Merge pull request #6827 from thinkyhead/bf_day_ending_in_y
Make UBL a complete singleton
This commit is contained in:
commit
62d8e35adc
|
@ -135,64 +135,78 @@
|
|||
float code_value_axis_units(const AxisEnum axis);
|
||||
bool code_value_bool();
|
||||
bool code_has_value();
|
||||
void lcd_init();
|
||||
void lcd_setstatuspgm(const char* const message, const uint8_t level);
|
||||
void sync_plan_position_e();
|
||||
void chirp_at_user();
|
||||
|
||||
// Private functions
|
||||
|
||||
void un_retract_filament(float where[XYZE]);
|
||||
void retract_filament(float where[XYZE]);
|
||||
bool look_for_lines_to_connect();
|
||||
bool parse_G26_parameters();
|
||||
void move_to(const float&, const float&, const float&, const float&) ;
|
||||
void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&);
|
||||
bool turn_on_heaters();
|
||||
bool prime_nozzle();
|
||||
|
||||
static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16];
|
||||
float g26_e_axis_feedrate = 0.020,
|
||||
random_deviation = 0.0,
|
||||
layer_height = LAYER_HEIGHT;
|
||||
random_deviation = 0.0;
|
||||
|
||||
static bool g26_retracted = false; // Track the retracted state of the nozzle so mismatched
|
||||
// retracts/recovers won't result in a bad state.
|
||||
|
||||
float valid_trig_angle(float);
|
||||
mesh_index_pair find_closest_circle_to_print(const float&, const float&);
|
||||
|
||||
static float extrusion_multiplier = EXTRUSION_MULTIPLIER,
|
||||
retraction_multiplier = RETRACTION_MULTIPLIER,
|
||||
nozzle = NOZZLE,
|
||||
filament_diameter = FILAMENT,
|
||||
prime_length = PRIME_LENGTH,
|
||||
x_pos, y_pos,
|
||||
ooze_amount = OOZE_AMOUNT;
|
||||
float unified_bed_leveling::g26_extrusion_multiplier,
|
||||
unified_bed_leveling::g26_retraction_multiplier,
|
||||
unified_bed_leveling::g26_nozzle,
|
||||
unified_bed_leveling::g26_filament_diameter,
|
||||
unified_bed_leveling::g26_layer_height,
|
||||
unified_bed_leveling::g26_prime_length,
|
||||
unified_bed_leveling::g26_x_pos,
|
||||
unified_bed_leveling::g26_y_pos,
|
||||
unified_bed_leveling::g26_ooze_amount;
|
||||
|
||||
static int16_t bed_temp = BED_TEMP,
|
||||
hotend_temp = HOTEND_TEMP;
|
||||
int16_t unified_bed_leveling::g26_bed_temp,
|
||||
unified_bed_leveling::g26_hotend_temp;
|
||||
|
||||
static int8_t prime_flag = 0;
|
||||
int8_t unified_bed_leveling::g26_prime_flag;
|
||||
|
||||
static bool continue_with_closest, keep_heaters_on;
|
||||
bool unified_bed_leveling::g26_continue_with_closest,
|
||||
unified_bed_leveling::g26_keep_heaters_on;
|
||||
|
||||
static int16_t g26_repeats;
|
||||
int16_t unified_bed_leveling::g26_repeats;
|
||||
|
||||
void G26_line_to_destination(const float &feed_rate) {
|
||||
void unified_bed_leveling::G26_line_to_destination(const float &feed_rate) {
|
||||
const float save_feedrate = feedrate_mm_s;
|
||||
feedrate_mm_s = feed_rate; // use specified feed rate
|
||||
prepare_move_to_destination(); // will ultimately call ubl_line_to_destination_cartesian or ubl_prepare_linear_move_to for UBL_DELTA
|
||||
prepare_move_to_destination(); // will ultimately call ubl.line_to_destination_cartesian or ubl.prepare_linear_move_to for UBL_DELTA
|
||||
feedrate_mm_s = save_feedrate; // restore global feed rate
|
||||
}
|
||||
|
||||
/**
|
||||
* Detect ubl_lcd_clicked, debounce it, and return true for cancel
|
||||
*/
|
||||
bool user_canceled() {
|
||||
if (!ubl_lcd_clicked()) return false;
|
||||
safe_delay(10); // Wait for click to settle
|
||||
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
lcd_setstatuspgm(PSTR("Mesh Validation Stopped."), 99);
|
||||
lcd_quick_feedback();
|
||||
#endif
|
||||
lcd_reset_alert_level();
|
||||
|
||||
while (!ubl_lcd_clicked()) idle(); // Wait for button release
|
||||
|
||||
// If the button is suddenly pressed again,
|
||||
// ask the user to resolve the issue
|
||||
lcd_setstatuspgm(PSTR("Release button"), 99); // will never appear...
|
||||
while (ubl_lcd_clicked()) idle(); // unless this loop happens
|
||||
lcd_setstatuspgm(PSTR(""));
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* G26: Mesh Validation Pattern generation.
|
||||
*
|
||||
* Used to interactively edit UBL's Mesh by placing the
|
||||
* nozzle in a problem area and doing a G29 P4 R command.
|
||||
*/
|
||||
void gcode_G26() {
|
||||
void unified_bed_leveling::G26() {
|
||||
SERIAL_ECHOLNPGM("G26 command started. Waiting for heater(s).");
|
||||
float tmp, start_angle, end_angle;
|
||||
int i, xi, yi;
|
||||
|
@ -213,7 +227,7 @@
|
|||
current_position[E_AXIS] = 0.0;
|
||||
sync_plan_position_e();
|
||||
|
||||
if (prime_flag && prime_nozzle()) goto LEAVE;
|
||||
if (g26_prime_flag && prime_nozzle()) goto LEAVE;
|
||||
|
||||
/**
|
||||
* Bed is preheated
|
||||
|
@ -231,11 +245,11 @@
|
|||
|
||||
// Move nozzle to the specified height for the first layer
|
||||
set_destination_to_current();
|
||||
destination[Z_AXIS] = layer_height;
|
||||
destination[Z_AXIS] = g26_layer_height;
|
||||
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0);
|
||||
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], ooze_amount);
|
||||
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], g26_ooze_amount);
|
||||
|
||||
ubl.has_control_of_lcd_panel = true;
|
||||
has_control_of_lcd_panel = true;
|
||||
//debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern."));
|
||||
|
||||
/**
|
||||
|
@ -249,13 +263,13 @@
|
|||
}
|
||||
|
||||
do {
|
||||
location = continue_with_closest
|
||||
location = g26_continue_with_closest
|
||||
? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS])
|
||||
: find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now.
|
||||
: find_closest_circle_to_print(g26_x_pos, g26_y_pos); // Find the closest Mesh Intersection to where we are now.
|
||||
|
||||
if (location.x_index >= 0 && location.y_index >= 0) {
|
||||
const float circle_x = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
|
||||
circle_y = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
|
||||
const float circle_x = mesh_index_to_xpos(location.x_index),
|
||||
circle_y = mesh_index_to_ypos(location.y_index);
|
||||
|
||||
// If this mesh location is outside the printable_radius, skip it.
|
||||
|
||||
|
@ -264,7 +278,7 @@
|
|||
xi = location.x_index; // Just to shrink the next few lines and make them easier to understand
|
||||
yi = location.y_index;
|
||||
|
||||
if (ubl.g26_debug_flag) {
|
||||
if (g26_debug_flag) {
|
||||
SERIAL_ECHOPAIR(" Doing circle at: (xi=", xi);
|
||||
SERIAL_ECHOPAIR(", yi=", yi);
|
||||
SERIAL_CHAR(')');
|
||||
|
@ -300,25 +314,7 @@
|
|||
|
||||
for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) {
|
||||
|
||||
// this sequence to detect an ubl_lcd_clicked() debounce it and leave if it is
|
||||
// a Press and Hold is repeated in a lot of places (including ubl_G29.cpp). This
|
||||
// should be redone and compressed.
|
||||
if (ubl_lcd_clicked()) { // Check if the user wants to stop the Mesh Validation
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
lcd_setstatuspgm(PSTR("Mesh Validation Stopped."), 99);
|
||||
lcd_quick_feedback();
|
||||
#endif
|
||||
while (!ubl_lcd_clicked()) { // Wait until the user is done pressing the
|
||||
idle(); // Encoder Wheel if that is why we are leaving
|
||||
lcd_reset_alert_level();
|
||||
lcd_setstatuspgm(PSTR(""));
|
||||
}
|
||||
while (ubl_lcd_clicked()) { // Wait until the user is done pressing the
|
||||
idle(); // Encoder Wheel if that is why we are leaving
|
||||
lcd_setstatuspgm(PSTR("Unpress Wheel"), 99);
|
||||
}
|
||||
goto LEAVE;
|
||||
}
|
||||
if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation
|
||||
|
||||
int tmp_div_30 = tmp / 30.0;
|
||||
if (tmp_div_30 < 0) tmp_div_30 += 360 / 30;
|
||||
|
@ -338,7 +334,7 @@
|
|||
ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
||||
#endif
|
||||
|
||||
//if (ubl.g26_debug_flag) {
|
||||
//if (g26_debug_flag) {
|
||||
// char ccc, *cptr, seg_msg[50], seg_num[10];
|
||||
// strcpy(seg_msg, " segment: ");
|
||||
// strcpy(seg_num, " \n");
|
||||
|
@ -349,7 +345,7 @@
|
|||
// debug_current_and_destination(seg_msg);
|
||||
//}
|
||||
|
||||
print_line_from_here_to_there(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), layer_height, LOGICAL_X_POSITION(xe), LOGICAL_Y_POSITION(ye), layer_height);
|
||||
print_line_from_here_to_there(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), g26_layer_height, LOGICAL_X_POSITION(xe), LOGICAL_Y_POSITION(ye), g26_layer_height);
|
||||
|
||||
}
|
||||
if (look_for_lines_to_connect())
|
||||
|
@ -368,16 +364,16 @@
|
|||
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Raise the nozzle
|
||||
//debug_current_and_destination(PSTR("done doing Z-Raise."));
|
||||
|
||||
destination[X_AXIS] = x_pos; // Move back to the starting position
|
||||
destination[Y_AXIS] = y_pos;
|
||||
destination[X_AXIS] = g26_x_pos; // Move back to the starting position
|
||||
destination[Y_AXIS] = g26_y_pos;
|
||||
//destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is
|
||||
|
||||
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position
|
||||
//debug_current_and_destination(PSTR("done doing X/Y move."));
|
||||
|
||||
ubl.has_control_of_lcd_panel = false; // Give back control of the LCD Panel!
|
||||
has_control_of_lcd_panel = false; // Give back control of the LCD Panel!
