Consolidate arc code, remove motion_control.*
This commit is contained in:
parent
56090fc374
commit
80807b2d71
|
@ -266,8 +266,8 @@ VPATH += $(ARDUINO_INSTALL_DIR)/hardware/teensy/cores/teensy
|
||||||
endif
|
endif
|
||||||
CXXSRC = WMath.cpp WString.cpp Print.cpp Marlin_main.cpp \
|
CXXSRC = WMath.cpp WString.cpp Print.cpp Marlin_main.cpp \
|
||||||
MarlinSerial.cpp Sd2Card.cpp SdBaseFile.cpp SdFatUtil.cpp \
|
MarlinSerial.cpp Sd2Card.cpp SdBaseFile.cpp SdFatUtil.cpp \
|
||||||
SdFile.cpp SdVolume.cpp motion_control.cpp planner.cpp \
|
SdFile.cpp SdVolume.cpp planner.cpp stepper.cpp \
|
||||||
stepper.cpp temperature.cpp cardreader.cpp configuration_store.cpp \
|
temperature.cpp cardreader.cpp configuration_store.cpp \
|
||||||
watchdog.cpp SPI.cpp servo.cpp Tone.cpp ultralcd.cpp digipot_mcp4451.cpp \
|
watchdog.cpp SPI.cpp servo.cpp Tone.cpp ultralcd.cpp digipot_mcp4451.cpp \
|
||||||
vector_3.cpp qr_solve.cpp
|
vector_3.cpp qr_solve.cpp
|
||||||
ifeq ($(LIQUID_TWI2), 0)
|
ifeq ($(LIQUID_TWI2), 0)
|
||||||
|
|
|
@ -207,7 +207,6 @@ void disable_all_steppers();
|
||||||
void FlushSerialRequestResend();
|
void FlushSerialRequestResend();
|
||||||
void ok_to_send();
|
void ok_to_send();
|
||||||
|
|
||||||
void get_coordinates();
|
|
||||||
#ifdef DELTA
|
#ifdef DELTA
|
||||||
void calculate_delta(float cartesian[3]);
|
void calculate_delta(float cartesian[3]);
|
||||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||||
|
|
|
@ -47,7 +47,6 @@
|
||||||
#include "planner.h"
|
#include "planner.h"
|
||||||
#include "stepper.h"
|
#include "stepper.h"
|
||||||
#include "temperature.h"
|
#include "temperature.h"
|
||||||
#include "motion_control.h"
|
|
||||||
#include "cardreader.h"
|
#include "cardreader.h"
|
||||||
#include "watchdog.h"
|
#include "watchdog.h"
|
||||||
#include "configuration_store.h"
|
#include "configuration_store.h"
|
||||||
|
@ -226,7 +225,7 @@ bool Running = true;
|
||||||
|
|
||||||
uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS;
|
uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS;
|
||||||
|
|
||||||
static float feedrate = 1500.0, next_feedrate, saved_feedrate;
|
static float feedrate = 1500.0, saved_feedrate;
|
||||||
float current_position[NUM_AXIS] = { 0.0 };
|
float current_position[NUM_AXIS] = { 0.0 };
|
||||||
static float destination[NUM_AXIS] = { 0.0 };
|
static float destination[NUM_AXIS] = { 0.0 };
|
||||||
bool axis_known_position[3] = { false };
|
bool axis_known_position[3] = { false };
|
||||||
|
@ -258,7 +257,7 @@ const char errormagic[] PROGMEM = "Error:";
|
||||||
const char echomagic[] PROGMEM = "echo:";
|
const char echomagic[] PROGMEM = "echo:";
|
||||||
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
|
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
|
||||||
|
|
||||||
static float offset[3] = { 0 };
|
static float arc_offset[3] = { 0 };
|
||||||
static bool relative_mode = false; //Determines Absolute or Relative Coordinates
|
static bool relative_mode = false; //Determines Absolute or Relative Coordinates
|
||||||
static char serial_char;
|
static char serial_char;
|
||||||
static int serial_count = 0;
|
static int serial_count = 0;
|
||||||
|
@ -401,7 +400,6 @@ bool target_direction;
|
||||||
//================================ Functions ================================
|
//================================ Functions ================================
|
||||||
//===========================================================================
|
//===========================================================================
|
||||||
|
|
||||||
void get_arc_coordinates();
|
|
||||||
bool setTargetedHotend(int code);
|
bool setTargetedHotend(int code);
|
||||||
|
|
||||||
void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
|
void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
|
||||||
|
@ -1770,12 +1768,32 @@ static void homeaxis(AxisEnum axis) {
|
||||||
*
|
*
|
||||||
*/
|
*/
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Set XYZE destination and feedrate from the current GCode command
|
||||||
|
*
|
||||||
|
