Overhaul of G33 Delta Calibration (#8822)

This commit is contained in:
Luc Van Daele 2018-04-12 04:14:48 +02:00 committed by Scott Lahteine
parent ac2e0afb62
commit 646aa20b43
20 changed files with 516 additions and 478 deletions

View file

@ -320,7 +320,7 @@
#define TEMP_SENSOR_2 0
#define TEMP_SENSOR_3 0
#define TEMP_SENSOR_4 0
#define TEMP_SENSOR_BED 1 // measured to be satisfactorily accurate on centre of bed within +/- 1 degC.
#define TEMP_SENSOR_BED 1 // measured to be satisfactorily accurate on center of bed within +/- 1 degC.
#define TEMP_SENSOR_CHAMBER 0
// Dummy thermistor constant temperature readings, for use with 998 and 999

View file

@ -620,7 +620,7 @@ Black rubber belt(MXL), 18 - tooth aluminium pulley : 87.489 step per mm (Huxley
* X, Y, Z, E0 [, E1[, E2[, E3[, E4]]]]
*/
#define DEFAULT_MAX_Z_FEEDRATE 3.3 // older Huxley has problem with speeds > 3.3 mm/s on z axis
#define DEFAULT_MAX_FEEDRATE { 200, 200, DEFAULT_MAX_Z_FEEDRATE, 25 }
#define DEFAULT_MAX_FEEDRATE { 200, 200, DEFAULT_MAX_Z_FEEDRATE, 25 }
/**
* Default Max Acceleration (change/s) change = mm/s

View file

@ -532,19 +532,13 @@
#if ENABLED(DELTA_AUTO_CALIBRATION)
// set the default number of probe points : n*n (1 -> 7)
#define DELTA_CALIBRATION_DEFAULT_POINTS 4
// Enable and set these values based on results of 'G33 A'
//#define H_FACTOR 1.01
//#define R_FACTOR 2.61
//#define A_FACTOR 0.87
#endif
#if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU)
// Set the radius for the calibration probe points - max 0.9 * DELTA_PRINTABLE_RADIUS for non-eccentric probes
// Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS for non-eccentric probes
#define DELTA_CALIBRATION_RADIUS 73.5 // mm
// Set the steprate for papertest probing
#define PROBE_MANUALLY_STEP 0.025
#define PROBE_MANUALLY_STEP (MIN_STEPS_PER_SEGMENT / DEFAULT_XYZ_STEPS_PER_UNIT)
#endif
// Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
@ -653,7 +647,15 @@
* Override with M92
* X, Y, Z, E0 [, E1[, E2[, E3[, E4]]]]
*/
#define DEFAULT_AXIS_STEPS_PER_UNIT { 100, 100, 100, 100 } // default steps per unit for Kossel (GT2, 20 tooth)
// variables to calculate steps
#define XYZ_FULL_STEPS_PER_ROTATION 200
#define XYZ_MICROSTEPS 16
#define XYZ_BELT_PITCH 2
#define XYZ_PULLEY_TEETH 16
// delta speeds must be the same on xyz
#define DEFAULT_XYZ_STEPS_PER_UNIT ((XYZ_FULL_STEPS_PER_ROTATION) * (XYZ_MICROSTEPS) / double(XYZ_BELT_PITCH) / double(XYZ_PULLEY_TEETH))
#define DEFAULT_AXIS_STEPS_PER_UNIT { DEFAULT_XYZ_STEPS_PER_UNIT, DEFAULT_XYZ_STEPS_PER_UNIT, DEFAULT_XYZ_STEPS_PER_UNIT, 100 } // default steps per unit for Kossel (GT2, 20 tooth)
/**
* Default Max Feed Rate (mm/s)

View file

@ -532,19 +532,13 @@
#if ENABLED(DELTA_AUTO_CALIBRATION)
// set the default number of probe points : n*n (1 -> 7)
#define DELTA_CALIBRATION_DEFAULT_POINTS 7
// Enable and set these values based on results of 'G33 A'
//#define H_FACTOR 1.01
//#define R_FACTOR 2.61
//#define A_FACTOR 0.87
#endif
#if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU)
// Set the radius for the calibration probe points - max 0.9 * DELTA_PRINTABLE_RADIUS for non-eccentric probes
// Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS for non-eccentric probes
#define DELTA_CALIBRATION_RADIUS 63 // mm
// Set the steprate for papertest probing
#define PROBE_MANUALLY_STEP 0.025
#define PROBE_MANUALLY_STEP (MIN_STEPS_PER_SEGMENT / DEFAULT_XYZ_STEPS_PER_UNIT)
#endif
// Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
@ -653,7 +647,15 @@
* Override with M92
* X, Y, Z, E0 [, E1[, E2[, E3[, E4]]]]
*/
#define DEFAULT_AXIS_STEPS_PER_UNIT { 100, 100, 100, 100 } // default steps per unit for Kossel (GT2, 20 tooth)
// variables to calculate steps
#define XYZ_FULL_STEPS_PER_ROTATION 200
#define XYZ_MICROSTEPS 16
#define XYZ_BELT_PITCH 2
#define XYZ_PULLEY_TEETH 16
// delta speeds must be the same on xyz
#define DEFAULT_XYZ_STEPS_PER_UNIT ((XYZ_FULL_STEPS_PER_ROTATION) * (XYZ_MICROSTEPS) / double(XYZ_BELT_PITCH) / double(XYZ_PULLEY_TEETH))
#define DEFAULT_AXIS_STEPS_PER_UNIT { DEFAULT_XYZ_STEPS_PER_UNIT, DEFAULT_XYZ_STEPS_PER_UNIT, DEFAULT_XYZ_STEPS_PER_UNIT, 100 } // default steps per unit for Kossel (GT2, 20 tooth)
/**
* Default Max Feed Rate (mm/s)

View file

@ -532,19 +532,13 @@
#if ENABLED(DELTA_AUTO_CALIBRATION)
// set the default number of probe points : n*n (1 -> 7)
#define DELTA_CALIBRATION_DEFAULT_POINTS 4
// Enable and set these values based on results of 'G33 A'
//#define H_FACTOR 1.01
//#define R_FACTOR 2.61
//#define A_FACTOR 0.87
#endif
#if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU)
// Set the radius for the calibration probe points - max 0.9 * DELTA_PRINTABLE_RADIUS for non-eccentric probes
// Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS for non-eccentric probes
#define DELTA_CALIBRATION_RADIUS 73.5 // mm
// Set the steprate for papertest probing
#define PROBE_MANUALLY_STEP 0.025
#define PROBE_MANUALLY_STEP (MIN_STEPS_PER_SEGMENT / DEFAULT_XYZ_STEPS_PER_UNIT)
#endif
// Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
@ -653,7 +647,15 @@
* Override with M92
* X, Y, Z, E0 [, E1[, E2[, E3[, E4]]]]
*/
#define DEFAULT_AXIS_STEPS_PER_UNIT { 100, 100, 100, 90 } // default steps per unit for Kossel (GT2, 20 tooth)
// variables to calculate steps
#define XYZ_FULL_STEPS_PER_ROTATION 200
#define XYZ_MICROSTEPS 16
#define XYZ_BELT_PITCH 2
#define XYZ_PULLEY_TEETH 16
// delta speeds must be the same on xyz
#define DEFAULT_XYZ_STEPS_PER_UNIT ((XYZ_FULL_STEPS_PER_ROTATION) * (XYZ_MICROSTEPS) / double(XYZ_BELT_PITCH) / double(XYZ_PULLEY_TEETH))
#define DEFAULT_AXIS_STEPS_PER_UNIT { DEFAULT_XYZ_STEPS_PER_UNIT, DEFAULT_XYZ_STEPS_PER_UNIT, DEFAULT_XYZ_STEPS_PER_UNIT, 90 } // default steps per unit for Kossel (GT2, 20 tooth)
/**
* Default Max Feed Rate (mm/s)

View file

@ -537,19 +537,13 @@
#if ENABLED(DELTA_AUTO_CALIBRATION)
// set the default number of probe points : n*n (1 -> 7)
#define DELTA_CALIBRATION_DEFAULT_POINTS 4
// Enable and set these values based on results of 'G33 A'
//#define H_FACTOR 1.01
//#define R_FACTOR 2.61
//#define A_FACTOR 0.87
#endif
#if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU)
// Set the radius for the calibration probe points - max 0.9 * DELTA_PRINTABLE_RADIUS for non-eccentric probes
// Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS for non-eccentric probes
#define DELTA_CALIBRATION_RADIUS 121.5 // mm
// Set the steprate for papertest probing
#define PROBE_MANUALLY_STEP 0.025
#define PROBE_MANUALLY_STEP (MIN_STEPS_PER_SEGMENT / DEFAULT_XYZ_STEPS_PER_UNIT)
#endif
// Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
@ -658,7 +652,15 @@
* Override with M92
* X, Y, Z, E0 [, E1[, E2[, E3[, E4]]]]
*/
#define DEFAULT_AXIS_STEPS_PER_UNIT { 100, 100, 100, 95 } // default steps per unit for Kossel (GT2, 20 tooth)
// variables to calculate steps
#define XYZ_FULL_STEPS_PER_ROTATION 200
#define XYZ_MICROSTEPS 16
#define XYZ_BELT_PITCH 2
#define XYZ_PULLEY_TEETH 16
// delta speeds must be the same on xyz
#define DEFAULT_XYZ_STEPS_PER_UNIT ((XYZ_FULL_STEPS_PER_ROTATION) * (XYZ_MICROSTEPS) / double(XYZ_BELT_PITCH) / double(XYZ_PULLEY_TEETH))
#define DEFAULT_AXIS_STEPS_PER_UNIT { DEFAULT_XYZ_STEPS_PER_UNIT, DEFAULT_XYZ_STEPS_PER_UNIT, DEFAULT_XYZ_STEPS_PER_UNIT, 95 } // default steps per unit for Kossel (GT2, 20 tooth)
/**
* Default Max Feed Rate (mm/s)