|
||||
|
||||
if (!keep_heaters_on) {
|
||||
if (!g26_keep_heaters_on) {
|
||||
#if HAS_TEMP_BED
|
||||
thermalManager.setTargetBed(0);
|
||||
#endif
|
||||
|
@ -385,14 +381,13 @@
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
float valid_trig_angle(float d) {
|
||||
while (d > 360.0) d -= 360.0;
|
||||
while (d < 0.0) d += 360.0;
|
||||
return d;
|
||||
}
|
||||
|
||||
mesh_index_pair find_closest_circle_to_print(const float &X, const float &Y) {
|
||||
mesh_index_pair unified_bed_leveling::find_closest_circle_to_print(const float &X, const float &Y) {
|
||||
float closest = 99999.99;
|
||||
mesh_index_pair return_val;
|
||||
|
||||
|
@ -401,8 +396,8 @@
|
|||
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
|
||||
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
|
||||
if (!is_bit_set(circle_flags, i, j)) {
|
||||
const float mx = pgm_read_float(&ubl.mesh_index_to_xpos[i]), // We found a circle that needs to be printed
|
||||
my = pgm_read_float(&ubl.mesh_index_to_ypos[j]);
|
||||
const float mx = mesh_index_to_xpos(i), // We found a circle that needs to be printed
|
||||
my = mesh_index_to_ypos(j);
|
||||
|
||||
// Get the distance to this intersection
|
||||
float f = HYPOT(X - mx, Y - my);
|
||||
|
@ -411,7 +406,7 @@
|
|||
// to let us find the closest circle to the start position.
|
||||
// But if this is not the case, add a small weighting to the
|
||||
// distance calculation to help it choose a better place to continue.
|
||||
f += HYPOT(x_pos - mx, y_pos - my) / 15.0;
|
||||
f += HYPOT(g26_x_pos - mx, g26_y_pos - my) / 15.0;
|
||||
|
||||
// Add in the specified amount of Random Noise to our search
|
||||
if (random_deviation > 1.0)
|
||||
|
@ -430,31 +425,13 @@
|
|||
return return_val;
|
||||
}
|
||||
|
||||
bool look_for_lines_to_connect() {
|
||||
bool unified_bed_leveling::look_for_lines_to_connect() {
|
||||
float sx, sy, ex, ey;
|
||||
|
||||
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
|
||||
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
|
||||
|
||||
// this sequence to detect an ubl_lcd_clicked() debounce it and leave if it is
|
||||
// a Press and Hold is repeated in a lot of places (including ubl_G29.cpp). This
|
||||
// should be redone and compressed.
|
||||
if (ubl_lcd_clicked()) { // Check if the user wants to stop the Mesh Validation
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
lcd_setstatuspgm(PSTR("Mesh Validation Stopped."), 99);
|
||||
lcd_quick_feedback();
|
||||
#endif
|
||||
while (!ubl_lcd_clicked()) { // Wait until the user is done pressing the
|
||||
idle(); // Encoder Wheel if that is why we are leaving
|
||||
lcd_reset_alert_level();
|
||||
lcd_setstatuspgm(PSTR(""));
|
||||
}
|
||||
while (ubl_lcd_clicked()) { // Wait until the user is done pressing the
|
||||
idle(); // Encoder Wheel if that is why we are leaving
|
||||
lcd_setstatuspgm(PSTR("Unpress Wheel"), 99);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
if (user_canceled()) return true; // Check if the user wants to stop the Mesh Validation
|
||||
|
||||
if (i < GRID_MAX_POINTS_X) { // We can't connect to anything to the right than GRID_MAX_POINTS_X.
|
||||
// This is already a half circle because we are at the edge of the bed.
|
||||
|
@ -466,16 +443,16 @@
|
|||
// We found two circles that need a horizontal line to connect them
|
||||
// Print it!
|
||||
//
|
||||
sx = pgm_read_float(&ubl.mesh_index_to_xpos[ i ]) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge
|
||||
ex = pgm_read_float(&ubl.mesh_index_to_xpos[i + 1]) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge
|
||||
sx = mesh_index_to_xpos( i ) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge
|
||||
ex = mesh_index_to_xpos(i + 1) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge
|
||||
|
||||
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1);
|
||||
sy = ey = constrain(pgm_read_float(&ubl.mesh_index_to_ypos[j]), Y_MIN_POS + 1, Y_MAX_POS - 1);
|
||||
sy = ey = constrain(mesh_index_to_ypos(j), Y_MIN_POS + 1, Y_MAX_POS - 1);
|
||||
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
|
||||
|
||||
if (position_is_reachable_raw_xy(sx, sy) && position_is_reachable_raw_xy(ex, ey)) {
|
||||
|
||||
if (ubl.g26_debug_flag) {
|
||||
if (g26_debug_flag) {
|
||||
SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx);
|
||||
SERIAL_ECHOPAIR(", sy=", sy);
|
||||
SERIAL_ECHOPAIR(") -> (ex=", ex);
|
||||
|
@ -485,7 +462,7 @@
|
|||
//debug_current_and_destination(PSTR("Connecting horizontal line."));
|
||||
}
|
||||
|
||||
print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height);
|
||||
print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), g26_layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), g26_layer_height);
|
||||
}
|
||||
bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if we skipped it
|
||||
}
|
||||
|
@ -500,16 +477,16 @@
|
|||
// We found two circles that need a vertical line to connect them
|
||||
// Print it!
|
||||
//
|
||||
sy = pgm_read_float(&ubl.mesh_index_to_ypos[ j ]) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge
|
||||
ey = pgm_read_float(&ubl.mesh_index_to_ypos[j + 1]) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge
|
||||
sy = mesh_index_to_ypos( j ) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge
|
||||
ey = mesh_index_to_ypos(j + 1) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge
|
||||
|
||||
sx = ex = constrain(pgm_read_float(&ubl.mesh_index_to_xpos[i]), X_MIN_POS + 1, X_MAX_POS - 1);
|
||||
sx = ex = constrain(mesh_index_to_xpos(i), X_MIN_POS + 1, X_MAX_POS - 1);
|
||||
sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
||||
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
||||
|
||||
if (position_is_reachable_raw_xy(sx, sy) && position_is_reachable_raw_xy(ex, ey)) {
|
||||
|
||||
if (ubl.g26_debug_flag) {
|
||||
if (g26_debug_flag) {
|
||||
SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx);
|
||||
SERIAL_ECHOPAIR(", sy=", sy);
|
||||
SERIAL_ECHOPAIR(") -> (ex=", ex);
|
||||
|
@ -518,7 +495,7 @@
|
|||
SERIAL_EOL;
|
||||
debug_current_and_destination(PSTR("Connecting vertical line."));
|
||||
}
|
||||
print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height);
|
||||
print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), g26_layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), g26_layer_height);
|
||||
}
|
||||
bit_set(vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if skipped
|
||||
}
|
||||
|
@ -530,7 +507,7 @@
|
|||
return false;
|
||||
}
|
||||
|
||||
void move_to(const float &x, const float &y, const float &z, const float &e_delta) {
|
||||
void unified_bed_leveling::move_to(const float &x, const float &y, const float &z, const float &e_delta) {
|
||||
float feed_value;
|
||||
static float last_z = -999.99;
|
||||
|
||||
|
@ -552,10 +529,10 @@
|
|||
}
|
||||
|
||||
// Check if X or Y is involved in the movement.
|
||||
// Yes: a 'normal' movement. No: a retract() or un_retract()
|
||||
// Yes: a 'normal' movement. No: a retract() or recover()
|
||||
feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
|
||||
|
||||
if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value);
|
||||
if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value);
|
||||
|
||||
destination[X_AXIS] = x;
|
||||
destination[Y_AXIS] = y;
|
||||
|
@ -568,16 +545,16 @@
|
|||
|
||||
}
|
||||
|
||||
void retract_filament(float where[XYZE]) {
|
||||
void unified_bed_leveling::retract_filament(float where[XYZE]) {
|
||||
if (!g26_retracted) { // Only retract if we are not already retracted!
|
||||
g26_retracted = true;
|
||||
move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], -1.0 * retraction_multiplier);
|
||||
move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], -1.0 * g26_retraction_multiplier);
|
||||
}
|
||||
}
|
||||
|
||||
void un_retract_filament(float where[XYZE]) {
|
||||
void unified_bed_leveling::recover_filament(float where[XYZE]) {
|
||||
if (g26_retracted) { // Only un-retract if we are retracted.
|
||||
move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], 1.2 * retraction_multiplier);
|
||||
move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], 1.2 * g26_retraction_multiplier);
|
||||
g26_retracted = false;
|
||||
}
|
||||
}
|
||||
|
@ -597,7 +574,7 @@
|
|||
* segment of a 'circle'. The time this requires is very short and is easily saved by the other
|
||||
* cases where the optimization comes into play.
|
||||
*/
|
||||
void print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) {
|
||||
void unified_bed_leveling::print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) {
|
||||
const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment
|
||||
dy_s = current_position[Y_AXIS] - sy,
|
||||
dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2
|
||||
|
@ -625,9 +602,9 @@
|
|||
|
||||
move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion / un-Z bump
|
||||
|
||||
const float e_pos_delta = line_length * g26_e_axis_feedrate * extrusion_multiplier;
|
||||
const float e_pos_delta = line_length * g26_e_axis_feedrate * g26_extrusion_multiplier;
|
||||
|
||||
un_retract_filament(destination);
|
||||
recover_filament(destination);
|
||||
move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion
|
||||
}
|
||||
|
||||
|
@ -636,33 +613,33 @@
|
|||
* parameters it made sense to turn them into static globals and get
|
||||
* this code out of sight of the main routine.