* - Set destination from included axis codes
|
||||||
|
* - Set to current for missing axis codes
|
||||||
|
* - Set the feedrate, if included
|
||||||
|
*/
|
||||||
|
void gcode_get_destination() {
|
||||||
|
for (int i = 0; i < NUM_AXIS; i++) {
|
||||||
|
if (code_seen(axis_codes[i]))
|
||||||
|
destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
|
||||||
|
else
|
||||||
|
destination[i] = current_position[i];
|
||||||
|
}
|
||||||
|
if (code_seen('F')) {
|
||||||
|
float next_feedrate = code_value();
|
||||||
|
if (next_feedrate > 0.0) feedrate = next_feedrate;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* G0, G1: Coordinated movement of X Y Z E axes
|
* G0, G1: Coordinated movement of X Y Z E axes
|
||||||
*/
|
*/
|
||||||
inline void gcode_G0_G1() {
|
inline void gcode_G0_G1() {
|
||||||
if (IsRunning()) {
|
if (IsRunning()) {
|
||||||
get_coordinates(); // For X Y Z E F
|
gcode_get_destination(); // For X Y Z E F
|
||||||
|
|
||||||
#ifdef FWRETRACT
|
#ifdef FWRETRACT
|
||||||
|
|
||||||
|
@ -1797,14 +1815,155 @@ inline void gcode_G0_G1() {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Plan an arc in 2 dimensions
|
||||||
|
*
|
||||||
|
* The arc is approximated by generating many small linear segments.
|
||||||
|
* The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
|
||||||
|
* Arcs should only be made relatively large (over 5mm). Your slicer should have
|
||||||
|
* options for G2/G3 arc generation.
|
||||||
|
*/
|
||||||
|
void plan_arc(
|
||||||
|
float *target, // Destination position
|
||||||
|
float *offset, // Center of rotation relative to current_position
|
||||||
|
uint8_t clockwise // Clockwise?
|
||||||
|
) {
|
||||||
|
|
||||||
|
float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
|
||||||
|
center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
|
||||||
|
center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
|
||||||
|
linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
|
||||||
|
extruder_travel = target[E_AXIS] - current_position[E_AXIS],
|
||||||
|
r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
|
||||||
|
r_axis1 = -offset[Y_AXIS],
|
||||||
|
rt_axis0 = target[X_AXIS] - center_axis0,
|
||||||
|
rt_axis1 = target[Y_AXIS] - center_axis1;
|
||||||
|
|
||||||
|
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
|
||||||
|
float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
|
||||||
|
if (angular_travel < 0) { angular_travel += RADIANS(360); }
|
||||||
|
if (clockwise) { angular_travel -= RADIANS(360); }
|
||||||
|
|
||||||
|
// Make a circle if the angular rotation is 0
|
||||||
|
if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
|
||||||
|
angular_travel += RADIANS(360);
|
||||||
|
|
||||||
|
float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
|
||||||
|
if (mm_of_travel < 0.001) { return; }
|
||||||
|
uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT);
|
||||||
|
if (segments == 0) segments = 1;
|
||||||
|
|
||||||
|
float theta_per_segment = angular_travel/segments;
|
||||||
|
float linear_per_segment = linear_travel/segments;
|
||||||
|
float extruder_per_segment = extruder_travel/segments;
|
||||||
|
|
||||||
|
/* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
|
||||||
|
and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
|
||||||
|
r_T = [cos(phi) -sin(phi);
|
||||||
|
sin(phi) cos(phi] * r ;
|
||||||
|
|
||||||
|
For arc generation, the center of the circle is the axis of rotation and the radius vector is
|
||||||
|
defined from the circle center to the initial position. Each line segment is formed by successive
|
||||||
|
vector rotations. This requires only two cos() and sin() computations to form the rotation
|
||||||
|
matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
|
||||||
|
all double numbers are single precision on the Arduino. (True double precision will not have
|
||||||
|
round off issues for CNC applications.) Single precision error can accumulate to be greater than
|
||||||
|
tool precision in some cases. Therefore, arc path correction is implemented.