View file

@ -522,19 +522,13 @@
#if ENABLED(DELTA_AUTO_CALIBRATION)
// set the default number of probe points : n*n (1 -> 7)
#define DELTA_CALIBRATION_DEFAULT_POINTS 4
// Enable and set these values based on results of 'G33 A'
//#define H_FACTOR 1.01
//#define R_FACTOR 2.61
//#define A_FACTOR 0.87
#endif
#if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU)
// Set the radius for the calibration probe points - max 0.9 * DELTA_PRINTABLE_RADIUS for non-eccentric probes
// Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS for non-eccentric probes
#define DELTA_CALIBRATION_RADIUS 121.5 // mm
// Set the steprate for papertest probing
#define PROBE_MANUALLY_STEP 0.025
#define PROBE_MANUALLY_STEP (MIN_STEPS_PER_SEGMENT / DEFAULT_XYZ_STEPS_PER_UNIT)
#endif
// Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
@ -643,7 +637,15 @@
* Override with M92
* X, Y, Z, E0 [, E1[, E2[, E3[, E4]]]]
*/
#define DEFAULT_AXIS_STEPS_PER_UNIT { 80, 80, 80, 760*1.1 } // default steps per unit for Kossel (GT2, 20 tooth)
// variables to calculate steps
#define XYZ_FULL_STEPS_PER_ROTATION 200
#define XYZ_MICROSTEPS 16
#define XYZ_BELT_PITCH 2
#define XYZ_PULLEY_TEETH 20
// delta speeds must be the same on xyz
#define DEFAULT_XYZ_STEPS_PER_UNIT ((XYZ_FULL_STEPS_PER_ROTATION) * (XYZ_MICROSTEPS) / double(XYZ_BELT_PITCH) / double(XYZ_PULLEY_TEETH))
#define DEFAULT_AXIS_STEPS_PER_UNIT { DEFAULT_XYZ_STEPS_PER_UNIT, DEFAULT_XYZ_STEPS_PER_UNIT, DEFAULT_XYZ_STEPS_PER_UNIT, 760*1.1 } // default steps per unit for Kossel (GT2, 20 tooth)
/**
* Default Max Feed Rate (mm/s)

View file

@ -522,19 +522,13 @@
#if ENABLED(DELTA_AUTO_CALIBRATION)
// set the default number of probe points : n*n (1 -> 7)
#define DELTA_CALIBRATION_DEFAULT_POINTS 4
// Enable and set these values based on results of 'G33 A'
//#define H_FACTOR 1.01
//#define R_FACTOR 2.61
//#define A_FACTOR 0.87
#endif
#if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU)
// Set the radius for the calibration probe points - max 0.9 * DELTA_PRINTABLE_RADIUS for non-eccentric probes
// Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS for non-eccentric probes
#define DELTA_CALIBRATION_RADIUS 78.0 // mm
// Set the steprate for papertest probing
#define PROBE_MANUALLY_STEP 0.025
#define PROBE_MANUALLY_STEP (MIN_STEPS_PER_SEGMENT / DEFAULT_XYZ_STEPS_PER_UNIT)
#endif
// Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
@ -643,7 +637,15 @@
* Override with M92
* X, Y, Z, E0 [, E1[, E2[, E3[, E4]]]]
*/
#define DEFAULT_AXIS_STEPS_PER_UNIT { 80, 80, 80, 760*1.1 } // default steps per unit for Kossel (GT2, 20 tooth)
// variables to calculate steps
#define XYZ_FULL_STEPS_PER_ROTATION 200
#define XYZ_MICROSTEPS 16
#define XYZ_BELT_PITCH 2
#define XYZ_PULLEY_TEETH 20
// delta speeds must be the same on xyz
#define DEFAULT_XYZ_STEPS_PER_UNIT ((XYZ_FULL_STEPS_PER_ROTATION) * (XYZ_MICROSTEPS) / double(XYZ_BELT_PITCH) / double(XYZ_PULLEY_TEETH))
#define DEFAULT_AXIS_STEPS_PER_UNIT { DEFAULT_XYZ_STEPS_PER_UNIT, DEFAULT_XYZ_STEPS_PER_UNIT, DEFAULT_XYZ_STEPS_PER_UNIT, 760*1.1 } // default steps per unit for Kossel (GT2, 20 tooth)
/**
* Default Max Feed Rate (mm/s)

View file

@ -508,19 +508,13 @@
#if ENABLED(DELTA_AUTO_CALIBRATION)
// set the default number of probe points : n*n (1 -> 7)
#define DELTA_CALIBRATION_DEFAULT_POINTS 4
// Enable and set these values based on results of 'G33 A'
//#define H_FACTOR 1.01
//#define R_FACTOR 2.61
//#define A_FACTOR 0.87
#endif
#if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU)
// Set the radius for the calibration probe points - max 0.9 * DELTA_PRINTABLE_RADIUS for non-eccentric probes
// Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS for non-eccentric probes
#define DELTA_CALIBRATION_RADIUS 110.0 // mm
// Set the steprate for papertest probing
#define PROBE_MANUALLY_STEP 0.025
#define PROBE_MANUALLY_STEP (MIN_STEPS_PER_SEGMENT / DEFAULT_XYZ_STEPS_PER_UNIT)
#endif
// Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
@ -636,7 +630,15 @@
* Override with M92
* X, Y, Z, E0 [, E1[, E2[, E3[, E4]]]]
*/
#define DEFAULT_AXIS_STEPS_PER_UNIT { XYZ_STEPS, XYZ_STEPS, XYZ_STEPS, 184.8 }
// variables to calculate steps
#define XYZ_FULL_STEPS_PER_ROTATION 200
#define XYZ_MICROSTEPS 32
#define XYZ_BELT_PITCH 2
#define XYZ_PULLEY_TEETH 20
// delta speeds must be the same on xyz
#define DEFAULT_XYZ_STEPS_PER_UNIT ((XYZ_FULL_STEPS_PER_ROTATION) * (XYZ_MICROSTEPS) / double(XYZ_BELT_PITCH) / double(XYZ_PULLEY_TEETH))
#define DEFAULT_AXIS_STEPS_PER_UNIT { DEFAULT_XYZ_STEPS_PER_UNIT, DEFAULT_XYZ_STEPS_PER_UNIT, DEFAULT_XYZ_STEPS_PER_UNIT, 184.8 } // default steps per unit for Kossel (GT2, 20 tooth)
/**
* Default Max Feed Rate (mm/s)

View file

@ -526,19 +526,13 @@
#if ENABLED(DELTA_AUTO_CALIBRATION)
// set the default number of probe points : n*n (1 -> 7)
#define DELTA_CALIBRATION_DEFAULT_POINTS 4
// Enable and set these values based on results of 'G33 A'
//#define H_FACTOR 1.01
//#define R_FACTOR 2.61
//#define A_FACTOR 0.87
#endif
#if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU)
// Set the radius for the calibration probe points - max 0.9 * DELTA_PRINTABLE_RADIUS for non-eccentric probes
// Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS for non-eccentric probes
#define DELTA_CALIBRATION_RADIUS 121.5 // mm
// Set the steprate for papertest probing
#define PROBE_MANUALLY_STEP 0.025
#define PROBE_MANUALLY_STEP (MIN_STEPS_PER_SEGMENT / DEFAULT_XYZ_STEPS_PER_UNIT)
#endif
// Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
@ -626,15 +620,6 @@
//=============================================================================
// @section motion
// variables to calculate steps
#define XYZ_FULL_STEPS_PER_ROTATION 200
#define XYZ_MICROSTEPS 16
#define XYZ_BELT_PITCH 2
#define XYZ_PULLEY_TEETH 16
// delta speeds must be the same on xyz
#define XYZ_STEPS (XYZ_FULL_STEPS_PER_ROTATION * XYZ_MICROSTEPS / double(XYZ_BELT_PITCH) / double(XYZ_PULLEY_TEETH))
/**
* Default Settings
*
@ -655,7 +640,15 @@
* Override with M92
* X, Y, Z, E0 [, E1[, E2[, E3[, E4]]]]
*/
#define DEFAULT_AXIS_STEPS_PER_UNIT { XYZ_STEPS, XYZ_STEPS, XYZ_STEPS, 158 } // default steps per unit for PowerWasp
// variables to calculate steps
#define XYZ_FULL_STEPS_PER_ROTATION 200
#define XYZ_MICROSTEPS 16
#define XYZ_BELT_PITCH 2
#define XYZ_PULLEY_TEETH 16
// delta speeds must be the same on xyz
#define DEFAULT_XYZ_STEPS_PER_UNIT ((XYZ_FULL_STEPS_PER_ROTATION) * (XYZ_MICROSTEPS) / double(XYZ_BELT_PITCH) / double(XYZ_PULLEY_TEETH))
#define DEFAULT_AXIS_STEPS_PER_UNIT { DEFAULT_XYZ_STEPS_PER_UNIT, DEFAULT_XYZ_STEPS_PER_UNIT, DEFAULT_XYZ_STEPS_PER_UNIT, 158 } // default steps per unit for PowerWasp
/**
* Default Max Feed Rate (mm/s)

View file

@ -287,8 +287,8 @@ void Max7219_idle_tasks() {
#endif
CRITICAL_SECTION_END
#endif
static uint16_t refresh_cnt = 0; // The Max7219 circuit boards available for several dollars on eBay
static uint16_t refresh_cnt = 0; // The Max7219 circuit boards available for several dollars on eBay
if (refresh_cnt++ > 50000) { // are vulnerable to electrical noise, especially with long wires
Max7219_register_setup(); // next to high current wires. If the display becomes corrupted due
Max7219_LED_Toggle(7, 0); // to electrical noise, this will fix it within a couple of seconds.