|
||||
*/
|
||||
bool parse_G26_parameters() {
|
||||
bool unified_bed_leveling::parse_G26_parameters() {
|
||||
|
||||
extrusion_multiplier = EXTRUSION_MULTIPLIER;
|
||||
retraction_multiplier = RETRACTION_MULTIPLIER;
|
||||
nozzle = NOZZLE;
|
||||
filament_diameter = FILAMENT;
|
||||
layer_height = LAYER_HEIGHT;
|
||||
prime_length = PRIME_LENGTH;
|
||||
bed_temp = BED_TEMP;
|
||||
hotend_temp = HOTEND_TEMP;
|
||||
prime_flag = 0;
|
||||
g26_extrusion_multiplier = EXTRUSION_MULTIPLIER;
|
||||
g26_retraction_multiplier = RETRACTION_MULTIPLIER;
|
||||
g26_nozzle = NOZZLE;
|
||||
g26_filament_diameter = FILAMENT;
|
||||
g26_layer_height = LAYER_HEIGHT;
|
||||
g26_prime_length = PRIME_LENGTH;
|
||||
g26_bed_temp = BED_TEMP;
|
||||
g26_hotend_temp = HOTEND_TEMP;
|
||||
g26_prime_flag = 0;
|
||||
|
||||
ooze_amount = code_seen('O') && code_has_value() ? code_value_linear_units() : OOZE_AMOUNT;
|
||||
keep_heaters_on = code_seen('K') && code_value_bool();
|
||||
continue_with_closest = code_seen('C') && code_value_bool();
|
||||
g26_ooze_amount = code_seen('O') && code_has_value() ? code_value_linear_units() : OOZE_AMOUNT;
|
||||
g26_keep_heaters_on = code_seen('K') && code_value_bool();
|
||||
g26_continue_with_closest = code_seen('C') && code_value_bool();
|
||||
|
||||
if (code_seen('B')) {
|
||||
bed_temp = code_value_temp_abs();
|
||||
if (!WITHIN(bed_temp, 15, 140)) {
|
||||
g26_bed_temp = code_value_temp_abs();
|
||||
if (!WITHIN(g26_bed_temp, 15, 140)) {
|
||||
SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible.");
|
||||
return UBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
if (code_seen('L')) {
|
||||
layer_height = code_value_linear_units();
|
||||
if (!WITHIN(layer_height, 0.0, 2.0)) {
|
||||
g26_layer_height = code_value_linear_units();
|
||||
if (!WITHIN(g26_layer_height, 0.0, 2.0)) {
|
||||
SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible.");
|
||||
return UBL_ERR;
|
||||
}
|
||||
|
@ -670,8 +647,8 @@
|
|||
|
||||
if (code_seen('Q')) {
|
||||
if (code_has_value()) {
|
||||
retraction_multiplier = code_value_float();
|
||||
if (!WITHIN(retraction_multiplier, 0.05, 15.0)) {
|
||||
g26_retraction_multiplier = code_value_float();
|
||||
if (!WITHIN(g26_retraction_multiplier, 0.05, 15.0)) {
|
||||
SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible.");
|
||||
return UBL_ERR;
|
||||
}
|
||||
|
@ -683,8 +660,8 @@
|
|||
}
|
||||
|
||||
if (code_seen('S')) {
|
||||
nozzle = code_value_float();
|
||||
if (!WITHIN(nozzle, 0.1, 1.0)) {
|
||||
g26_nozzle = code_value_float();
|
||||
if (!WITHIN(g26_nozzle, 0.1, 1.0)) {
|
||||
SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible.");
|
||||
return UBL_ERR;
|
||||
}
|
||||
|
@ -692,11 +669,11 @@
|
|||
|
||||
if (code_seen('P')) {
|
||||
if (!code_has_value())
|
||||
prime_flag = -1;
|
||||
g26_prime_flag = -1;
|
||||
else {
|
||||
prime_flag++;
|
||||
prime_length = code_value_linear_units();
|
||||
if (!WITHIN(prime_length, 0.0, 25.0)) {
|
||||
g26_prime_flag++;
|
||||
g26_prime_length = code_value_linear_units();
|
||||
if (!WITHIN(g26_prime_length, 0.0, 25.0)) {
|
||||
SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible.");
|
||||
return UBL_ERR;
|
||||
}
|
||||
|
@ -704,21 +681,21 @@
|
|||
}
|
||||
|
||||
if (code_seen('F')) {
|
||||
filament_diameter = code_value_linear_units();
|
||||
if (!WITHIN(filament_diameter, 1.0, 4.0)) {
|
||||
g26_filament_diameter = code_value_linear_units();
|
||||
if (!WITHIN(g26_filament_diameter, 1.0, 4.0)) {
|
||||
SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible.");
|
||||
return UBL_ERR;
|
||||
}
|
||||
}
|
||||
extrusion_multiplier *= sq(1.75) / sq(filament_diameter); // If we aren't using 1.75mm filament, we need to
|
||||
g26_extrusion_multiplier *= sq(1.75) / sq(g26_filament_diameter); // If we aren't using 1.75mm filament, we need to
|
||||
// scale up or down the length needed to get the
|
||||
// same volume of filament
|
||||
|
||||
extrusion_multiplier *= filament_diameter * sq(nozzle) / sq(0.3); // Scale up by nozzle size
|
||||
g26_extrusion_multiplier *= g26_filament_diameter * sq(g26_nozzle) / sq(0.3); // Scale up by nozzle size
|
||||
|
||||
if (code_seen('H')) {
|
||||
hotend_temp = code_value_temp_abs();
|
||||
if (!WITHIN(hotend_temp, 165, 280)) {
|
||||
g26_hotend_temp = code_value_temp_abs();
|
||||
if (!WITHIN(g26_hotend_temp, 165, 280)) {
|
||||
SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible.");
|
||||
return UBL_ERR;
|
||||
}
|
||||
|
@ -735,9 +712,9 @@
|
|||
return UBL_ERR;
|
||||
}
|
||||
|
||||
x_pos = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS];
|
||||
y_pos = code_seen('Y') ? code_value_linear_units() : current_position[Y_AXIS];
|
||||
if (!position_is_reachable_xy(x_pos, y_pos)) {
|
||||
g26_x_pos = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS];
|
||||
g26_y_pos = code_seen('Y') ? code_value_linear_units() : current_position[Y_AXIS];
|
||||
if (!position_is_reachable_xy(g26_x_pos, g26_y_pos)) {
|
||||
SERIAL_PROTOCOLLNPGM("?Specified X,Y coordinate out of bounds.");
|
||||
return UBL_ERR;
|
||||
}
|
||||
|
@ -745,12 +722,12 @@
|
|||
/**
|
||||
* Wait until all parameters are verified before altering the state!
|
||||
*/
|
||||
ubl.state.active = !code_seen('D');
|
||||
state.active = !code_seen('D');
|
||||
|
||||
return UBL_OK;
|
||||
}
|
||||
|
||||
bool exit_from_g26() {
|
||||
bool unified_bed_leveling::exit_from_g26() {
|
||||
lcd_reset_alert_level();
|
||||
lcd_setstatuspgm(PSTR("Leaving G26"));
|
||||
while (ubl_lcd_clicked()) idle();
|
||||
|
@ -761,18 +738,18 @@
|
|||
* Turn on the bed and nozzle heat and
|
||||
* wait for them to get up to temperature.
|
||||
*/
|
||||
bool turn_on_heaters() {
|
||||
bool unified_bed_leveling::turn_on_heaters() {
|
||||
millis_t next;
|
||||
#if HAS_TEMP_BED
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
if (bed_temp > 25) {
|
||||
if (g26_bed_temp > 25) {
|
||||
lcd_setstatuspgm(PSTR("G26 Heating Bed."), 99);
|
||||
lcd_quick_feedback();
|
||||
#endif
|
||||
ubl.has_control_of_lcd_panel = true;
|
||||
thermalManager.setTargetBed(bed_temp);
|
||||
has_control_of_lcd_panel = true;
|
||||
thermalManager.setTargetBed(g26_bed_temp);
|
||||
next = millis() + 5000UL;
|
||||
while (abs(thermalManager.degBed() - bed_temp) > 3) {
|
||||
while (abs(thermalManager.degBed() - g26_bed_temp) > 3) {
|
||||
if (ubl_lcd_clicked()) return exit_from_g26();
|
||||
if (PENDING(millis(), next)) {
|
||||
next = millis() + 5000UL;
|
||||
|
@ -788,8 +765,8 @@
|
|||
#endif
|
||||
|
||||
// Start heating the nozzle and wait for it to reach temperature.
|
||||
thermalManager.setTargetHotend(hotend_temp, 0);
|
||||
while (abs(thermalManager.degHotend(0) - hotend_temp) > 3) {
|
||||
thermalManager.setTargetHotend(g26_hotend_temp, 0);
|
||||
while (abs(thermalManager.degHotend(0) - g26_hotend_temp) > 3) {
|
||||
if (ubl_lcd_clicked()) return exit_from_g26();
|
||||
if (PENDING(millis(), next)) {
|
||||
next = millis() + 5000UL;
|
||||
|
@ -810,19 +787,19 @@
|
|||
/**
|
||||
* Prime the nozzle if needed. Return true on error.
|
||||
*/
|
||||
bool prime_nozzle() {
|
||||
bool unified_bed_leveling::prime_nozzle() {
|
||||
float Total_Prime = 0.0;
|
||||
|
||||
if (prime_flag == -1) { // The user wants to control how much filament gets purged
|
||||
if (g26_prime_flag == -1) { // The user wants to control how much filament gets purged
|
||||
|
||||
ubl.has_control_of_lcd_panel = true;
|
||||
has_control_of_lcd_panel = true;
|
||||
|
||||
lcd_setstatuspgm(PSTR("User-Controlled Prime"), 99);
|
||||
chirp_at_user();
|
||||
|
||||
set_destination_to_current();
|
||||
|
||||
un_retract_filament(destination); // Make sure G26 doesn't think the filament is retracted().
|
||||
recover_filament(destination); // Make sure G26 doesn't think the filament is retracted().
|
||||
|
||||
while (!ubl_lcd_clicked()) {
|
||||
chirp_at_user();
|
||||
|
@ -850,7 +827,7 @@
|
|||
lcd_quick_feedback();
|
||||
#endif
|
||||
|
||||
ubl.has_control_of_lcd_panel = false;
|
||||
has_control_of_lcd_panel = false;
|
||||
|
||||
}
|
||||
else {
|
||||
|
@ -859,7 +836,7 @@
|
|||
lcd_quick_feedback();
|
||||
#endif
|
||||
set_destination_to_current();
|
||||
destination[E_AXIS] += prime_length;
|
||||
destination[E_AXIS] += g26_prime_length;
|
||||
G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0);
|
||||
stepper.synchronize();
|
||||
set_destination_to_current();
|
||||
|
|
|
@ -2355,7 +2355,7 @@ static void clean_up_after_endstop_or_probe_move() {
|
|||
* - Raise to the BETWEEN height
|
||||
* - Return the probed Z position
|
||||
*/
|
||||
float probe_pt(const float x, const float y, const bool stow/*=true*/, const int verbose_level/*=1*/) {
|
||||
float probe_pt(const float &x, const float &y, const bool stow/*=true*/, const int verbose_level/*=1*/) {
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) {
|
||||
SERIAL_ECHOPAIR(">>> probe_pt(", x);
|
||||
|
@ -3416,8 +3416,8 @@ inline void gcode_G7(
|
|||
return;
|
||||
}
|
||||
|
||||
destination[X_AXIS] = hasI ? pgm_read_float(&ubl.mesh_index_to_xpos[ix]) : current_position[X_AXIS];
|
||||
destination[Y_AXIS] = hasJ ? pgm_read_float(&ubl.mesh_index_to_ypos[iy]) : current_position[Y_AXIS];
|
||||
destination[X_AXIS] = hasI ? ubl.mesh_index_to_xpos(ix) : current_position[X_AXIS];
|
||||
destination[Y_AXIS] = hasJ ? ubl.mesh_index_to_ypos(iy) : current_position[Y_AXIS];
|
||||
destination[Z_AXIS] = current_position[Z_AXIS]; //todo: perhaps add Z-move support?