|
||||||
|
|
||||||
|
Small angle approximation may be used to reduce computation overhead further. This approximation
|
||||||
|
holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
|
||||||
|
theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
|
||||||
|
to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
|
||||||
|
numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
|
||||||
|
issue for CNC machines with the single precision Arduino calculations.
|
||||||
|
|
||||||
|
This approximation also allows plan_arc to immediately insert a line segment into the planner
|
||||||
|
without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
|
||||||
|
a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
|
||||||
|
This is important when there are successive arc motions.
|
||||||
|
*/
|
||||||
|
// Vector rotation matrix values
|
||||||
|
float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
|
||||||
|
float sin_T = theta_per_segment;
|
||||||
|
|
||||||
|
float arc_target[4];
|
||||||
|
float sin_Ti;
|
||||||
|
float cos_Ti;
|
||||||
|
float r_axisi;
|
||||||
|
uint16_t i;
|
||||||
|
int8_t count = 0;
|
||||||
|
|
||||||
|
// Initialize the linear axis
|
||||||
|
arc_target[Z_AXIS] = current_position[Z_AXIS];
|
||||||
|
|
||||||
|
// Initialize the extruder axis
|
||||||
|
arc_target[E_AXIS] = current_position[E_AXIS];
|
||||||
|
|
||||||
|
float feed_rate = feedrate*feedrate_multiplier/60/100.0;
|
||||||
|
|
||||||
|
for (i = 1; i < segments; i++) { // Increment (segments-1)
|
||||||
|
|
||||||
|
if (count < N_ARC_CORRECTION) {
|
||||||
|
// Apply vector rotation matrix to previous r_axis0 / 1
|
||||||
|
r_axisi = r_axis0*sin_T + r_axis1*cos_T;
|
||||||
|
r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
|
||||||
|
r_axis1 = r_axisi;
|
||||||
|
count++;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
|
||||||
|
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
|
||||||
|
cos_Ti = cos(i*theta_per_segment);
|
||||||
|
sin_Ti = sin(i*theta_per_segment);
|
||||||
|
r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti;
|
||||||
|
r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti;
|
||||||
|
count = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Update arc_target location
|
||||||
|
arc_target[X_AXIS] = center_axis0 + r_axis0;
|
||||||
|
arc_target[Y_AXIS] = center_axis1 + r_axis1;
|
||||||
|
arc_target[Z_AXIS] += linear_per_segment;
|
||||||
|
arc_target[E_AXIS] += extruder_per_segment;
|
||||||
|
|
||||||
|
clamp_to_software_endstops(arc_target);
|
||||||
|
plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
|
||||||
|
}
|
||||||
|
// Ensure last segment arrives at target location.
|
||||||
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
|
||||||
|
|
||||||
|
// As far as the parser is concerned, the position is now == target. In reality the
|
||||||
|
// motion control system might still be processing the action and the real tool position
|
||||||
|
// in any intermediate location.
