = current_position[i] = code_value();
|
|
|
|
|
if (i == E_AXIS)
|
|
|
|
|
plan_set_e_position(current_position[E_AXIS]);
|
|
|
|
|
plan_set_e_position(v);
|
|
|
|
|
else
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
didXYZ = true;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (didXYZ) sync_plan_position();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifdef ULTIPANEL
|
|
|
|
@ -3760,23 +3709,23 @@ inline void gcode_M206() {
|
|
|
|
|
inline void gcode_M218() {
|
|
|
|
|
if (setTargetedHotend(218)) return;
|
|
|
|
|
|
|
|
|
|
if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
|
|
|
|
|
if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
|
|
|
|
|
if (code_seen('X')) extruder_offset[tmp_extruder][X_AXIS] = code_value();
|
|
|
|
|
if (code_seen('Y')) extruder_offset[tmp_extruder][Y_AXIS] = code_value();
|
|
|
|
|
|
|
|
|
|
#ifdef DUAL_X_CARRIAGE
|
|
|
|
|
if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
|
|
|
|
|
if (code_seen('Z')) extruder_offset[tmp_extruder][Z_AXIS] = code_value();
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
SERIAL_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
|
|
|
|
|
for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
|
|
|
|
|
SERIAL_ECHO(" ");
|
|
|
|
|
SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
|
|
|
|
|
SERIAL_ECHO(extruder_offset[tmp_extruder][X_AXIS]);
|
|
|
|
|
SERIAL_ECHO(",");
|
|
|
|
|
SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
|
|
|
|
|
SERIAL_ECHO(extruder_offset[tmp_extruder][Y_AXIS]);
|
|
|
|
|
#ifdef DUAL_X_CARRIAGE
|
|
|
|
|
SERIAL_ECHO(",");
|
|
|
|
|
SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
|
|
|
|
|
SERIAL_ECHO(extruder_offset[tmp_extruder][Z_AXIS]);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
@ -4467,13 +4416,13 @@ inline void gcode_M503() {
|
|
|
|
|
SERIAL_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
|
|
|
|
|
SERIAL_ECHO(" ");
|
|
|
|
|
SERIAL_ECHO(extruder_offset[X_AXIS][0]);
|
|
|
|
|
SERIAL_ECHO(extruder_offset[0][X_AXIS]);
|
|
|
|
|
SERIAL_ECHO(",");
|
|
|
|
|
SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
|
|
|
|
|
SERIAL_ECHO(extruder_offset[0][Y_AXIS]);
|
|
|
|
|
SERIAL_ECHO(" ");
|
|
|
|
|
SERIAL_ECHO(duplicate_extruder_x_offset);
|
|
|
|
|
SERIAL_ECHO(",");
|
|
|
|
|
SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
|
|
|
|
|
SERIAL_ECHOLN(extruder_offset[1][Y_AXIS]);
|
|
|
|
|
break;
|
|
|
|
|
case DXC_FULL_CONTROL_MODE:
|
|
|
|
|
case DXC_AUTO_PARK_MODE:
|
|
|
|
@ -4608,11 +4557,11 @@ inline void gcode_T() {
|
|
|
|
|
|
|
|
|
|
// apply Y & Z extruder offset (x offset is already used in determining home pos)
|
|
|
|
|
current_position[Y_AXIS] = current_position[Y_AXIS] -
|
|
|
|
|
extruder_offset[Y_AXIS][active_extruder] +
|
|
|
|
|
extruder_offset[Y_AXIS][tmp_extruder];
|
|
|
|
|
extruder_offset[active_extruder][Y_AXIS] +
|
|
|
|
|
extruder_offset[tmp_extruder][Y_AXIS];
|
|
|
|
|
current_position[Z_AXIS] = current_position[Z_AXIS] -
|
|
|
|
|
extruder_offset[Z_AXIS][active_extruder] +
|
|
|
|
|
extruder_offset[Z_AXIS][tmp_extruder];
|
|
|
|
|
extruder_offset[active_extruder][Z_AXIS] +
|
|
|
|
|
extruder_offset[tmp_extruder][Z_AXIS];
|
|
|
|
|
|
|
|
|
|
active_extruder = tmp_extruder;
|
|
|
|
|
|
|
|
|
@ -4642,7 +4591,7 @@ inline void gcode_T() {
|
|
|
|
|
#else // !DUAL_X_CARRIAGE
|
|
|
|
|
// Offset extruder (only by XY)
|
|
|
|
|
for (int i=X_AXIS; i<=Y_AXIS; i++)
|
|
|
|
|
current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
|
|
|
|
|
current_position[i] += extruder_offset[tmp_extruder][i] - extruder_offset[active_extruder][i];
|
|
|
|
|
// Set the new active extruder and position
|
|
|
|
|
active_extruder = tmp_extruder;
|
|
|
|
|
#endif // !DUAL_X_CARRIAGE
|
|
|
|
@ -4651,7 +4600,7 @@ inline void gcode_T() {
|
|
|
|
|
//sent position to plan_set_position();
|
|
|
|
|
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
|
|
|
|
|
#else
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
#endif
|
|
|
|
|
// Move to the old position if 'F' was in the parameters
|
|
|
|
|
if (make_move && !Stopped) prepare_move();
|
|
|
|
@ -5492,7 +5441,7 @@ for (int s = 1; s <= steps; s++) {
|
|
|
|
|
plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
|
|
|
|
|
current_position[E_AXIS], max_feedrate[X_AXIS], 1);
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
st_synchronize();
|
|
|
|
|
extruder_duplication_enabled = true;
|
|
|
|
|
active_extruder_parked = false;
|
|
|
|
|