|
||||
destination[E_AXIS] = current_position[E_AXIS];
|
||||
|
||||
|
@ -8704,7 +8704,7 @@ void quickstop_stepper() {
|
|||
const bool hasZ = code_seen('Z'), hasQ = !hasZ && code_seen('Q');
|
||||
|
||||
if (hasC) {
|
||||
const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL, false);
|
||||
const mesh_index_pair location = ubl.find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL, false);
|
||||
ix = location.x_index;
|
||||
iy = location.y_index;
|
||||
}
|
||||
|
@ -11467,7 +11467,7 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
|||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
const float fr_scaled = MMS_SCALED(feedrate_mm_s);
|
||||
if (ubl.state.active) {
|
||||
ubl_line_to_destination_cartesian(fr_scaled, active_extruder);
|
||||
ubl.line_to_destination_cartesian(fr_scaled, active_extruder);
|
||||
return true;
|
||||
}
|
||||
else
|
||||
|
@ -11612,14 +11612,14 @@ void prepare_move_to_destination() {
|
|||
if (
|
||||
#if IS_KINEMATIC
|
||||
#if UBL_DELTA
|
||||
ubl_prepare_linear_move_to(destination, feedrate_mm_s)
|
||||
ubl.prepare_linear_move_to(destination, feedrate_mm_s)
|
||||
#else
|
||||
prepare_kinematic_move_to(destination)
|
||||
#endif
|
||||
#elif ENABLED(DUAL_X_CARRIAGE)
|
||||
prepare_move_to_destination_dualx()
|
||||
#elif UBL_DELTA // will work for CARTESIAN too (smaller segments follow mesh more closely)
|
||||
ubl_prepare_linear_move_to(destination, feedrate_mm_s)
|
||||
ubl.prepare_linear_move_to(destination, feedrate_mm_s)
|
||||
#else
|
||||
prepare_move_to_destination_cartesian()
|
||||
#endif
|
||||
|
|
|
@ -21,8 +21,9 @@
|
|||
*/
|
||||
|
||||
/**
|
||||
* Contributed by Triffid_Hunter, modified by Kliment, extended by the Marlin team
|
||||
* Why double up on these macros? see http://gcc.gnu.org/onlinedocs/cpp/Stringification.html
|
||||
* Fast I/O Routines
|
||||
* Use direct port manipulation to save scads of processor time.
|
||||
* Contributed by Triffid_Hunter. Modified by Kliment and the Marlin team.
|
||||
*/
|
||||
|
||||
#ifndef _FASTIO_ARDUINO_H
|
||||
|
@ -30,15 +31,14 @@
|
|||
|
||||
#include <avr/io.h>
|
||||
|
||||
/**
|
||||
* Include Ports and Functions
|
||||
*/
|
||||
|
||||
/**
|
||||
* Enable this option to use Teensy++ 2.0 assignments for AT90USB processors.
|
||||
*/
|
||||
//#define AT90USBxx_TEENSYPP_ASSIGNMENTS
|
||||
|
||||
/**
|
||||
* Include Ports and Functions
|
||||
*/
|
||||
#if defined(__AVR_ATmega168__) || defined(__AVR_ATmega328__) || defined(__AVR_ATmega328P__)
|
||||
#include "fastio_168.h"
|
||||
#elif defined(__AVR_ATmega644__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644PA__) || defined(__AVR_ATmega1284P__)
|
||||
|
@ -58,13 +58,15 @@
|
|||
#endif
|
||||
|
||||
#ifndef _BV
|
||||
#define _BV(PIN) (1 << PIN)
|
||||
#define _BV(PIN) (1UL << PIN)
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Magic I/O routines
|
||||
*
|
||||
* Now you can simply SET_OUTPUT(PIN); WRITE(PIN, HIGH); WRITE(PIN, LOW);
|
||||
*
|
||||
* Why double up on these macros? see http://gcc.gnu.org/onlinedocs/cpp/Stringification.html
|
||||
*/
|
||||
|
||||
#define _READ(IO) ((bool)(DIO ## IO ## _RPORT & _BV(DIO ## IO ## _PIN)))
|
||||
|
|
|
@ -679,5 +679,4 @@
|
|||
#define PF7_PWM NULL
|
||||
#define PF7_DDR DDRF
|
||||
|
||||
#endif // AT90USBxx_TEENSYPP_ASSIGNMENTS Teensyduino assignments
|
||||
#endif // _FASTIO_AT90USB
|
||||
|
|
|
@ -52,7 +52,7 @@ void inline incremental_LSF_reset(struct linear_fit_data *lsf) {
|
|||
memset(lsf, 0, sizeof(linear_fit_data));
|
||||
}
|
||||
|
||||
void inline incremental_WLSF(struct linear_fit_data *lsf, float x, float y, float z, float w) {
|
||||
void inline incremental_WLSF(struct linear_fit_data *lsf, const float &x, const float &y, const float &z, const float &w) {
|
||||
// weight each accumulator by factor w, including the "number" of samples
|
||||
// (analagous to calling inc_LSF twice with same values to weight it by 2X)
|
||||
lsf->xbar += w * x;
|
||||
|
@ -65,11 +65,11 @@ void inline incremental_WLSF(struct linear_fit_data *lsf, float x, float y, floa
|
|||
lsf->xzbar += w * x * z;
|
||||
lsf->yzbar += w * y * z;
|
||||
lsf->N += w;
|
||||
lsf->max_absx = max(fabs( w * x ), lsf->max_absx);
|
||||
lsf->max_absy = max(fabs( w * y ), lsf->max_absy);
|
||||
lsf->max_absx = max(fabs(w * x), lsf->max_absx);
|
||||
lsf->max_absy = max(fabs(w * y), lsf->max_absy);
|
||||
}
|
||||
|
||||
void inline incremental_LSF(struct linear_fit_data *lsf, float x, float y, float z) {
|
||||
void inline incremental_LSF(struct linear_fit_data *lsf, const float &x, const float &y, const float &z) {
|
||||
lsf->xbar += x;
|
||||
lsf->ybar += y;
|
||||
lsf->zbar += z;
|
||||
|
|
|
@ -29,7 +29,7 @@
|
|||
#define XYZ 3
|
||||
|
||||
#define FORCE_INLINE __attribute__((always_inline)) inline
|
||||
|
||||
#define _UNUSED __attribute__((unused))
|
||||
#define _O0 __attribute__((optimize("O0")))
|
||||
#define _Os __attribute__((optimize("Os")))
|
||||
#define _O1 __attribute__((optimize("O1")))
|
||||
|
|
|
@ -12,9 +12,9 @@
|
|||
* @param strokes number of strokes to execute
|
||||
*/
|
||||
void Nozzle::stroke(
|
||||
__attribute__((unused)) point_t const &start,
|
||||
__attribute__((unused)) point_t const &end,
|
||||
__attribute__((unused)) uint8_t const &strokes
|
||||
_UNUSED point_t const &start,
|
||||
_UNUSED point_t const &end,
|
||||
_UNUSED uint8_t const &strokes
|
||||
) {
|
||||
#if ENABLED(NOZZLE_CLEAN_FEATURE)
|
||||
|
||||
|
@ -56,10 +56,10 @@ void Nozzle::stroke(
|
|||
* @param objects number of objects to create
|
||||
*/
|
||||
void Nozzle::zigzag(
|
||||
__attribute__((unused)) point_t const &start,
|
||||
__attribute__((unused)) point_t const &end,
|
||||
__attribute__((unused)) uint8_t const &strokes,
|
||||
__attribute__((unused)) uint8_t const &objects
|
||||
_UNUSED point_t const &start,
|
||||
_UNUSED point_t const &end,
|
||||
_UNUSED uint8_t const &strokes,
|
||||
_UNUSED uint8_t const &objects
|
||||
) {
|
||||
#if ENABLED(NOZZLE_CLEAN_FEATURE)
|
||||
const float A = nozzle_clean_horizontal ? nozzle_clean_height : nozzle_clean_length, // [twice the] Amplitude
|
||||
|
@ -114,10 +114,10 @@ void Nozzle::zigzag(
|
|||
* @param radius radius of circle
|
||||
*/
|
||||
void Nozzle::circle(
|
||||
__attribute__((unused)) point_t const &start,
|
||||
__attribute__((unused)) point_t const &middle,
|
||||
__attribute__((unused)) uint8_t const &strokes,
|
||||
__attribute__((unused)) float const &radius
|
||||
_UNUSED point_t const &start,
|
||||
_UNUSED point_t const &middle,
|
||||
_UNUSED uint8_t const &strokes,
|
||||
_UNUSED float const &radius
|
||||
) {
|
||||
#if ENABLED(NOZZLE_CLEAN_FEATURE)
|
||||
if (strokes == 0) return;
|
||||
|
@ -177,10 +177,10 @@ void Nozzle::circle(
|
|||
* @param argument depends on the cleaning pattern
|
||||
*/
|
||||
void Nozzle::clean(
|
||||
__attribute__((unused)) uint8_t const &pattern,
|
||||
__attribute__((unused)) uint8_t const &strokes,
|
||||
__attribute__((unused)) float const &radius,
|
||||
__attribute__((unused)) uint8_t const &objects
|
||||
_UNUSED uint8_t const &pattern,
|
||||
_UNUSED uint8_t const &strokes,
|
||||
_UNUSED float const &radius,
|
||||
_UNUSED uint8_t const &objects
|
||||
) {
|
||||
#if ENABLED(NOZZLE_CLEAN_FEATURE)
|
||||
#if ENABLED(DELTA)
|
||||
|
@ -209,7 +209,7 @@ void Nozzle::clean(
|
|||
}
|
||||
|
||||
void Nozzle::park(
|
||||
__attribute__((unused)) uint8_t const &z_action
|
||||
_UNUSED uint8_t const &z_action
|
||||
) {
|
||||
#if ENABLED(NOZZLE_PARK_FEATURE)
|
||||
float const z = current_position[Z_AXIS];
|
||||
|
|
|
@ -50,10 +50,10 @@ class Nozzle {
|
|||
* @param strokes number of strokes to execute
|
||||
*/
|
||||
static void stroke(
|
||||
__attribute__((unused)) point_t const &start,
|
||||
__attribute__((unused)) point_t const &end,
|
||||
__attribute__((unused)) uint8_t const &strokes
|
||||
) __attribute__((optimize ("Os")));
|
||||
_UNUSED point_t const &start,
|
||||
_UNUSED point_t const &end,
|
||||
_UNUSED uint8_t const &strokes
|
||||
) _Os;
|
||||
|
||||
/**
|
||||
* @brief Zig-zag clean pattern
|
||||
|
@ -65,11 +65,11 @@ class Nozzle {
|
|||
* @param objects number of objects to create
|
||||
*/
|
||||
static void zigzag(
|
||||
__attribute__((unused)) point_t const &start,
|
||||
__attribute__((unused)) point_t const &end,
|
||||
__attribute__((unused)) uint8_t const &strokes,
|
||||
__attribute__((unused)) uint8_t const &objects
|
||||
) __attribute__((optimize ("Os")));
|
||||
_UNUSED point_t const &start,
|
||||
_UNUSED point_t const &end,