|
||||||
|
set_current_to_destination();
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* G2: Clockwise Arc
|
* G2: Clockwise Arc
|
||||||
* G3: Counterclockwise Arc
|
* G3: Counterclockwise Arc
|
||||||
*/
|
*/
|
||||||
inline void gcode_G2_G3(bool clockwise) {
|
inline void gcode_G2_G3(bool clockwise) {
|
||||||
if (IsRunning()) {
|
if (IsRunning()) {
|
||||||
get_arc_coordinates();
|
|
||||||
prepare_arc_move(clockwise);
|
#ifdef SF_ARC_FIX
|
||||||
|
bool relative_mode_backup = relative_mode;
|
||||||
|
relative_mode = true;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
gcode_get_destination();
|
||||||
|
|
||||||
|
#ifdef SF_ARC_FIX
|
||||||
|
relative_mode = relative_mode_backup;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// Center of arc as offset from current_position
|
||||||
|
arc_offset[0] = code_seen('I') ? code_value() : 0;
|
||||||
|
arc_offset[1] = code_seen('J') ? code_value() : 0;
|
||||||
|
|
||||||
|
// Send an arc to the planner
|
||||||
|
plan_arc(destination, arc_offset, clockwise);
|
||||||
|
|
||||||
|
refresh_cmd_timeout();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -4308,7 +4467,7 @@ inline void gcode_M303() {
|
||||||
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
|
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
|
||||||
//SERIAL_ECHOLN(" Soft endstops disabled ");
|
//SERIAL_ECHOLN(" Soft endstops disabled ");
|
||||||
if (IsRunning()) {
|
if (IsRunning()) {
|
||||||
//get_coordinates(); // For X Y Z E F
|
//gcode_get_destination(); // For X Y Z E F
|
||||||
delta[X_AXIS] = delta_x;
|
delta[X_AXIS] = delta_x;
|
||||||
delta[Y_AXIS] = delta_y;
|
delta[Y_AXIS] = delta_y;
|
||||||
calculate_SCARA_forward_Transform(delta);
|
calculate_SCARA_forward_Transform(delta);
|
||||||
|
@ -4932,7 +5091,7 @@ inline void gcode_T() {
|
||||||
make_move = true;
|
make_move = true;
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
next_feedrate = code_value();
|
float next_feedrate = code_value();
|
||||||
if (next_feedrate > 0.0) feedrate = next_feedrate;
|
if (next_feedrate > 0.0) feedrate = next_feedrate;
|
||||||
}
|
}
|
||||||
#if EXTRUDERS > 1
|
#if EXTRUDERS > 1
|
||||||
|
@ -5562,33 +5721,6 @@ void ok_to_send() {
|
||||||
SERIAL_EOL;
|
SERIAL_EOL;
|
||||||
}
|
}
|
||||||
|
|
||||||
void get_coordinates() {
|
|
||||||
for (int i = 0; i < NUM_AXIS; i++) {
|
|
||||||
if (code_seen(axis_codes[i]))
|
|
||||||
destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
|
|
||||||
else
|
|
||||||
destination[i] = current_position[i];
|
|
||||||
}
|
|
||||||
if (code_seen('F')) {
|
|
||||||
next_feedrate = code_value();
|
|
||||||
if (next_feedrate > 0.0) feedrate = next_feedrate;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void get_arc_coordinates() {
|
|
||||||
#ifdef SF_ARC_FIX
|
|
||||||
bool relative_mode_backup = relative_mode;
|
|
||||||
relative_mode = true;
|
|
||||||
#endif
|
|
||||||
get_coordinates();
|
|
||||||
#ifdef SF_ARC_FIX
|
|
||||||
relative_mode = relative_mode_backup;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
offset[0] = code_seen('I') ? code_value() : 0;
|
|
||||||
offset[1] = code_seen('J') ? code_value() : 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
void clamp_to_software_endstops(float target[3]) {
|
void clamp_to_software_endstops(float target[3]) {
|
||||||
if (min_software_endstops) {
|
if (min_software_endstops) {
|
||||||
NOLESS(target[X_AXIS], min_pos[X_AXIS]);
|
NOLESS(target[X_AXIS], min_pos[X_AXIS]);
|
||||||
|
@ -5912,19 +6044,6 @@ void prepare_move() {
|
||||||
set_current_to_destination();
|
set_current_to_destination();
|
||||||
}
|
}
|
||||||
|
|
||||||
void prepare_arc_move(char isclockwise) {
|
|
||||||
float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
|
|
||||||
|
|
||||||
// Trace the arc
|
|
||||||
mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedrate_multiplier/60/100.0, r, isclockwise, active_extruder);
|
|
||||||
|
|
||||||
// As far as the parser is concerned, the position is now == target. In reality the
|
|
||||||
// motion control system might still be processing the action and the real tool position
|
|
||||||
// in any intermediate location.