View file

@ -26,12 +26,15 @@
#include "../gcode.h"
#include "../../module/delta.h"
#include "../../module/probe.h"
#include "../../module/motion.h"
#include "../../module/stepper.h"
#include "../../module/endstops.h"
#include "../../lcd/ultralcd.h"
#if HAS_BED_PROBE
#include "../../module/probe.h"
#endif
#if HOTENDS > 1
#include "../../module/tool_change.h"
#endif
@ -43,7 +46,7 @@
constexpr uint8_t _7P_STEP = 1, // 7-point step - to change number of calibration points
_4P_STEP = _7P_STEP * 2, // 4-point step
NPP = _7P_STEP * 6; // number of calibration points on the radius
enum CalEnum : char { // the 7 main calibration points - add definitions if needed
enum CalEnum : char { // the 7 main calibration points - add definitions if needed
CEN = 0,
__A = 1,
_AB = __A + _7P_STEP,
@ -60,7 +63,54 @@ enum CalEnum : char { // the 7 main calibration po
#define LOOP_CAL_RAD(VAR) LOOP_CAL_PT(VAR, __A, _7P_STEP)
#define LOOP_CAL_ACT(VAR, _4P, _OP) LOOP_CAL_PT(VAR, _OP ? _AB : __A, _4P ? _4P_STEP : _7P_STEP)
static void print_signed_float(const char * const prefix, const float &f) {
#if HOTENDS > 1
const uint8_t old_tool_index = active_extruder;
#define AC_CLEANUP() ac_cleanup(old_tool_index)
#else
#define AC_CLEANUP() ac_cleanup()
#endif
float lcd_probe_pt(const float &rx, const float &ry);
bool ac_home() {
endstops.enable(true);
if (!home_delta())
return false;
endstops.not_homing();
return true;
}
void ac_setup(const bool reset_bed) {
#if HOTENDS > 1
tool_change(0, 0, true);
#endif
stepper.synchronize();
setup_for_endstop_or_probe_move();
#if HAS_LEVELING
if (reset_bed) reset_bed_level(); // After full calibration bed-level data is no longer valid
#endif
}
void ac_cleanup(
#if HOTENDS > 1
const uint8_t old_tool_index
#endif
) {
#if ENABLED(DELTA_HOME_TO_SAFE_ZONE)
do_blocking_move_to_z(delta_clip_start_height);
#endif
#if HAS_BED_PROBE
STOW_PROBE();
#endif
clean_up_after_endstop_or_probe_move();
#if HOTENDS > 1
tool_change(old_tool_index, 0, true);
#endif
}
void print_signed_float(const char * const prefix, const float &f) {
SERIAL_PROTOCOLPGM(" ");
serialprintPGM(prefix);
SERIAL_PROTOCOLCHAR(':');
@ -68,7 +118,10 @@ static void print_signed_float(const char * const prefix, const float &f) {
SERIAL_PROTOCOL_F(f, 2);
}
static void print_G33_settings(const bool end_stops, const bool tower_angles) {
/**
* - Print the delta settings
*/
static void print_calibration_settings(const bool end_stops, const bool tower_angles) {
SERIAL_PROTOCOLPAIR(".Height:", delta_height);
if (end_stops) {
print_signed_float(PSTR("Ex"), delta_endstop_adj[A_AXIS]);
@ -89,16 +142,25 @@ static void print_G33_settings(const bool end_stops, const bool tower_angles) {
if ((!end_stops && tower_angles) || (end_stops && !tower_angles)) { // XOR
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
}
#if HAS_BED_PROBE
if (!end_stops && !tower_angles) {
SERIAL_PROTOCOL_SP(30);
print_signed_float(PSTR("Offset"), zprobe_zoffset);
}
#endif
SERIAL_EOL();
}
static void print_G33_results(const float z_at_pt[NPP + 1], const bool tower_points, const bool opposite_points) {
/**
* - Print the probe results
*/
static void print_calibration_results(const float z_pt[NPP + 1], const bool tower_points, const bool opposite_points) {
SERIAL_PROTOCOLPGM(". ");
print_signed_float(PSTR("c"), z_at_pt[CEN]);
print_signed_float(PSTR("c"), z_pt[CEN]);
if (tower_points) {
print_signed_float(PSTR(" x"), z_at_pt[__A]);
print_signed_float(PSTR(" y"), z_at_pt[__B]);
print_signed_float(PSTR(" z"), z_at_pt[__C]);
print_signed_float(PSTR(" x"), z_pt[__A]);
print_signed_float(PSTR(" y"), z_pt[__B]);
print_signed_float(PSTR(" z"), z_pt[__C]);
}
if (tower_points && opposite_points) {
SERIAL_EOL();
@ -106,50 +168,63 @@ static void print_G33_results(const float z_at_pt[NPP + 1], const bool tower_poi
SERIAL_PROTOCOL_SP(13);
}
if (opposite_points) {
print_signed_float(PSTR("yz"), z_at_pt[_BC]);
print_signed_float(PSTR("zx"), z_at_pt[_CA]);
print_signed_float(PSTR("xy"), z_at_pt[_AB]);
print_signed_float(PSTR("yz"), z_pt[_BC]);
print_signed_float(PSTR("zx"), z_pt[_CA]);
print_signed_float(PSTR("xy"), z_pt[_AB]);
}
SERIAL_EOL();
}
/**
* After G33:
* - Move to the print ceiling (DELTA_HOME_TO_SAFE_ZONE only)
* - Stow the probe
* - Restore endstops state
* - Select the old tool, if needed
* - Calculate the standard deviation from the zero plane
*/
static void G33_cleanup(
#if HOTENDS > 1
const uint8_t old_tool_index
#endif
) {
#if ENABLED(DELTA_HOME_TO_SAFE_ZONE)
do_blocking_move_to_z(delta_clip_start_height);
#endif
STOW_PROBE();
clean_up_after_endstop_or_probe_move();
#if HOTENDS > 1
tool_change(old_tool_index, 0, true);
#endif
static float std_dev_points(float z_pt[NPP + 1], const bool _0p_cal, const bool _1p_cal, const bool _4p_cal, const bool _4p_opp) {
if (!_0p_cal) {
float S2 = sq(z_pt[CEN]);
int16_t N = 1;
if (!_1p_cal) { // std dev from zero plane
LOOP_CAL_ACT(rad, _4p_cal, _4p_opp) {
S2 += sq(z_pt[rad]);
N++;
}
return round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
}
}
return 0.00001;
}
inline float calibration_probe(const float nx, const float ny, const bool stow) {
/**
* - Probe a point
*/
static float calibration_probe(const float &nx, const float &ny, const bool stow, const bool set_up) {
#if HAS_BED_PROBE
return probe_pt(nx, ny, stow ? PROBE_PT_STOW : PROBE_PT_RAISE, 0, false);
return probe_pt(nx, ny, set_up ? PROBE_PT_BIG_RAISE : stow ? PROBE_PT_STOW : PROBE_PT_RAISE, 0, false);
#else
UNUSED(stow);
UNUSED(set_up);
return lcd_probe_pt(nx, ny);
#endif
}
static float probe_G33_points(float z_at_pt[NPP + 1], const int8_t probe_points, const bool towers_set, const bool stow_after_each) {
#if HAS_BED_PROBE
static float probe_z_shift(const float center) {
STOW_PROBE();
endstops.enable_z_probe(false);
float z_shift = lcd_probe_pt(0, 0) - center;
endstops.enable_z_probe(true);
return z_shift;
}
#endif
/**
* - Probe a grid
*/
static bool probe_calibration_points(float z_pt[NPP + 1], const int8_t probe_points, const bool towers_set, const bool stow_after_each, const bool set_up) {
const bool _0p_calibration = probe_points == 0,
_1p_calibration = probe_points == 1,
_1p_calibration = probe_points == 1 || probe_points == -1,
_4p_calibration = probe_points == 2,
_4p_opposite_points = _4p_calibration && !towers_set,
_7p_calibration = probe_points >= 3 || probe_points == 0,
_7p_calibration = probe_points >= 3,
_7p_no_intermediates = probe_points == 3,
_7p_1_intermediates = probe_points == 4,
_7p_2_intermediates = probe_points == 5,
@ -159,28 +234,28 @@ static float probe_G33_points(float z_at_pt[NPP + 1], const int8_t probe_points,
_7p_11_intermediates = probe_points == 9,
_7p_14_intermediates = probe_points == 10,
_7p_intermed_points = probe_points >= 4,
_7p_6_centre = probe_points >= 5 && probe_points <= 7,
_7p_9_centre = probe_points >= 8;
_7p_6_center = probe_points >= 5 && probe_points <= 7,
_7p_9_center = probe_points >= 8;
LOOP_CAL_ALL(axis) z_at_pt[axis] = 0.0;
LOOP_CAL_ALL(rad) z_pt[rad] = 0.0;
if (!_0p_calibration) {
if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the center
z_at_pt[CEN] += calibration_probe(0, 0, stow_after_each);
if (isnan(z_at_pt[CEN])) return NAN;
z_pt[CEN] += calibration_probe(0, 0, stow_after_each, set_up);
if (isnan(z_pt[CEN])) return false;
}
if (_7p_calibration) { // probe extra center points
const float start = _7p_9_centre ? _CA + _7P_STEP / 3.0 : _7p_6_centre ? _CA : __C,
steps = _7p_9_centre ? _4P_STEP / 3.0 : _7p_6_centre ? _7P_STEP : _4P_STEP;
I_LOOP_CAL_PT(axis, start, steps) {
const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
const float start = _7p_9_center ? _CA + _7P_STEP / 3.0 : _7p_6_center ? _CA : __C,
steps = _7p_9_center ? _4P_STEP / 3.0 : _7p_6_center ? _7P_STEP : _4P_STEP;
I_LOOP_CAL_PT(rad, start, steps) {
const float a = RADIANS(210 + (360 / NPP) * (rad - 1)),
r = delta_calibration_radius * 0.1;
z_at_pt[CEN] += calibration_probe(cos(a) * r, sin(a) * r, stow_after_each);
if (isnan(z_at_pt[CEN])) return NAN;
z_pt[CEN] += calibration_probe(cos(a) * r, sin(a) * r, stow_after_each, set_up);
if (isnan(z_pt[CEN])) return false;
}
z_at_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points);