|
||||
_UNUSED uint8_t const &strokes,
|
||||
_UNUSED uint8_t const &objects
|
||||
) _Os;
|
||||
|
||||
/**
|
||||
* @brief Circular clean pattern
|
||||
|
@ -80,11 +80,11 @@ class Nozzle {
|
|||
* @param radius radius of circle
|
||||
*/
|
||||
static void circle(
|
||||
__attribute__((unused)) point_t const &start,
|
||||
__attribute__((unused)) point_t const &middle,
|
||||
__attribute__((unused)) uint8_t const &strokes,
|
||||
__attribute__((unused)) float const &radius
|
||||
) __attribute__((optimize ("Os")));
|
||||
_UNUSED point_t const &start,
|
||||
_UNUSED point_t const &middle,
|
||||
_UNUSED uint8_t const &strokes,
|
||||
_UNUSED float const &radius
|
||||
) _Os;
|
||||
|
||||
public:
|
||||
/**
|
||||
|
@ -95,15 +95,15 @@ class Nozzle {
|
|||
* @param argument depends on the cleaning pattern
|
||||
*/
|
||||
static void clean(
|
||||
__attribute__((unused)) uint8_t const &pattern,
|
||||
__attribute__((unused)) uint8_t const &strokes,
|
||||
__attribute__((unused)) float const &radius,
|
||||
__attribute__((unused)) uint8_t const &objects = 0
|
||||
) __attribute__((optimize ("Os")));
|
||||
_UNUSED uint8_t const &pattern,
|
||||
_UNUSED uint8_t const &strokes,
|
||||
_UNUSED float const &radius,
|
||||
_UNUSED uint8_t const &objects = 0
|
||||
) _Os;
|
||||
|
||||
static void park(
|
||||
__attribute__((unused)) uint8_t const &z_action
|
||||
) __attribute__((optimize ("Os")));
|
||||
_UNUSED uint8_t const &z_action
|
||||
) _Os;
|
||||
};
|
||||
|
||||
#endif
|
||||
|
|
31
Marlin/spi.h
31
Marlin/spi.h
|
@ -27,37 +27,26 @@
|
|||
#include "softspi.h"
|
||||
|
||||
template<uint8_t MisoPin, uint8_t MosiPin, uint8_t SckPin>
|
||||
class Spi {
|
||||
static SoftSPI<MisoPin, MosiPin, SckPin> softSpi;
|
||||
class SPI {
|
||||
static SoftSPI<MisoPin, MosiPin, SckPin> softSPI;
|
||||
public:
|
||||
inline __attribute__((always_inline))
|
||||
static void init() {
|
||||
softSpi.begin();
|
||||
}
|
||||
inline __attribute__((always_inline))
|
||||
static void send(uint8_t data) {
|
||||
softSpi.send(data);
|
||||
}
|
||||
inline __attribute__((always_inline))
|
||||
static uint8_t receive() {
|
||||
return softSpi.receive();
|
||||
}
|
||||
FORCE_INLINE static void init() { softSPI.begin(); }
|
||||
FORCE_INLINE static void send(uint8_t data) { softSPI.send(data); }
|
||||
FORCE_INLINE static uint8_t receive() { return softSPI.receive(); }
|
||||
};
|
||||
|
||||
|
||||
//hardware spi
|
||||
// Hardware SPI
|
||||
template<>
|
||||
class Spi<MISO_PIN, MOSI_PIN, SCK_PIN> {
|
||||
class SPI<MISO_PIN, MOSI_PIN, SCK_PIN> {
|
||||
public:
|
||||
inline __attribute__((always_inline))
|
||||
static void init() {
|
||||
FORCE_INLINE static void init() {
|
||||
OUT_WRITE(SCK_PIN, LOW);
|
||||
OUT_WRITE(MOSI_PIN, HIGH);
|
||||
SET_INPUT(MISO_PIN);
|
||||
WRITE(MISO_PIN, HIGH);
|
||||
}
|
||||
inline __attribute__((always_inline))
|
||||
static uint8_t receive() {
|
||||
FORCE_INLINE static uint8_t receive() {
|
||||
SPDR = 0;
|
||||
for (;!TEST(SPSR, SPIF););
|
||||
return SPDR;
|
||||
|
@ -65,4 +54,4 @@ class Spi<MISO_PIN, MOSI_PIN, SCK_PIN> {
|
|||
|
||||
};
|
||||
|
||||
#endif
|
||||
#endif // __SPI_H__
|
||||
|
|
|
@ -935,7 +935,7 @@ void Temperature::updateTemperaturesFromRawValues() {
|
|||
#ifndef MAX6675_DO_PIN
|
||||
#define MAX6675_DO_PIN MISO_PIN
|
||||
#endif
|
||||
Spi<MAX6675_DO_PIN, MOSI_PIN, MAX6675_SCK_PIN> max6675_spi;
|
||||
SPI<MAX6675_DO_PIN, MOSI_PIN, MAX6675_SCK_PIN> max6675_spi;
|
||||
#endif
|
||||
|
||||
/**
|
||||
|
|
|
@ -288,8 +288,7 @@ class Temperature {
|
|||
/**
|
||||
* Call periodically to manage heaters
|
||||
*/
|
||||
//static void manage_heater(); // changed to address compiler error
|
||||
static void manage_heater() __attribute__((__optimize__("O2")));
|
||||
static void manage_heater() _O2; // Added _O2 to work around a compiler error
|
||||
|
||||
/**
|
||||
* Preheating hotends
|
||||
|
|
|
@ -69,8 +69,8 @@
|
|||
|
||||
// 15 is the maximum nubmer of grid points supported + 1 safety margin for now,
|
||||
// until determinism prevails
|
||||
constexpr float unified_bed_leveling::mesh_index_to_xpos[16],
|
||||
unified_bed_leveling::mesh_index_to_ypos[16];
|
||||
constexpr float unified_bed_leveling::_mesh_index_to_xpos[16],
|
||||
unified_bed_leveling::_mesh_index_to_ypos[16];
|
||||
|
||||
bool unified_bed_leveling::g26_debug_flag = false,
|
||||
unified_bed_leveling::has_control_of_lcd_panel = false;
|
||||
|
@ -117,8 +117,8 @@
|
|||
SERIAL_EOL;
|
||||
}
|
||||
|
||||
const float current_xi = ubl.get_cell_index_x(current_position[X_AXIS] + (MESH_X_DIST) / 2.0),
|
||||
current_yi = ubl.get_cell_index_y(current_position[Y_AXIS] + (MESH_Y_DIST) / 2.0);
|
||||
const float current_xi = get_cell_index_x(current_position[X_AXIS] + (MESH_X_DIST) / 2.0),
|
||||
current_yi = get_cell_index_y(current_position[Y_AXIS] + (MESH_Y_DIST) / 2.0);
|
||||
|
||||
for (int8_t j = GRID_MAX_POINTS_Y - 1; j >= 0; j--) {
|
||||
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
|
||||
|
|
161
Marlin/ubl.h
161
Marlin/ubl.h
|
@ -53,30 +53,16 @@
|
|||
// ubl_motion.cpp
|
||||
|
||||
void debug_current_and_destination(const char * const title);
|
||||
void ubl_line_to_destination_cartesian(const float&, uint8_t);
|
||||
bool ubl_prepare_linear_move_to(const float ltarget[XYZE], const float &feedrate );
|
||||
|
||||
// ubl_G29.cpp
|
||||
|
||||
enum MeshPointType { INVALID, REAL, SET_IN_BITMAP };
|
||||
|
||||
void dump(char * const str, const float &f);
|
||||
void probe_entire_mesh(const float&, const float&, const bool, const bool, const bool);
|
||||
float measure_business_card_thickness(float&);
|
||||
mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, unsigned int[16], bool);
|
||||
void shift_mesh_height();
|
||||
void fine_tune_mesh(const float&, const float&, const bool);
|
||||
bool g29_parameter_parsing();
|
||||
void g29_eeprom_dump();
|
||||
void g29_compare_current_mesh_to_stored_mesh();
|
||||
|
||||
// External references
|
||||
|
||||
char *ftostr43sign(const float&, char);
|
||||
bool ubl_lcd_clicked();
|
||||
void home_all_axes();
|
||||
void gcode_G26();
|
||||
void gcode_G29();
|
||||
|
||||
extern uint8_t ubl_cnt;
|
||||
|
||||
|
@ -101,26 +87,81 @@
|
|||
|
||||
static float last_specified_z;
|
||||
|
||||
static int g29_verbose_level,
|
||||
g29_phase_value,
|
||||
g29_repetition_cnt,
|
||||
g29_storage_slot,
|
||||
g29_map_type,
|
||||
g29_grid_size;
|
||||
static bool g29_c_flag, g29_x_flag, g29_y_flag;
|
||||
static float g29_x_pos, g29_y_pos,
|
||||
g29_card_thickness,
|
||||
g29_constant;
|
||||
|
||||
#if ENABLED(UBL_G26_MESH_VALIDATION)
|
||||
static float g26_extrusion_multiplier,
|
||||
g26_retraction_multiplier,
|
||||
g26_nozzle,
|
||||
g26_filament_diameter,
|
||||
g26_prime_length,
|
||||
g26_x_pos, g26_y_pos,
|
||||
g26_ooze_amount,
|
||||
g26_layer_height;
|
||||
static int16_t g26_bed_temp,
|
||||
g26_hotend_temp,
|
||||
g26_repeats;
|
||||
static int8_t g26_prime_flag;
|
||||
static bool g26_continue_with_closest, g26_keep_heaters_on;
|
||||
#endif
|
||||
|
||||
static float measure_point_with_encoder();
|
||||
static float measure_business_card_thickness(float&);
|
||||
static bool g29_parameter_parsing();
|
||||
static void find_mean_mesh_height();
|
||||
static void shift_mesh_height();
|
||||
static void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest);
|
||||
static void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool);
|
||||
static void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3);
|
||||
static void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map);
|
||||
static void g29_what_command();
|
||||
static void g29_eeprom_dump();
|
||||
static void g29_compare_current_mesh_to_stored_mesh();
|
||||
static void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map);
|
||||
static bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir);
|
||||
static void smart_fill_mesh();
|
||||
|
||||
#if ENABLED(UBL_G26_MESH_VALIDATION)
|
||||
static bool exit_from_g26();
|
||||
static bool parse_G26_parameters();
|
||||
static void G26_line_to_destination(const float &feed_rate);
|
||||
static mesh_index_pair find_closest_circle_to_print(const float&, const float&);
|
||||
static bool look_for_lines_to_connect();
|
||||
static bool turn_on_heaters();
|
||||
static bool prime_nozzle();
|
||||
static void retract_filament(float where[XYZE]);
|
||||
static void recover_filament(float where[XYZE]);
|
||||
static void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&);
|
||||