z_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points);
}
if (!_1p_calibration) { // probe the radius
@ -195,182 +270,150 @@ static float probe_G33_points(float z_at_pt[NPP + 1], const int8_t probe_points,
_7p_no_intermediates ? _7P_STEP : // 1r * 6 + 3c = 9
_4P_STEP; // .5r * 6 + 1c = 4
bool zig_zag = true;
F_LOOP_CAL_PT(axis, start, _7p_9_centre ? steps * 3 : steps) {
const int8_t offset = _7p_9_centre ? 1 : 0;
for (int8_t circle = -offset; circle <= offset; circle++) {
const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
r = delta_calibration_radius * (1 + 0.1 * (zig_zag ? circle : - circle)),
interpol = fmod(axis, 1);
const float z_temp = calibration_probe(cos(a) * r, sin(a) * r, stow_after_each);
if (isnan(z_temp)) return NAN;
F_LOOP_CAL_PT(rad, start, _7p_9_center ? steps * 3 : steps) {
const int8_t offset = _7p_9_center ? 2 : 0;
for (int8_t circle = 0; circle <= offset; circle++) {
const float a = RADIANS(210 + (360 / NPP) * (rad - 1)),
r = delta_calibration_radius * (1 - 0.1 * (zig_zag ? offset - circle : circle)),
interpol = fmod(rad, 1);
const float z_temp = calibration_probe(cos(a) * r, sin(a) * r, stow_after_each, set_up);
if (isnan(z_temp)) return false;
// split probe point to neighbouring calibration points
z_at_pt[uint8_t(round(axis - interpol + NPP - 1)) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90)));
z_at_pt[uint8_t(round(axis - interpol)) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90)));
z_pt[uint8_t(round(rad - interpol + NPP - 1)) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90)));
z_pt[uint8_t(round(rad - interpol)) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90)));
}
zig_zag = !zig_zag;
}
if (_7p_intermed_points)
LOOP_CAL_RAD(axis)
z_at_pt[axis] /= _7P_STEP / steps;
}
LOOP_CAL_RAD(rad)
z_pt[rad] /= _7P_STEP / steps;
float S1 = z_at_pt[CEN],
S2 = sq(z_at_pt[CEN]);
int16_t N = 1;
if (!_1p_calibration) { // std dev from zero plane
LOOP_CAL_ACT(axis, _4p_calibration, _4p_opposite_points) {
S1 += z_at_pt[axis];
S2 += sq(z_at_pt[axis]);
N++;
}
return round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
do_blocking_move_to_xy(0.0, 0.0);
}
}
return 0.00001;
return true;
}
#if HAS_BED_PROBE
/**
* kinematics routines and auto tune matrix scaling parameters:
* see https://github.com/LVD-AC/Marlin-AC/tree/1.1.x-AC/documentation for
* - formulae for approximative forward kinematics in the end-stop displacement matrix
* - definition of the matrix scaling parameters
*/
static void reverse_kinematics_probe_points(float z_pt[NPP + 1], float mm_at_pt_axis[NPP + 1][ABC]) {
float pos[XYZ] = { 0.0 };
static bool G33_auto_tune() {
float z_at_pt[NPP + 1] = { 0.0 },
z_at_pt_base[NPP + 1] = { 0.0 },
z_temp, h_fac = 0.0, r_fac = 0.0, a_fac = 0.0, norm = 0.8;
#define ZP(N,I) ((N) * z_at_pt[I])
#define Z06(I) ZP(6, I)
#define Z03(I) ZP(3, I)
#define Z02(I) ZP(2, I)
#define Z01(I) ZP(1, I)
#define Z32(I) ZP(3/2, I)
SERIAL_PROTOCOLPGM("AUTO TUNE baseline");
SERIAL_EOL();
if (isnan(probe_G33_points(z_at_pt_base, 3, true, false))) return false;
print_G33_results(z_at_pt_base, true, true);
LOOP_XYZ(axis) {
delta_endstop_adj[axis] -= 1.0;
recalc_delta_settings();
endstops.enable(true);
if (!home_delta()) return false;
endstops.not_homing();
SERIAL_PROTOCOLPGM("Tuning E");
SERIAL_CHAR(tolower(axis_codes[axis]));
SERIAL_EOL();
if (isnan(probe_G33_points(z_at_pt, 3, true, false))) return false;
LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
print_G33_results(z_at_pt, true, true);
delta_endstop_adj[axis] += 1.0;
recalc_delta_settings();
switch (axis) {
case A_AXIS :
h_fac += 4.0 / (Z03(CEN) +Z01(__A) +Z32(_CA) +Z32(_AB)); // Offset by X-tower end-stop
break;
case B_AXIS :
h_fac += 4.0 / (Z03(CEN) +Z01(__B) +Z32(_BC) +Z32(_AB)); // Offset by Y-tower end-stop
break;
case C_AXIS :
h_fac += 4.0 / (Z03(CEN) +Z01(__C) +Z32(_BC) +Z32(_CA) ); // Offset by Z-tower end-stop
break;
}
}
h_fac /= 3.0;
h_fac *= norm; // Normalize to 1.02 for Kossel mini
for (int8_t zig_zag = -1; zig_zag < 2; zig_zag += 2) {
delta_radius += 1.0 * zig_zag;
recalc_delta_settings();
endstops.enable(true);
if (!home_delta()) return false;
endstops.not_homing();
SERIAL_PROTOCOLPGM("Tuning R");
SERIAL_PROTOCOL(zig_zag == -1 ? "-" : "+");
SERIAL_EOL();
if (isnan(probe_G33_points(z_at_pt, 3, true, false))) return false;
LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
print_G33_results(z_at_pt, true, true);
delta_radius -= 1.0 * zig_zag;
recalc_delta_settings();
r_fac -= zig_zag * 6.0 / (Z03(__A) +Z03(__B) +Z03(__C) +Z03(_BC) +Z03(_CA) +Z03(_AB)); // Offset by delta radius
}
r_fac /= 2.0;
r_fac *= 3 * norm; // Normalize to 2.25 for Kossel mini
LOOP_XYZ(axis) {
delta_tower_angle_trim[axis] += 1.0;
delta_endstop_adj[(axis + 1) % 3] -= 1.0 / 4.5;
delta_endstop_adj[(axis + 2) % 3] += 1.0 / 4.5;
z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
delta_height -= z_temp;
LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
recalc_delta_settings();
endstops.enable(true);
if (!home_delta()) return false;
endstops.not_homing();
SERIAL_PROTOCOLPGM("Tuning T");
SERIAL_CHAR(tolower(axis_codes[axis]));
SERIAL_EOL();
if (isnan(probe_G33_points(z_at_pt, 3, true, false))) return false;
LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
print_G33_results(z_at_pt, true, true);
delta_tower_angle_trim[axis] -= 1.0;
delta_endstop_adj[(axis+1) % 3] += 1.0/4.5;
delta_endstop_adj[(axis+2) % 3] -= 1.0/4.5;
z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
delta_height -= z_temp;
LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
recalc_delta_settings();
switch (axis) {
case A_AXIS :
a_fac += 4.0 / ( Z06(__B) -Z06(__C) +Z06(_CA) -Z06(_AB)); // Offset by alpha tower angle
break;
case B_AXIS :
a_fac += 4.0 / (-Z06(__A) +Z06(__C) -Z06(_BC) +Z06(_AB)); // Offset by beta tower angle
break;
case C_AXIS :
a_fac += 4.0 / (Z06(__A) -Z06(__B) +Z06(_BC) -Z06(_CA) ); // Offset by gamma tower angle
break;
}
}
a_fac /= 3.0;
a_fac *= norm; // Normalize to 0.83 for Kossel mini
endstops.enable(true);
if (!home_delta()) return false;
endstops.not_homing();
print_signed_float(PSTR( "H_FACTOR: "), h_fac);
print_signed_float(PSTR(" R_FACTOR: "), r_fac);
print_signed_float(PSTR(" A_FACTOR: "), a_fac);
SERIAL_EOL();
SERIAL_PROTOCOLPGM("Copy these values to Configuration.h");
SERIAL_EOL();
return true;
LOOP_CAL_ALL(rad) {
const float a = RADIANS(210 + (360 / NPP) * (rad - 1)),
r = (rad == CEN ? 0.0 : delta_calibration_radius);
pos[X_AXIS] = cos(a) * r;
pos[Y_AXIS] = sin(a) * r;
pos[Z_AXIS] = z_pt[rad];
inverse_kinematics(pos);
LOOP_XYZ(axis) mm_at_pt_axis[rad][axis] = delta[axis];
}
}
#endif // HAS_BED_PROBE
static void forward_kinematics_probe_points(float mm_at_pt_axis[NPP + 1][ABC], float z_pt[NPP + 1]) {
const float r_quot = delta_calibration_radius / delta_radius;
#define ZPP(N,I,A) ((1 / 3.0 + r_quot * (N) / 3.0 ) * mm_at_pt_axis[I][A])
#define Z00(I, A) ZPP( 0, I, A)
#define Zp1(I, A) ZPP(+1, I, A)
#define Zm1(I, A) ZPP(-1, I, A)
#define Zp2(I, A) ZPP(+2, I, A)
#define Zm2(I, A) ZPP(-2, I, A)
z_pt[CEN] = Z00(CEN, A_AXIS) + Z00(CEN, B_AXIS) + Z00(CEN, C_AXIS);
z_pt[__A] = Zp2(__A, A_AXIS) + Zm1(__A, B_AXIS) + Zm1(__A, C_AXIS);
z_pt[__B] = Zm1(__B, A_AXIS) + Zp2(__B, B_AXIS) + Zm1(__B, C_AXIS);
z_pt[__C] = Zm1(__C, A_AXIS) + Zm1(__C, B_AXIS) + Zp2(__C, C_AXIS);
z_pt[_BC] = Zm2(_BC, A_AXIS) + Zp1(_BC, B_AXIS) + Zp1(_BC, C_AXIS);
z_pt[_CA] = Zp1(_CA, A_AXIS) + Zm2(_CA, B_AXIS) + Zp1(_CA, C_AXIS);
z_pt[_AB] = Zp1(_AB, A_AXIS) + Zp1(_AB, B_AXIS) + Zm2(_AB, C_AXIS);
}
static void calc_kinematics_diff_probe_points(float z_pt[NPP + 1], float delta_e[ABC], float delta_r, float delta_t[ABC]) {
const float z_center = z_pt[CEN];
float diff_mm_at_pt_axis[NPP + 1][ABC],
new_mm_at_pt_axis[NPP + 1][ABC];
reverse_kinematics_probe_points(z_pt, diff_mm_at_pt_axis);
delta_radius += delta_r;
LOOP_XYZ(axis) delta_tower_angle_trim[axis] += delta_t[axis];
recalc_delta_settings();
reverse_kinematics_probe_points(z_pt, new_mm_at_pt_axis);
LOOP_XYZ(axis) LOOP_CAL_ALL(rad) diff_mm_at_pt_axis[rad][axis] -= new_mm_at_pt_axis[rad][axis] + delta_e[axis];
forward_kinematics_probe_points(diff_mm_at_pt_axis, z_pt);
LOOP_CAL_RAD(rad) z_pt[rad] -= z_pt[CEN] - z_center;
z_pt[CEN] = z_center;
delta_radius -= delta_r;
LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= delta_t[axis];
recalc_delta_settings();
}
static float auto_tune_h() {
const float r_quot = delta_calibration_radius / delta_radius;
float h_fac = 0.0;
h_fac = r_quot / (2.0 / 3.0);
h_fac = 1.0 / h_fac; // (2/3)/CR
return h_fac;
}
static float auto_tune_r() {
const float diff = 0.01;
float r_fac = 0.0,
z_pt[NPP + 1] = { 0.0 },
delta_e[ABC] = {0.0},
delta_r = {0.0},
delta_t[ABC] = {0.0};
delta_r = diff;
calc_kinematics_diff_probe_points(z_pt, delta_e, delta_r, delta_t);
r_fac = -(z_pt[__A] + z_pt[__B] + z_pt[__C] + z_pt[_BC] + z_pt[_CA] + z_pt[_AB]) / 6.0;
r_fac = diff / r_fac / 3.0; // 1/(3*delta_Z)
return r_fac;
}
static float auto_tune_a() {
const float diff = 0.01;
float a_fac = 0.0,
z_pt[NPP + 1] = { 0.0 },
delta_e[ABC] = {0.0},
delta_r = {0.0},
delta_t[ABC] = {0.0};
LOOP_XYZ(axis) {
LOOP_XYZ(axis_2) delta_t[axis_2] = 0.0;
delta_t[axis] = diff;
calc_kinematics_diff_probe_points(z_pt, delta_e, delta_r, delta_t);
a_fac += z_pt[uint8_t((axis * _4P_STEP) - _7P_STEP + NPP) % NPP + 1] / 6.0;
a_fac -= z_pt[uint8_t((axis * _4P_STEP) + 1 + _7P_STEP)] / 6.0;
}
a_fac = diff / a_fac / 3.0; // 1/(3*delta_Z)
return a_fac;
}
/**
* G33 - Delta '1-4-7-point' Auto-Calibration
* Calibrate height, endstops, delta radius, and tower angles.
* Calibrate height, z_offset, endstops, delta radius, and tower angles.
*
* Parameters:
*
* S Setup mode; disables probe protection
*
* Pn Number of probe points:
* P0 No probe. Normalize only.
* P1 Probe center and set height only.
* P2 Probe center and towers. Set height, endstops and delta radius.
* P3 Probe all positions: center, towers and opposite towers. Set all.
* P4-P10 Probe all positions + at different intermediate locations and average them.
* P-1 Checks the z_offset with a center probe and paper test.
* P0 Normalizes calibration.
* P1 Calibrates height only with center probe.
* P2 Probe center and towers. Calibrate height, endstops and delta radius.
* P3 Probe all positions: center, towers and opposite towers. Calibrate all.
* P4-P10 Probe all positions at different intermediate locations and average them.
*
* T Don't calibrate tower angle corrections
*
@ -378,8 +421,6 @@ static float probe_G33_points(float z_at_pt[NPP + 1], const int8_t probe_points,
*
* Fn Force to run at least n iterations and take the best result
*
* A Auto-tune calibration factors (set in Configuration.h)
*
* Vn Verbose level:
* V0 Dry-run mode. Report settings and probe results. No calibration.
* V1 Report start and end settings only
@ -390,19 +431,22 @@ static float probe_G33_points(float z_at_pt[NPP + 1], const int8_t probe_points,
*/
void GcodeSuite::G33() {
const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
if (!WITHIN(probe_points, 0, 10)) {
SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-10).");
const bool set_up =
#if HAS_BED_PROBE
parser.seen('S');
#else
false;
#endif
const int8_t probe_points = set_up ? 2 : parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
if (!WITHIN(probe_points, -1, 10)) {
SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (-1 - 10).");
return;
}
const int8_t verbose_level = parser.byteval('V', 1);
if (!WITHIN(verbose_level, 0, 3)) {
SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-3).");
return;
}
const bool towers_set = !parser.seen('T');
const float calibration_precision = parser.floatval('C', 0.0);
const float calibration_precision = set_up ? Z_CLEARANCE_BETWEEN_PROBES / 5.0 : parser.floatval('C', 0.0);
if (calibration_precision < 0) {
SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>=0).");
return;
@ -410,36 +454,52 @@ void GcodeSuite::G33() {
const int8_t force_iterations = parser.intval('F', 0);
if (!WITHIN(force_iterations, 0, 30)) {
SERIAL_PROTOCOLLNPGM("?(F)orce iteration is implausible (0-30).");
SERIAL_PROTOCOLLNPGM("?(F)orce iteration is implausible (0 - 30).");
return;
}
const bool towers_set = !parser.boolval('T'),
auto_tune = parser.boolval('A'),
stow_after_each = parser.boolval('E'),
_0p_calibration = probe_points == 0,
_1p_calibration = probe_points == 1,
const int8_t verbose_level = parser.byteval('V', 1);
if (!WITHIN(verbose_level, 0, 3)) {
SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0 - 3).");
return;
}
const bool stow_after_each = parser.seen('E');
if (set_up) {
delta_height = 999.99;
delta_radius = DELTA_PRINTABLE_RADIUS;
ZERO(delta_endstop_adj);
ZERO(delta_tower_angle_trim);
recalc_delta_settings();
}
const bool _0p_calibration = probe_points == 0,
_1p_calibration = probe_points == 1 || probe_points == -1,
_4p_calibration = probe_points == 2,
_7p_9_centre = probe_points >= 8,
_tower_results = (_4p_calibration && towers_set)
|| probe_points >= 3 || probe_points == 0,
_opposite_results = (_4p_calibration && !towers_set)
|| probe_points >= 3 || probe_points == 0,
_endstop_results = probe_points != 1,
_angle_results = (probe_points >= 3 || probe_points == 0) && towers_set;
_4p_opposite_points = _4p_calibration && !towers_set,
_7p_9_center = probe_points >= 8,
_tower_results = (_4p_calibration && towers_set) || probe_points >= 3,
_opposite_results = (_4p_calibration && !towers_set) || probe_points >= 3,
_endstop_results = probe_points != 1 && probe_points != -1 && probe_points != 0,
_angle_results = probe_points >= 3 && towers_set;
const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
int8_t iterations = 0;
float test_precision,
zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
zero_std_dev_min = zero_std_dev,
zero_std_dev_old = zero_std_dev,
h_factor,
r_factor,
a_factor,
e_old[ABC] = {
delta_endstop_adj[A_AXIS],
delta_endstop_adj[B_AXIS],
delta_endstop_adj[C_AXIS]
},
dr_old = delta_radius,
zh_old = delta_height,
ta_old[ABC] = {
r_old = delta_radius,
h_old = delta_height,
a_old[ABC] = {
delta_tower_angle_trim[A_AXIS],
delta_tower_angle_trim[B_AXIS],
delta_tower_angle_trim[C_AXIS]
@ -447,10 +507,10 @@ void GcodeSuite::G33() {
SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable
if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable
LOOP_CAL_RAD(axis) {
const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
r = delta_calibration_radius * (1 + (_7p_9_centre ? 0.1 : 0.0));
r = delta_calibration_radius;
if (!position_is_reachable(cos(a) * r, sin(a) * r)) {
SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
return;
@ -458,159 +518,137 @@ void GcodeSuite::G33() {
}
}
stepper.synchronize();
#if HAS_LEVELING
reset_bed_level(); // After calibration bed-level data is no longer valid
#endif
#if HOTENDS > 1
const uint8_t old_tool_index = active_extruder;
tool_change(0, 0, true);
#define G33_CLEANUP() G33_cleanup(old_tool_index)
#else
#define G33_CLEANUP() G33_cleanup()
#endif
setup_for_endstop_or_probe_move();
endstops.enable(true);
if (!_0p_calibration) {
if (!home_delta())
return;
endstops.not_homing();
}
if (auto_tune) {
#if HAS_BED_PROBE
G33_auto_tune();
#else
SERIAL_PROTOCOLLNPGM("A probe is needed for auto-tune");
#endif
G33_CLEANUP();
return;
}
// Report settings
PGM_P checkingac = PSTR("Checking... AC"); // TODO: Make translatable string
const char *checkingac = PSTR("Checking... AC");
serialprintPGM(checkingac);
if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
if (set_up) SERIAL_PROTOCOLPGM(" (SET-UP)");
SERIAL_EOL();
lcd_setstatusPGM(checkingac);
char mess[11];
strcpy_P(mess, checkingac);
lcd_setstatus(mess);
print_G33_settings(_endstop_results, _angle_results);
print_calibration_settings(_endstop_results, _angle_results);
do {
ac_setup(!_0p_calibration && !_1p_calibration);
if (!_0p_calibration)
if (!ac_home()) return;
do { // start iterations
float z_at_pt[NPP + 1] = { 0.0 };
test_precision = zero_std_dev;
test_precision = zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev;
iterations++;
// Probe the points
zero_std_dev = probe_G33_points(z_at_pt, probe_points, towers_set, stow_after_each);
if (isnan(zero_std_dev)) {
SERIAL_PROTOCOLPGM("Correct delta_radius with M665 R or end-stops with M666 X Y Z");
SERIAL_EOL();