static void move_to(const float&, const float&, const float&, const float&);
|
||||
#endif
|
||||
|
||||
public:
|
||||
|
||||
void echo_name();
|
||||
void report_state();
|
||||
void find_mean_mesh_height();
|
||||
void shift_mesh_height();
|
||||
void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest);
|
||||
void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3);
|
||||
void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map);
|
||||
void save_ubl_active_state_and_disable();
|
||||
void restore_ubl_active_state_and_leave();
|
||||
void g29_what_command();
|
||||
void g29_eeprom_dump();
|
||||
void g29_compare_current_mesh_to_stored_mesh();
|
||||
void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map);
|
||||
void smart_fill_mesh();
|
||||
void display_map(const int);
|
||||
void reset();
|
||||
void invalidate();
|
||||
bool sanity_check();
|
||||
static void echo_name();
|
||||
static void report_state();
|
||||
static void save_ubl_active_state_and_disable();
|
||||
static void restore_ubl_active_state_and_leave();
|
||||
static void display_map(const int);
|
||||
static mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, unsigned int[16], bool);
|
||||
static void reset();
|
||||
static void invalidate();
|
||||
static bool sanity_check();
|
||||
|
||||
static void G29() _O0; // O0 for no optimization
|
||||
static void smart_fill_wlsf(const float &) _O2; // O2 gives smaller code than Os on A2560
|
||||
|
||||
#if ENABLED(UBL_G26_MESH_VALIDATION)
|
||||
static void G26();
|
||||
#endif
|
||||
|
||||
static ubl_state state;
|
||||
|
||||
|
@ -128,7 +169,7 @@
|
|||
|
||||
// 15 is the maximum nubmer of grid points supported + 1 safety margin for now,
|
||||
// until determinism prevails
|
||||
constexpr static float mesh_index_to_xpos[16] PROGMEM = {
|
||||
constexpr static float _mesh_index_to_xpos[16] PROGMEM = {
|
||||
UBL_MESH_MIN_X + 0 * (MESH_X_DIST), UBL_MESH_MIN_X + 1 * (MESH_X_DIST),
|
||||
UBL_MESH_MIN_X + 2 * (MESH_X_DIST), UBL_MESH_MIN_X + 3 * (MESH_X_DIST),
|
||||
UBL_MESH_MIN_X + 4 * (MESH_X_DIST), UBL_MESH_MIN_X + 5 * (MESH_X_DIST),
|
||||
|
@ -139,7 +180,7 @@
|
|||
UBL_MESH_MIN_X + 14 * (MESH_X_DIST), UBL_MESH_MIN_X + 15 * (MESH_X_DIST)
|
||||
};
|
||||
|
||||
constexpr static float mesh_index_to_ypos[16] PROGMEM = {
|
||||
constexpr static float _mesh_index_to_ypos[16] PROGMEM = {
|
||||
UBL_MESH_MIN_Y + 0 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 1 * (MESH_Y_DIST),
|
||||
UBL_MESH_MIN_Y + 2 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 3 * (MESH_Y_DIST),
|
||||
UBL_MESH_MIN_Y + 4 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 5 * (MESH_Y_DIST),
|
||||
|
@ -156,16 +197,16 @@
|
|||
|
||||
unified_bed_leveling();
|
||||
|
||||
FORCE_INLINE void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
|
||||
FORCE_INLINE static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
|
||||
|
||||
int8_t get_cell_index_x(const float &x) {
|
||||
static int8_t get_cell_index_x(const float &x) {
|
||||
const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
|
||||
return constrain(cx, 0, (GRID_MAX_POINTS_X) - 1); // -1 is appropriate if we want all movement to the X_MAX
|
||||
} // position. But with this defined this way, it is possible
|
||||
// to extrapolate off of this point even further out. Probably
|
||||
// that is OK because something else should be keeping that from
|
||||
// happening and should not be worried about at this level.
|
||||
int8_t get_cell_index_y(const float &y) {
|
||||
static int8_t get_cell_index_y(const float &y) {
|
||||
const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
|
||||
return constrain(cy, 0, (GRID_MAX_POINTS_Y) - 1); // -1 is appropriate if we want all movement to the Y_MAX
|
||||
} // position. But with this defined this way, it is possible
|
||||
|
@ -173,12 +214,12 @@
|
|||
// that is OK because something else should be keeping that from
|
||||
// happening and should not be worried about at this level.
|
||||
|
||||
int8_t find_closest_x_index(const float &x) {
|
||||
static int8_t find_closest_x_index(const float &x) {
|
||||
const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
|
||||
return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1;
|
||||
}
|
||||
|
||||
int8_t find_closest_y_index(const float &y) {
|
||||
static int8_t find_closest_y_index(const float &y) {
|
||||
const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
|
||||
return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1;
|
||||
}
|
||||
|
@ -198,7 +239,7 @@
|
|||
* It is fairly expensive with its 4 floating point additions and 2 floating point
|
||||
* multiplications.
|
||||
*/
|
||||
FORCE_INLINE float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
|
||||
FORCE_INLINE static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
|
||||
return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1);
|
||||
}
|
||||
|
||||
|
@ -206,7 +247,7 @@
|
|||
* z_correction_for_x_on_horizontal_mesh_line is an optimization for
|
||||
* the rare occasion when a point lies exactly on a Mesh line (denoted by index yi).
|
||||
*/
|
||||
inline float z_correction_for_x_on_horizontal_mesh_line(const float &lx0, const int x1_i, const int yi) {
|
||||
inline static float z_correction_for_x_on_horizontal_mesh_line(const float &lx0, const int x1_i, const int yi) {
|
||||
if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) {
|
||||
serialprintPGM( !WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) ? PSTR("x1l_i") : PSTR("yi") );
|
||||
SERIAL_ECHOPAIR(" out of bounds in z_correction_for_x_on_horizontal_mesh_line(lx0=", lx0);
|
||||
|
@ -217,7 +258,7 @@
|
|||
return NAN;
|
||||
}
|
||||
|
||||
const float xratio = (RAW_X_POSITION(lx0) - pgm_read_float(&mesh_index_to_xpos[x1_i])) * (1.0 / (MESH_X_DIST)),
|
||||
const float xratio = (RAW_X_POSITION(lx0) - mesh_index_to_xpos(x1_i)) * (1.0 / (MESH_X_DIST)),
|
||||
z1 = z_values[x1_i][yi];
|
||||
|
||||
return z1 + xratio * (z_values[x1_i + 1][yi] - z1);
|
||||
|
@ -226,7 +267,7 @@
|
|||
//
|
||||
// See comments above for z_correction_for_x_on_horizontal_mesh_line
|
||||
//
|
||||
inline float z_correction_for_y_on_vertical_mesh_line(const float &ly0, const int xi, const int y1_i) {
|
||||
inline static float z_correction_for_y_on_vertical_mesh_line(const float &ly0, const int xi, const int y1_i) {
|
||||
if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 1)) {
|
||||
serialprintPGM( !WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) ? PSTR("xi") : PSTR("yl_i") );
|
||||
SERIAL_ECHOPAIR(" out of bounds in z_correction_for_y_on_vertical_mesh_line(ly0=", ly0);
|
||||
|
@ -237,7 +278,7 @@
|
|||
return NAN;
|
||||
}
|
||||
|
||||
const float yratio = (RAW_Y_POSITION(ly0) - pgm_read_float(&mesh_index_to_ypos[y1_i])) * (1.0 / (MESH_Y_DIST)),
|
||||
const float yratio = (RAW_Y_POSITION(ly0) - mesh_index_to_ypos(y1_i)) * (1.0 / (MESH_Y_DIST)),
|
||||
z1 = z_values[xi][y1_i];
|
||||
|
||||
return z1 + yratio * (z_values[xi][y1_i + 1] - z1);
|
||||
|
@ -249,7 +290,7 @@
|
|||
* Z-Height at both ends. Then it does a linear interpolation of these heights based
|
||||
* on the Y position within the cell.
|
||||
*/
|
||||
float get_z_correction(const float &lx0, const float &ly0) {
|
||||
static float get_z_correction(const float &lx0, const float &ly0) {
|
||||
const int8_t cx = get_cell_index_x(RAW_X_POSITION(lx0)),
|
||||
cy = get_cell_index_y(RAW_Y_POSITION(ly0));
|
||||
|
||||
|
@ -268,16 +309,16 @@
|
|||
}
|
||||
|
||||
const float z1 = calc_z0(RAW_X_POSITION(lx0),
|
||||
pgm_read_float(&mesh_index_to_xpos[cx]), z_values[cx][cy],
|
||||
pgm_read_float(&mesh_index_to_xpos[cx + 1]), z_values[cx + 1][cy]);
|
||||
mesh_index_to_xpos(cx), z_values[cx][cy],
|
||||
mesh_index_to_xpos(cx + 1), z_values[cx + 1][cy]);
|
||||
|
||||
const float z2 = calc_z0(RAW_X_POSITION(lx0),
|
||||
pgm_read_float(&mesh_index_to_xpos[cx]), z_values[cx][cy + 1],
|
||||
pgm_read_float(&mesh_index_to_xpos[cx + 1]), z_values[cx + 1][cy + 1]);
|
||||
mesh_index_to_xpos(cx), z_values[cx][cy + 1],
|
||||
mesh_index_to_xpos(cx + 1), z_values[cx + 1][cy + 1]);
|
||||
|
||||
float z0 = calc_z0(RAW_Y_POSITION(ly0),
|
||||
pgm_read_float(&mesh_index_to_ypos[cy]), z1,
|
||||
pgm_read_float(&mesh_index_to_ypos[cy + 1]), z2);
|
||||
mesh_index_to_ypos(cy), z1,
|
||||
mesh_index_to_ypos(cy + 1), z2);
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(MESH_ADJUST)) {
|
||||
|
@ -324,7 +365,7 @@
|
|||
* Returns 0.0 if Z is past the specified 'Fade Height'.