return G33_CLEANUP();
zero_std_dev_old = zero_std_dev;
if (!probe_calibration_points(z_at_pt, probe_points, towers_set, stow_after_each, set_up)) {
SERIAL_PROTOCOLLNPGM("Correct delta settings with M665 and M666");
return AC_CLEANUP();
}
zero_std_dev = std_dev_points(z_at_pt, _0p_calibration, _1p_calibration, _4p_calibration, _4p_opposite_points);
// Solve matrices
if ((zero_std_dev < test_precision || iterations <= force_iterations) && zero_std_dev > calibration_precision) {
if (zero_std_dev < zero_std_dev_min) {
COPY(e_old, delta_endstop_adj);
dr_old = delta_radius;
zh_old = delta_height;
COPY(ta_old, delta_tower_angle_trim);
}
float e_delta[ABC] = { 0.0 }, r_delta = 0.0, t_delta[ABC] = { 0.0 };
const float r_diff = delta_radius - delta_calibration_radius,
h_factor = 1 / 6.0 *
#ifdef H_FACTOR
(H_FACTOR), // Set in Configuration.h
#else
(1.00 + r_diff * 0.001), // 1.02 for r_diff = 20mm
#endif
r_factor = 1 / 6.0 *
#ifdef R_FACTOR
-(R_FACTOR), // Set in Configuration.h
#else
-(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), // 2.25 for r_diff = 20mm
#endif
a_factor = 1 / 6.0 *
#ifdef A_FACTOR
(A_FACTOR); // Set in Configuration.h
#else
(66.66 / delta_calibration_radius); // 0.83 for cal_rd = 80mm
#endif
#define ZP(N,I) ((N) * z_at_pt[I])
#define Z6(I) ZP(6, I)
#define Z4(I) ZP(4, I)
#define Z2(I) ZP(2, I)
#define Z1(I) ZP(1, I)
#if !HAS_BED_PROBE
test_precision = 0.00; // forced end
#endif
if (zero_std_dev < zero_std_dev_min) {
// set roll-back point
COPY(e_old, delta_endstop_adj);
r_old = delta_radius;
h_old = delta_height;
COPY(a_old, delta_tower_angle_trim);
}
float e_delta[ABC] = { 0.0 },
r_delta = 0.0,
t_delta[ABC] = { 0.0 };
/**
* convergence matrices:
* see https://github.com/LVD-AC/Marlin-AC/tree/1.1.x-AC/documentation for
* - definition of the matrix scaling parameters
* - matrices for 4 and 7 point calibration
*/
#define ZP(N,I) ((N) * z_at_pt[I] / 4.0) // 4.0 = divider to normalize to integers
#define Z12(I) ZP(12, I)
#define Z4(I) ZP(4, I)
#define Z2(I) ZP(2, I)
#define Z1(I) ZP(1, I)
#define Z0(I) ZP(0, I)
// calculate factors
const float cr_old = delta_calibration_radius;
if (_7p_9_center) delta_calibration_radius *= 0.9;
h_factor = auto_tune_h();
r_factor = auto_tune_r();
a_factor = auto_tune_a();
delta_calibration_radius = cr_old;
switch (probe_points) {
case -1:
#if HAS_BED_PROBE
zprobe_zoffset += probe_z_shift(z_at_pt[CEN]);
#endif
case 0:
test_precision = 0.00; // forced end
break;
case 1:
test_precision = 0.00; // forced end
LOOP_XYZ(axis) e_delta[axis] = Z1(CEN);
LOOP_XYZ(axis) e_delta[axis] = +Z4(CEN);
break;
case 2:
if (towers_set) {
e_delta[A_AXIS] = (Z6(CEN) +Z4(__A) -Z2(__B) -Z2(__C)) * h_factor;
e_delta[B_AXIS] = (Z6(CEN) -Z2(__A) +Z4(__B) -Z2(__C)) * h_factor;
e_delta[C_AXIS] = (Z6(CEN) -Z2(__A) -Z2(__B) +Z4(__C)) * h_factor;
r_delta = (Z6(CEN) -Z2(__A) -Z2(__B) -Z2(__C)) * r_factor;
if (towers_set) { // see 4 point calibration (towers) matrix
e_delta[A_AXIS] = (+Z4(__A) -Z2(__B) -Z2(__C)) * h_factor +Z4(CEN);
e_delta[B_AXIS] = (-Z2(__A) +Z4(__B) -Z2(__C)) * h_factor +Z4(CEN);
e_delta[C_AXIS] = (-Z2(__A) -Z2(__B) +Z4(__C)) * h_factor +Z4(CEN);
r_delta = (+Z4(__A) +Z4(__B) +Z4(__C) -Z12(CEN)) * r_factor;
}
else {
e_delta[A_AXIS] = (Z6(CEN) -Z4(_BC) +Z2(_CA) +Z2(_AB)) * h_factor;
e_delta[B_AXIS] = (Z6(CEN) +Z2(_BC) -Z4(_CA) +Z2(_AB)) * h_factor;
e_delta[C_AXIS] = (Z6(CEN) +Z2(_BC) +Z2(_CA) -Z4(_AB)) * h_factor;
r_delta = (Z6(CEN) -Z2(_BC) -Z2(_CA) -Z2(_AB)) * r_factor;
else { // see 4 point calibration (opposites) matrix
e_delta[A_AXIS] = (-Z4(_BC) +Z2(_CA) +Z2(_AB)) * h_factor +Z4(CEN);
e_delta[B_AXIS] = (+Z2(_BC) -Z4(_CA) +Z2(_AB)) * h_factor +Z4(CEN);
e_delta[C_AXIS] = (+Z2(_BC) +Z2(_CA) -Z4(_AB)) * h_factor +Z4(CEN);
r_delta = (+Z4(_BC) +Z4(_CA) +Z4(_AB) -Z12(CEN)) * r_factor;
}
break;
default:
e_delta[A_AXIS] = (Z6(CEN) +Z2(__A) -Z1(__B) -Z1(__C) -Z2(_BC) +Z1(_CA) +Z1(_AB)) * h_factor;
e_delta[B_AXIS] = (Z6(CEN) -Z1(__A) +Z2(__B) -Z1(__C) +Z1(_BC) -Z2(_CA) +Z1(_AB)) * h_factor;
e_delta[C_AXIS] = (Z6(CEN) -Z1(__A) -Z1(__B) +Z2(__C) +Z1(_BC) +Z1(_CA) -Z2(_AB)) * h_factor;
r_delta = (Z6(CEN) -Z1(__A) -Z1(__B) -Z1(__C) -Z1(_BC) -Z1(_CA) -Z1(_AB)) * r_factor;
default: // see 7 point calibration (towers & opposites) matrix
e_delta[A_AXIS] = (+Z2(__A) -Z1(__B) -Z1(__C) -Z2(_BC) +Z1(_CA) +Z1(_AB)) * h_factor +Z4(CEN);
e_delta[B_AXIS] = (-Z1(__A) +Z2(__B) -Z1(__C) +Z1(_BC) -Z2(_CA) +Z1(_AB)) * h_factor +Z4(CEN);
e_delta[C_AXIS] = (-Z1(__A) -Z1(__B) +Z2(__C) +Z1(_BC) +Z1(_CA) -Z2(_AB)) * h_factor +Z4(CEN);
r_delta = (+Z2(__A) +Z2(__B) +Z2(__C) +Z2(_BC) +Z2(_CA) +Z2(_AB) -Z12(CEN)) * r_factor;
if (towers_set) {
t_delta[A_AXIS] = ( -Z4(__B) +Z4(__C) -Z4(_CA) +Z4(_AB)) * a_factor;
t_delta[B_AXIS] = ( Z4(__A) -Z4(__C) +Z4(_BC) -Z4(_AB)) * a_factor;
t_delta[C_AXIS] = (-Z4(__A) +Z4(__B) -Z4(_BC) +Z4(_CA) ) * a_factor;
e_delta[A_AXIS] += (t_delta[B_AXIS] - t_delta[C_AXIS]) / 4.5;
e_delta[B_AXIS] += (t_delta[C_AXIS] - t_delta[A_AXIS]) / 4.5;
e_delta[C_AXIS] += (t_delta[A_AXIS] - t_delta[B_AXIS]) / 4.5;
if (towers_set) { // see 7 point tower angle calibration (towers & opposites) matrix
t_delta[A_AXIS] = (+Z0(__A) -Z4(__B) +Z4(__C) +Z0(_BC) -Z4(_CA) +Z4(_AB) +Z0(CEN)) * a_factor;
t_delta[B_AXIS] = (+Z4(__A) +Z0(__B) -Z4(__C) +Z4(_BC) +Z0(_CA) -Z4(_AB) +Z0(CEN)) * a_factor;
t_delta[C_AXIS] = (-Z4(__A) +Z4(__B) +Z0(__C) -Z4(_BC) +Z4(_CA) +Z0(_AB) +Z0(CEN)) * a_factor;
}
break;
}
LOOP_XYZ(axis) delta_endstop_adj[axis] += e_delta[axis];
delta_radius += r_delta;
LOOP_XYZ(axis) delta_tower_angle_trim[axis] += t_delta[axis];
}
else if (zero_std_dev >= test_precision) { // step one back
else if (zero_std_dev >= test_precision) {
// roll back
COPY(delta_endstop_adj, e_old);
delta_radius = dr_old;
delta_height = zh_old;
COPY(delta_tower_angle_trim, ta_old);
delta_radius = r_old;
delta_height = h_old;
COPY(delta_tower_angle_trim, a_old);
}
if (verbose_level != 0) { // !dry run
// normalise angles to least squares
if (_angle_results) {
float a_sum = 0.0;
@ -628,15 +666,15 @@ void GcodeSuite::G33() {
// print report
if (verbose_level > 2)
print_G33_results(z_at_pt, _tower_results, _opposite_results);
if (verbose_level == 3)
print_calibration_results(z_at_pt, _tower_results, _opposite_results);
if (verbose_level != 0) { // !dry run
if ((zero_std_dev >= test_precision && iterations > force_iterations) || zero_std_dev <= calibration_precision) { // end iterations
if (verbose_level != 0) { // !dry run
if ((zero_std_dev >= test_precision && iterations > force_iterations) || zero_std_dev <= calibration_precision) { // end iterations
SERIAL_PROTOCOLPGM("Calibration OK");
SERIAL_PROTOCOL_SP(32);
#if HAS_BED_PROBE
if (zero_std_dev >= test_precision && !_1p_calibration)
if (zero_std_dev >= test_precision && !_1p_calibration && !_0p_calibration)
SERIAL_PROTOCOLPGM("rolling back.");
else
#endif
@ -652,11 +690,11 @@ void GcodeSuite::G33() {
else
sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev_min));
lcd_setstatus(mess);
print_G33_settings(_endstop_results, _angle_results);
print_calibration_settings(_endstop_results, _angle_results);
serialprintPGM(save_message);
SERIAL_EOL();
}
else { // !end iterations
else { // !end iterations
char mess[15];
if (iterations < 31)
sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
@ -669,11 +707,11 @@ void GcodeSuite::G33() {
SERIAL_EOL();
lcd_setstatus(mess);
if (verbose_level > 1)
print_G33_settings(_endstop_results, _angle_results);
print_calibration_settings(_endstop_results, _angle_results);
}
}
else { // dry run
PGM_P enddryrun = PSTR("End DRY-RUN");
else { // dry run
const char *enddryrun = PSTR("End DRY-RUN");
serialprintPGM(enddryrun);
SERIAL_PROTOCOL_SP(35);
SERIAL_PROTOCOLPGM("std dev:");
@ -689,16 +727,11 @@ void GcodeSuite::G33() {
sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev));
lcd_setstatus(mess);
}
endstops.enable(true);
if (!home_delta())
return;
endstops.not_homing();
if (!ac_home()) return;
}
while (((zero_std_dev < test_precision && iterations < 31) || iterations <= force_iterations) && zero_std_dev > calibration_precision);
G33_CLEANUP();
AC_CLEANUP();
}
#endif // DELTA_AUTO_CALIBRATION

View file

@ -40,7 +40,7 @@
* B = delta calibration radius
* X = Alpha (Tower 1) angle trim
* Y = Beta (Tower 2) angle trim
* Z = Rotate A and B by this angle
* Z = Gamma (Tower 3) angle trim
*/
void GcodeSuite::M665() {
if (parser.seen('H')) delta_height = parser.value_linear_units();

View file

@ -202,7 +202,7 @@
* M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires ADVANCED_PAUSE_FEATURE)
* M603 - Configure filament change: "M603 T<tool> U<unload_length> L<load_length>". (Requires ADVANCED_PAUSE_FEATURE)
* M605 - Set Dual X-Carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
* M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
* M665 - Set delta configurations: "M665 H<delta height> L<diagonal rod> R<delta radius> S<segments/s> B<calibration radius> X<Alpha angle trim> Y<Beta angle trim> Z<Gamma angle trim> (Requires DELTA)
* M666 - Set/get offsets for delta (Requires DELTA) or dual endstops (Requires [XYZ]_DUAL_ENDSTOPS).
* M701 - Load filament (requires FILAMENT_LOAD_UNLOAD_GCODES)
* M702 - Unload filament (requires FILAMENT_LOAD_UNLOAD_GCODES)

View file

@ -870,6 +870,9 @@
#ifndef MSG_DELTA_HEIGHT_CALIBRATE
#define MSG_DELTA_HEIGHT_CALIBRATE _UxGT("Set Delta Height")
#endif
#ifndef MSG_DELTA_Z_OFFSET_CALIBRATE
#define MSG_DELTA_Z_OFFSET_CALIBRATE _UxGT("Probe Z-offset")
#endif
#ifndef MSG_DELTA_DIAG_ROD
#define MSG_DELTA_DIAG_ROD _UxGT("Diag Rod")
#endif