|
||||
*/
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
inline float fade_scaling_factor_for_z(const float &lz) {
|
||||
static inline float fade_scaling_factor_for_z(const float &lz) {
|
||||
if (planner.z_fade_height == 0.0) return 1.0;
|
||||
static float fade_scaling_factor = 1.0;
|
||||
const float rz = RAW_Z_POSITION(lz);
|
||||
|
@ -338,14 +379,24 @@
|
|||
return fade_scaling_factor;
|
||||
}
|
||||
#else
|
||||
inline float fade_scaling_factor_for_z(const float &lz) {
|
||||
return 1.0;
|
||||
}
|
||||
FORCE_INLINE static float fade_scaling_factor_for_z(const float &lz) { return 1.0; }
|
||||
#endif
|
||||
|
||||
FORCE_INLINE static float mesh_index_to_xpos(const uint8_t i) { return pgm_read_float(&_mesh_index_to_xpos[i]); }
|
||||
FORCE_INLINE static float mesh_index_to_ypos(const uint8_t i) { return pgm_read_float(&_mesh_index_to_ypos[i]); }
|
||||
|
||||
static bool prepare_linear_move_to(const float ltarget[XYZE], const float &feedrate);
|
||||
static void line_to_destination_cartesian(const float &fr, uint8_t e);
|
||||
|
||||
}; // class unified_bed_leveling
|
||||
|
||||
extern unified_bed_leveling ubl;
|
||||
|
||||
#if ENABLED(UBL_G26_MESH_VALIDATION)
|
||||
FORCE_INLINE void gcode_G26() { ubl.G26(); }
|
||||
#endif
|
||||
|
||||
FORCE_INLINE void gcode_G29() { ubl.G29(); }
|
||||
|
||||
#endif // AUTO_BED_LEVELING_UBL
|
||||
#endif // UNIFIED_BED_LEVELING_H
|
||||
|
|
File diff suppressed because it is too large
Load diff
|
@ -85,7 +85,7 @@
|
|||
|
||||
}
|
||||
|
||||
void ubl_line_to_destination_cartesian(const float &feed_rate, uint8_t extruder) {
|
||||
void unified_bed_leveling::line_to_destination_cartesian(const float &feed_rate, uint8_t extruder) {
|
||||
/**
|
||||
* Much of the nozzle movement will be within the same cell. So we will do as little computation
|
||||
* as possible to determine if this is the case. If this move is within the same cell, we will
|
||||
|
@ -104,19 +104,19 @@
|
|||
destination[E_AXIS]
|
||||
};
|
||||
|
||||
const int cell_start_xi = ubl.get_cell_index_x(RAW_X_POSITION(start[X_AXIS])),
|
||||
cell_start_yi = ubl.get_cell_index_y(RAW_Y_POSITION(start[Y_AXIS])),
|
||||
cell_dest_xi = ubl.get_cell_index_x(RAW_X_POSITION(end[X_AXIS])),
|
||||
cell_dest_yi = ubl.get_cell_index_y(RAW_Y_POSITION(end[Y_AXIS]));
|
||||
const int cell_start_xi = get_cell_index_x(RAW_X_POSITION(start[X_AXIS])),
|
||||
cell_start_yi = get_cell_index_y(RAW_Y_POSITION(start[Y_AXIS])),
|
||||
cell_dest_xi = get_cell_index_x(RAW_X_POSITION(end[X_AXIS])),
|
||||
cell_dest_yi = get_cell_index_y(RAW_Y_POSITION(end[Y_AXIS]));
|
||||
|
||||
if (ubl.g26_debug_flag) {
|
||||
SERIAL_ECHOPAIR(" ubl_line_to_destination(xe=", end[X_AXIS]);
|
||||
if (g26_debug_flag) {
|
||||
SERIAL_ECHOPAIR(" ubl.line_to_destination(xe=", end[X_AXIS]);
|
||||
SERIAL_ECHOPAIR(", ye=", end[Y_AXIS]);
|
||||
SERIAL_ECHOPAIR(", ze=", end[Z_AXIS]);
|
||||
SERIAL_ECHOPAIR(", ee=", end[E_AXIS]);
|
||||
SERIAL_CHAR(')');
|
||||
SERIAL_EOL;
|
||||
debug_current_and_destination(PSTR("Start of ubl_line_to_destination()"));
|
||||
debug_current_and_destination(PSTR("Start of ubl.line_to_destination()"));
|
||||
}
|
||||
|
||||
if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) { // if the whole move is within the same cell,
|
||||
|
@ -132,11 +132,11 @@
|
|||
// Note: There is no Z Correction in this case. We are off the grid and don't know what
|
||||
// a reasonable correction would be.
|
||||
|
||||
planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder);
|
||||
planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + state.z_offset, end[E_AXIS], feed_rate, extruder);
|
||||
set_current_to_destination();
|
||||
|
||||
if (ubl.g26_debug_flag)
|
||||
debug_current_and_destination(PSTR("out of bounds in ubl_line_to_destination()"));
|
||||
if (g26_debug_flag)
|
||||
debug_current_and_destination(PSTR("out of bounds in ubl.line_to_destination()"));
|
||||
|
||||
return;
|
||||
}
|
||||
|
@ -152,20 +152,20 @@
|
|||
* to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
|
||||
*/
|
||||
|
||||
const float xratio = (RAW_X_POSITION(end[X_AXIS]) - pgm_read_float(&ubl.mesh_index_to_xpos[cell_dest_xi])) * (1.0 / (MESH_X_DIST)),
|
||||
z1 = ubl.z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
|
||||
(ubl.z_values[cell_dest_xi + 1][cell_dest_yi ] - ubl.z_values[cell_dest_xi][cell_dest_yi ]),
|
||||
z2 = ubl.z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
|
||||
(ubl.z_values[cell_dest_xi + 1][cell_dest_yi + 1] - ubl.z_values[cell_dest_xi][cell_dest_yi + 1]);
|
||||
const float xratio = (RAW_X_POSITION(end[X_AXIS]) - mesh_index_to_xpos(cell_dest_xi)) * (1.0 / (MESH_X_DIST)),
|
||||
z1 = z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
|
||||
(z_values[cell_dest_xi + 1][cell_dest_yi ] - z_values[cell_dest_xi][cell_dest_yi ]),
|
||||
z2 = z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
|
||||
(z_values[cell_dest_xi + 1][cell_dest_yi + 1] - z_values[cell_dest_xi][cell_dest_yi + 1]);
|
||||
|
||||
// we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
|
||||
// are going to apply the Y-Distance into the cell to interpolate the final Z correction.
|
||||
|
||||
const float yratio = (RAW_Y_POSITION(end[Y_AXIS]) - pgm_read_float(&ubl.mesh_index_to_ypos[cell_dest_yi])) * (1.0 / (MESH_Y_DIST));
|
||||
const float yratio = (RAW_Y_POSITION(end[Y_AXIS]) - mesh_index_to_ypos(cell_dest_yi)) * (1.0 / (MESH_Y_DIST));
|
||||
|
||||
float z0 = z1 + (z2 - z1) * yratio;
|
||||
|
||||
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
|
||||
z0 *= fade_scaling_factor_for_z(end[Z_AXIS]);
|
||||
|
||||
/**
|
||||
* If part of the Mesh is undefined, it will show up as NAN
|
||||
|
@ -176,10 +176,10 @@
|
|||
*/
|
||||
if (isnan(z0)) z0 = 0.0;
|
||||
|
||||
planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0 + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder);
|
||||
planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0 + state.z_offset, end[E_AXIS], feed_rate, extruder);
|
||||
|
||||
if (ubl.g26_debug_flag)
|
||||
debug_current_and_destination(PSTR("FINAL_MOVE in ubl_line_to_destination()"));
|
||||
if (g26_debug_flag)
|
||||
debug_current_and_destination(PSTR("FINAL_MOVE in ubl.line_to_destination()"));
|
||||
|
||||
set_current_to_destination();
|
||||
return;
|
||||
|
@ -240,7 +240,7 @@
|
|||
current_yi += down_flag; // Line is heading down, we just want to go to the bottom
|
||||
while (current_yi != cell_dest_yi + down_flag) {
|
||||
current_yi += dyi;
|
||||
const float next_mesh_line_y = LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[current_yi]));
|
||||
const float next_mesh_line_y = LOGICAL_Y_POSITION(mesh_index_to_ypos(current_yi));
|
||||
|
||||
/**
|
||||
* if the slope of the line is infinite, we won't do the calculations
|
||||
|
@ -249,9 +249,9 @@
|
|||
*/
|
||||
const float x = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;
|
||||
|
||||
float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi, current_yi);
|
||||
float z0 = z_correction_for_x_on_horizontal_mesh_line(x, current_xi, current_yi);
|
||||
|
||||
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
|
||||
z0 *= fade_scaling_factor_for_z(end[Z_AXIS]);
|
||||
|
||||
/**
|
||||
* If part of the Mesh is undefined, it will show up as NAN
|
||||
|
@ -262,7 +262,7 @@
|
|||
*/
|
||||
if (isnan(z0)) z0 = 0.0;
|
||||
|
||||
const float y = LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[current_yi]));
|
||||
const float y = LOGICAL_Y_POSITION(mesh_index_to_ypos(current_yi));
|
||||
|
||||
/**
|
||||
* Without this check, it is possible for the algorithm to generate a zero length move in the case
|
||||
|
@ -281,12 +281,12 @@
|
|||
z_position = end[Z_AXIS];
|
||||
}
|
||||
|
||||
planner._buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
|
||||
planner._buffer_line(x, y, z_position + z0 + state.z_offset, e_position, feed_rate, extruder);
|
||||
} //else printf("FIRST MOVE PRUNED ");
|
||||
}
|
||||
|
||||
if (ubl.g26_debug_flag)
|
||||
debug_current_and_destination(PSTR("vertical move done in ubl_line_to_destination()"));
|
||||
if (g26_debug_flag)
|
||||
debug_current_and_destination(PSTR("vertical move done in ubl.line_to_destination()"));
|
||||
|
||||
//
|
||||
// Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
|
||||
|
@ -311,12 +311,12 @@
|
|||
// edge of this cell for the first move.
|
||||
while (current_xi != cell_dest_xi + left_flag) {
|
||||
current_xi += dxi;
|
||||
const float next_mesh_line_x = LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[current_xi])),
|
||||
const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_xpos(current_xi)),
|
||||
y = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line
|
||||
|
||||
float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi);
|
||||
float z0 = z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi);
|
||||
|
||||
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
|
||||
z0 *= fade_scaling_factor_for_z(end[Z_AXIS]);
|
||||
|
||||
/**
|
||||
* If part of the Mesh is undefined, it will show up as NAN
|
||||
|
@ -327,7 +327,7 @@
|
|||
*/
|
||||
if (isnan(z0)) z0 = 0.0;
|
||||
|
||||
const float x = LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[current_xi]));
|
||||
const float x = LOGICAL_X_POSITION(mesh_index_to_xpos(current_xi));
|
||||
|
||||
/**
|
||||
* Without this check, it is possible for the algorithm to generate a zero length move in the case
|
||||
|
@ -346,12 +346,12 @@
|
|||
z_position = end[Z_AXIS];
|
||||
}
|
||||
|
||||
planner._buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
|
||||
planner._buffer_line(x, y, z_position + z0 + state.z_offset, e_position, feed_rate, extruder);
|
||||
} //else printf("FIRST MOVE PRUNED ");
|
||||
}
|
||||
|
||||
if (ubl.g26_debug_flag)
|
||||
debug_current_and_destination(PSTR("horizontal move done in ubl_line_to_destination()"));
|
||||
if (g26_debug_flag)
|
||||
debug_current_and_destination(PSTR("horizontal move done in ubl.line_to_destination()"));
|
||||
|
||||
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
|
||||
goto FINAL_MOVE;
|
||||
|
@ -377,8 +377,8 @@
|
|||
|
||||
while (xi_cnt > 0 || yi_cnt > 0) {
|
||||
|
||||
const float next_mesh_line_x = LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[current_xi + dxi])),
|
||||
next_mesh_line_y = LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[current_yi + dyi])),
|
||||
const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_xpos(current_xi + dxi)),
|
||||
next_mesh_line_y = LOGICAL_Y_POSITION(mesh_index_to_ypos(current_yi + dyi)),
|
||||
y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
|
||||
x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
|
||||
// (No need to worry about m being zero.