View file

@ -2712,29 +2712,22 @@ void kill_screen(const char* lcd_msg) {
float move_menu_scale;
#if ENABLED(DELTA_CALIBRATION_MENU) || (ENABLED(DELTA_AUTO_CALIBRATION) && !HAS_BED_PROBE)
#if ENABLED(DELTA_CALIBRATION_MENU) || ENABLED(DELTA_AUTO_CALIBRATION)
void lcd_move_z();
void _man_probe_pt(const float &rx, const float &ry) {
#if HAS_LEVELING
reset_bed_level(); // After calibration bed-level data is no longer valid
#endif
line_to_z((Z_CLEARANCE_BETWEEN_PROBES) + (DELTA_PRINTABLE_RADIUS) / 5);
current_position[X_AXIS] = rx;
current_position[Y_AXIS] = ry;
line_to_current_z();
line_to_z(Z_CLEARANCE_BETWEEN_PROBES);
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
do_blocking_move_to_xy(rx, ry);
lcd_synchronize();
move_menu_scale = PROBE_MANUALLY_STEP;
lcd_goto_screen(lcd_move_z);
}
#endif // DELTA_CALIBRATION_MENU || (DELTA_AUTO_CALIBRATION && !HAS_BED_PROBE)
#endif // DELTA_CALIBRATION_MENU || DELTA_AUTO_CALIBRATION
#if ENABLED(DELTA_AUTO_CALIBRATION) && !HAS_BED_PROBE
#if ENABLED(DELTA_AUTO_CALIBRATION)
float lcd_probe_pt(const float &rx, const float &ry) {
_man_probe_pt(rx, ry);
@ -2747,7 +2740,7 @@ void kill_screen(const char* lcd_msg) {
return current_position[Z_AXIS];
}
#endif // DELTA_AUTO_CALIBRATION && !HAS_BED_PROBE
#endif // DELTA_AUTO_CALIBRATION
#if ENABLED(DELTA_CALIBRATION_MENU)
@ -2759,10 +2752,6 @@ void kill_screen(const char* lcd_msg) {
}
void _lcd_delta_calibrate_home() {
#if HAS_LEVELING
reset_bed_level(); // After calibration bed-level data is no longer valid
#endif
enqueue_and_echo_commands_P(PSTR("G28"));
lcd_goto_screen(_lcd_calibrate_homing);
}
@ -2776,18 +2765,25 @@ void kill_screen(const char* lcd_msg) {
#if ENABLED(DELTA_CALIBRATION_MENU) || ENABLED(DELTA_AUTO_CALIBRATION)
void _recalc_delta_settings() {
#if HAS_LEVELING
reset_bed_level(); // After changing kinematics bed-level data is no longer valid
#endif
recalc_delta_settings();
}
void lcd_delta_settings() {
START_MENU();
MENU_BACK(MSG_DELTA_CALIBRATE);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_DELTA_DIAG_ROD, &delta_diagonal_rod, delta_diagonal_rod - 5.0, delta_diagonal_rod + 5.0, recalc_delta_settings);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_DELTA_HEIGHT, &delta_height, delta_height - 10.0, delta_height + 10.0, recalc_delta_settings);
MENU_ITEM_EDIT_CALLBACK(float43, "Ex", &delta_endstop_adj[A_AXIS], -5.0, 5.0, recalc_delta_settings);
MENU_ITEM_EDIT_CALLBACK(float43, "Ey", &delta_endstop_adj[B_AXIS], -5.0, 5.0, recalc_delta_settings);
MENU_ITEM_EDIT_CALLBACK(float43, "Ez", &delta_endstop_adj[C_AXIS], -5.0, 5.0, recalc_delta_settings);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_DELTA_RADIUS, &delta_radius, delta_radius - 5.0, delta_radius + 5.0, recalc_delta_settings);
MENU_ITEM_EDIT_CALLBACK(float43, "Tx", &delta_tower_angle_trim[A_AXIS], -5.0, 5.0, recalc_delta_settings);
MENU_ITEM_EDIT_CALLBACK(float43, "Ty", &delta_tower_angle_trim[B_AXIS], -5.0, 5.0, recalc_delta_settings);
MENU_ITEM_EDIT_CALLBACK(float43, "Tz", &delta_tower_angle_trim[C_AXIS], -5.0, 5.0, recalc_delta_settings);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_DELTA_HEIGHT, &delta_height, delta_height - 10.0, delta_height + 10.0, _recalc_delta_settings);
MENU_ITEM_EDIT_CALLBACK(float43, "Ex", &delta_endstop_adj[A_AXIS], -5.0, 5.0, _recalc_delta_settings);
MENU_ITEM_EDIT_CALLBACK(float43, "Ey", &delta_endstop_adj[B_AXIS], -5.0, 5.0, _recalc_delta_settings);
MENU_ITEM_EDIT_CALLBACK(float43, "Ez", &delta_endstop_adj[C_AXIS], -5.0, 5.0, _recalc_delta_settings);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_DELTA_RADIUS, &delta_radius, delta_radius - 5.0, delta_radius + 5.0, _recalc_delta_settings);
MENU_ITEM_EDIT_CALLBACK(float43, "Tx", &delta_tower_angle_trim[A_AXIS], -5.0, 5.0, _recalc_delta_settings);
MENU_ITEM_EDIT_CALLBACK(float43, "Ty", &delta_tower_angle_trim[B_AXIS], -5.0, 5.0, _recalc_delta_settings);
MENU_ITEM_EDIT_CALLBACK(float43, "Tz", &delta_tower_angle_trim[C_AXIS], -5.0, 5.0, _recalc_delta_settings);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_DELTA_DIAG_ROD, &delta_diagonal_rod, delta_diagonal_rod - 5.0, delta_diagonal_rod + 5.0, _recalc_delta_settings);
END_MENU();
}
@ -2797,6 +2793,7 @@ void kill_screen(const char* lcd_msg) {
#if ENABLED(DELTA_AUTO_CALIBRATION)
MENU_ITEM(gcode, MSG_DELTA_AUTO_CALIBRATE, PSTR("G33"));
MENU_ITEM(gcode, MSG_DELTA_HEIGHT_CALIBRATE, PSTR("G33 P1"));
MENU_ITEM(gcode, MSG_DELTA_Z_OFFSET_CALIBRATE, PSTR("G33 P-1"));
#if ENABLED(EEPROM_SETTINGS)
MENU_ITEM(function, MSG_STORE_EEPROM, lcd_store_settings);
MENU_ITEM(function, MSG_LOAD_EEPROM, lcd_load_settings);
@ -4590,7 +4587,7 @@ void kill_screen(const char* lcd_msg) {
#if LCD_HEIGHT > _FC_LINES_G + 1
STATIC_ITEM(" ");
#endif
HOTEND_STATUS_ITEM();
HOTEND_STATUS_ITEM();
END_SCREEN();
}
@ -4645,7 +4642,7 @@ void kill_screen(const char* lcd_msg) {
case ADVANCED_PAUSE_MESSAGE_OPTION: advanced_pause_menu_response = ADVANCED_PAUSE_RESPONSE_WAIT_FOR;
return lcd_advanced_pause_option_menu;
#if ENABLED(ADVANCED_PAUSE_CONTINUOUS_PURGE)
case ADVANCED_PAUSE_MESSAGE_CONTINUOUS_PURGE: return lcd_advanced_pause_continuous_purge_menu;
case ADVANCED_PAUSE_MESSAGE_CONTINUOUS_PURGE: return lcd_advanced_pause_continuous_purge_menu;
#endif
case ADVANCED_PAUSE_MESSAGE_STATUS:
default: break;

View file

@ -148,10 +148,6 @@
float lcd_z_offset_edit();
#endif
#if ENABLED(DELTA_AUTO_CALIBRATION) && !HAS_BED_PROBE
float lcd_probe_pt(const float &rx, const float &ry);
#endif
#else
inline void lcd_buttons_update() {}

View file

@ -617,7 +617,7 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
safe_delay(5);
//*/
#endif
// Get the current position as starting point
float raw[XYZE];
COPY(raw, current_position);
@ -1349,12 +1349,12 @@ void homeaxis(const AxisEnum axis) {
// so here it re-homes each tower in turn.
// Delta homing treats the axes as normal linear axes.
// retrace by the amount specified in delta_endstop_adj + additional 0.1mm in order to have minimum steps
// retrace by the amount specified in delta_endstop_adj + additional dist in order to have minimum steps
if (delta_endstop_adj[axis] * Z_HOME_DIR <= 0) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("delta_endstop_adj:");
#endif
do_homing_move(axis, delta_endstop_adj[axis] - 0.1 * Z_HOME_DIR);
do_homing_move(axis, delta_endstop_adj[axis] - MIN_STEPS_PER_SEGMENT / planner.axis_steps_per_mm[axis] * Z_HOME_DIR);
}
#else

View file

@ -673,8 +673,9 @@ float probe_pt(const float &rx, const float &ry, const ProbePtRaise raise_after/
if (!DEPLOY_PROBE()) {
measured_z = run_z_probe() + zprobe_zoffset;
if (raise_after == PROBE_PT_RAISE)
do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
const bool big_raise = raise_after == PROBE_PT_BIG_RAISE;
if (big_raise || raise_after == PROBE_PT_RAISE)
do_blocking_move_to_z(current_position[Z_AXIS] + (big_raise ? 25 : Z_CLEARANCE_BETWEEN_PROBES), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
else if (raise_after == PROBE_PT_STOW)
if (STOW_PROBE()) measured_z = NAN;
}

View file

@ -38,7 +38,8 @@
enum ProbePtRaise : unsigned char {
PROBE_PT_NONE, // No raise or stow after run_z_probe
PROBE_PT_STOW, // Do a complete stow after run_z_probe
PROBE_PT_RAISE // Raise to "between" clearance after run_z_probe
PROBE_PT_RAISE, // Raise to "between" clearance after run_z_probe
PROBE_PT_BIG_RAISE // Raise to big clearance after run_z_probe
};
float probe_pt(const float &rx, const float &ry, const ProbePtRaise raise_after=PROBE_PT_NONE, const uint8_t verbose_level=0, const bool probe_relative=true);
#define DEPLOY_PROBE() set_probe_deployed(true)