|
||||
|
@ -387,9 +387,9 @@
|
|||
|
||||
if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first
|
||||
// Yes! Crossing a Y Mesh Line next
|
||||
float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi - left_flag, current_yi + dyi);
|
||||
float z0 = z_correction_for_x_on_horizontal_mesh_line(x, current_xi - left_flag, current_yi + dyi);
|
||||
|
||||
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
|
||||
z0 *= fade_scaling_factor_for_z(end[Z_AXIS]);
|
||||
|
||||
/**
|
||||
* If part of the Mesh is undefined, it will show up as NAN
|
||||
|
@ -409,15 +409,15 @@
|
|||
e_position = end[E_AXIS];
|
||||
z_position = end[Z_AXIS];
|
||||
}
|
||||
planner._buffer_line(x, next_mesh_line_y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
|
||||
planner._buffer_line(x, next_mesh_line_y, z_position + z0 + state.z_offset, e_position, feed_rate, extruder);
|
||||
current_yi += dyi;
|
||||
yi_cnt--;
|
||||
}
|
||||
else {
|
||||
// Yes! Crossing a X Mesh Line next
|
||||
float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi + dxi, current_yi - down_flag);
|
||||
float z0 = z_correction_for_y_on_vertical_mesh_line(y, current_xi + dxi, current_yi - down_flag);
|
||||
|
||||
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
|
||||
z0 *= fade_scaling_factor_for_z(end[Z_AXIS]);
|
||||
|
||||
/**
|
||||
* If part of the Mesh is undefined, it will show up as NAN
|
||||
|
@ -438,7 +438,7 @@
|
|||
z_position = end[Z_AXIS];
|
||||
}
|
||||
|
||||
planner._buffer_line(next_mesh_line_x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
|
||||
planner._buffer_line(next_mesh_line_x, y, z_position + z0 + state.z_offset, e_position, feed_rate, extruder);
|
||||
current_xi += dxi;
|
||||
xi_cnt--;
|
||||
}
|
||||
|
@ -446,8 +446,8 @@
|
|||
if (xi_cnt < 0 || yi_cnt < 0) break; // we've gone too far, so exit the loop and move on to FINAL_MOVE
|
||||
}
|
||||
|
||||
if (ubl.g26_debug_flag)
|
||||
debug_current_and_destination(PSTR("generic move done in ubl_line_to_destination()"));
|
||||
if (g26_debug_flag)
|
||||
debug_current_and_destination(PSTR("generic move done in ubl.line_to_destination()"));
|
||||
|
||||
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
|
||||
goto FINAL_MOVE;
|
||||
|
@ -502,7 +502,7 @@
|
|||
* Returns true if the caller did NOT update current_position, otherwise false.
|
||||
*/
|
||||
|
||||
static bool ubl_prepare_linear_move_to(const float ltarget[XYZE], const float &feedrate) {
|
||||
static bool unified_bed_leveling::prepare_linear_move_to(const float ltarget[XYZE], const float &feedrate) {
|
||||
|
||||
if (!position_is_reachable_xy(ltarget[X_AXIS], ltarget[Y_AXIS])) // fail if moving outside reachable boundary
|
||||
return true; // did not move, so current_position still accurate
|
||||
|
@ -554,9 +554,9 @@
|
|||
|
||||
// Only compute leveling per segment if ubl active and target below z_fade_height.
|
||||
|
||||
if (!ubl.state.active || above_fade_height) { // no mesh leveling
|
||||
if (!state.active || above_fade_height) { // no mesh leveling
|
||||
|
||||
const float z_offset = ubl.state.active ? ubl.state.z_offset : 0.0;
|
||||
const float z_offset = state.active ? state.z_offset : 0.0;
|
||||
|
||||
float seg_dest[XYZE]; // per-segment destination,
|
||||
COPY_XYZE(seg_dest, current_position); // starting from current position
|
||||
|
@ -579,7 +579,7 @@
|
|||
// Otherwise perform per-segment leveling
|
||||
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
const float fade_scaling_factor = ubl.fade_scaling_factor_for_z(ltarget[Z_AXIS]);
|
||||
const float fade_scaling_factor = fade_scaling_factor_for_z(ltarget[Z_AXIS]);
|
||||
#endif
|
||||
|
||||
float seg_dest[XYZE]; // per-segment destination, initialize to first segment
|
||||
|
@ -591,7 +591,7 @@
|
|||
float rx = RAW_X_POSITION(seg_dest[X_AXIS]), // assume raw vs logical coordinates shifted but not scaled.
|
||||
ry = RAW_Y_POSITION(seg_dest[Y_AXIS]);
|
||||
|
||||
do { // for each mesh cell encountered during the move
|
||||
for(;;) { // for each mesh cell encountered during the move
|
||||
|
||||
// Compute mesh cell invariants that remain constant for all segments within cell.
|
||||
// Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter)
|
||||
|
@ -606,19 +606,19 @@
|
|||
cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1);
|
||||
cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1);
|
||||
|
||||
const float x0 = pgm_read_float(&(ubl.mesh_index_to_xpos[cell_xi ])), // 64 byte table lookup avoids mul+add
|
||||
y0 = pgm_read_float(&(ubl.mesh_index_to_ypos[cell_yi ])), // 64 byte table lookup avoids mul+add
|
||||
x1 = pgm_read_float(&(ubl.mesh_index_to_xpos[cell_xi+1])), // 64 byte table lookup avoids mul+add
|
||||
y1 = pgm_read_float(&(ubl.mesh_index_to_ypos[cell_yi+1])); // 64 byte table lookup avoids mul+add
|
||||
const float x0 = pgm_read_float(&(mesh_index_to_xpos[cell_xi ])), // 64 byte table lookup avoids mul+add
|
||||
y0 = pgm_read_float(&(mesh_index_to_ypos[cell_yi ])), // 64 byte table lookup avoids mul+add
|
||||
x1 = pgm_read_float(&(mesh_index_to_xpos[cell_xi+1])), // 64 byte table lookup avoids mul+add
|
||||
y1 = pgm_read_float(&(mesh_index_to_ypos[cell_yi+1])); // 64 byte table lookup avoids mul+add
|
||||
|
||||
float cx = rx - x0, // cell-relative x
|
||||
cy = ry - y0, // cell-relative y
|
||||
z_x0y0 = ubl.z_values[cell_xi ][cell_yi ], // z at lower left corner
|
||||
z_x1y0 = ubl.z_values[cell_xi+1][cell_yi ], // z at upper left corner
|
||||
z_x0y1 = ubl.z_values[cell_xi ][cell_yi+1], // z at lower right corner
|
||||
z_x1y1 = ubl.z_values[cell_xi+1][cell_yi+1]; // z at upper right corner
|
||||
z_x0y0 = z_values[cell_xi ][cell_yi ], // z at lower left corner
|
||||
z_x1y0 = z_values[cell_xi+1][cell_yi ], // z at upper left corner
|
||||
z_x0y1 = z_values[cell_xi ][cell_yi+1], // z at lower right corner
|
||||
z_x1y1 = z_values[cell_xi+1][cell_yi+1]; // z at upper right corner
|
||||
|
||||
if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating ubl.state.active (G29 A)
|
||||
if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating state.active (G29 A)
|
||||
if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points
|
||||
if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell,
|
||||
if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points
|
||||
|
@ -642,7 +642,7 @@
|
|||
const float z_sxy0 = z_xmy0 * dx_seg, // per-segment adjustment to z_cxy0
|
||||
z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * dx_seg; // per-segment adjustment to z_cxym
|
||||
|
||||
do { // for all segments within this mesh cell
|
||||
for(;;) { // for all segments within this mesh cell
|
||||
|
||||
float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy
|
||||
|
||||
|
@ -650,7 +650,7 @@
|
|||
z_cxcy *= fade_scaling_factor; // apply fade factor to interpolated mesh height
|
||||
#endif
|
||||
|
||||
z_cxcy += ubl.state.z_offset; // add fixed mesh offset from G29 Z
|
||||
z_cxcy += state.z_offset; // add fixed mesh offset from G29 Z
|
||||
|
||||
if (--segments == 0) { // if this is last segment, use ltarget for exact
|
||||
COPY_XYZE(seg_dest, ltarget);
|
||||
|
@ -681,9 +681,9 @@
|
|||
z_cxy0 += z_sxy0; // adjust z_cxy0 by per-segment z_sxy0
|
||||
z_cxym += z_sxym; // adjust z_cxym by per-segment z_sxym
|
||||
|
||||
} while (true); // per-segment loop exits by break after last segment within cell, or by return on final segment
|
||||
} while (true); // per-cell loop
|
||||
} // end of function
|
||||
} // segment loop
|
||||
} // cell loop
|
||||
}
|
||||
|
||||
#endif // UBL_DELTA
|
||||
|
||||
|
|
|
@ -1480,7 +1480,7 @@ void kill_screen(const char* lcd_msg) {
|
|||
void _lcd_level_bed_get_z() {
|
||||
ENCODER_DIRECTION_NORMAL();
|
||||
|
||||
// Encoder wheel adjusts the Z position
|
||||
// Encoder knob or keypad buttons adjust the Z position
|
||||
if (encoderPosition) {
|
||||
refresh_cmd_timeout();
|
||||
current_position[Z_AXIS] += float((int32_t)encoderPosition) * (MBL_Z_STEP);
|
||||
|
@ -4204,7 +4204,7 @@ void lcd_reset_alert_level() { lcd_status_message_level = 0; }
|
|||
if (ubl.has_control_of_lcd_panel) {
|
||||
ubl.encoder_diff = encoderDiff; // Make the encoder's rotation available to G29's Mesh Editor
|
||||
encoderDiff = 0; // We are going to lie to the LCD Panel and claim the encoder
|
||||
// wheel has not turned.
|
||||
// knob has not turned.
|
||||
}
|
||||
#endif
|
||||
lastEncoderBits = enc;
|
||||
|
|
Loading…
Reference in a new issue