|
|
||||||
set_current_to_destination();
|
|
||||||
refresh_cmd_timeout();
|
|
||||||
}
|
|
||||||
|
|
||||||
#if HAS_CONTROLLERFAN
|
#if HAS_CONTROLLERFAN
|
||||||
|
|
||||||
void controllerFan() {
|
void controllerFan() {
|
||||||
|
|
|
@ -1,145 +0,0 @@
|
||||||
/*
|
|
||||||
motion_control.c - high level interface for issuing motion commands
|
|
||||||
Part of Grbl
|
|
||||||
|
|
||||||
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
||||||
Copyright (c) 2011 Sungeun K. Jeon
|
|
||||||
|
|
||||||
Grbl is free software: you can redistribute it and/or modify
|
|
||||||
it under the terms of the GNU General Public License as published by
|
|
||||||
the Free Software Foundation, either version 3 of the License, or
|
|
||||||
(at your option) any later version.
|
|
||||||
|
|
||||||
Grbl is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License
|
|
||||||
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#include "Marlin.h"
|
|
||||||
#include "stepper.h"
|
|
||||||
#include "planner.h"
|
|
||||||
|
|
||||||
// The arc is approximated by generating a huge number of tiny, linear segments. The length of each
|
|
||||||
// segment is configured in settings.mm_per_arc_segment.
|
|
||||||
void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8_t axis_1,
|
|
||||||
uint8_t axis_linear, float feed_rate, float radius, uint8_t isclockwise, uint8_t extruder)
|
|
||||||
{
|
|
||||||
// int acceleration_manager_was_enabled = plan_is_acceleration_manager_enabled();
|
|
||||||
// plan_set_acceleration_manager_enabled(false); // disable acceleration management for the duration of the arc
|
|
||||||
float center_axis0 = position[axis_0] + offset[axis_0];
|
|
||||||
float center_axis1 = position[axis_1] + offset[axis_1];
|
|
||||||
float linear_travel = target[axis_linear] - position[axis_linear];
|
|
||||||
float extruder_travel = target[E_AXIS] - position[E_AXIS];
|
|
||||||
float r_axis0 = -offset[axis_0]; // Radius vector from center to current location
|
|
||||||
float r_axis1 = -offset[axis_1];
|
|
||||||
float rt_axis0 = target[axis_0] - center_axis0;
|
|
||||||
float rt_axis1 = target[axis_1] - center_axis1;
|
|
||||||
|
|
||||||
// CCW angle between position and target from circle center. Only one atan2() trig computation required.
|
|
||||||
float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
|
|
||||||
if (angular_travel < 0) { angular_travel += 2*M_PI; }
|
|
||||||
if (isclockwise) { angular_travel -= 2*M_PI; }
|
|
||||||
|
|
||||||
//20141002:full circle for G03 did not work, e.g. G03 X80 Y80 I20 J0 F2000 is giving an Angle of zero so head is not moving
|
|
||||||
//to compensate when start pos = target pos && angle is zero -> angle = 2Pi
|
|
||||||
if (position[axis_0] == target[axis_0] && position[axis_1] == target[axis_1] && angular_travel == 0)
|
|
||||||
{
|
|
||||||
angular_travel += 2*M_PI;
|
|
||||||
}
|
|
||||||
//end fix G03
|
|
||||||
|
|
||||||
float millimeters_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
|
|
||||||
if (millimeters_of_travel < 0.001) { return; }
|
|
||||||
uint16_t segments = floor(millimeters_of_travel/MM_PER_ARC_SEGMENT);
|
|
||||||
if(segments == 0) segments = 1;
|
|
||||||
|
|
||||||
/*
|
|
||||||
// Multiply inverse feed_rate to compensate for the fact that this movement is approximated
|
|
||||||
// by a number of discrete segments. The inverse feed_rate should be correct for the sum of
|
|
||||||
// all segments.
|
|
||||||
if (invert_feed_rate) { feed_rate *= segments; }
|
|
||||||
*/
|
|
||||||
float theta_per_segment = angular_travel/segments;
|
|
||||||
float linear_per_segment = linear_travel/segments;
|
|
||||||
float extruder_per_segment = extruder_travel/segments;
|
|
||||||
|
|
||||||
/* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
|
|
||||||
and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
|
|
||||||
r_T = [cos(phi) -sin(phi);
|
|
||||||
sin(phi) cos(phi] * r ;
|
|
||||||
|
|
||||||
For arc generation, the center of the circle is the axis of rotation and the radius vector is
|
|
||||||
defined from the circle center to the initial position. Each line segment is formed by successive
|
|
||||||
vector rotations. This requires only two cos() and sin() computations to form the rotation
|
|
||||||
matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
|
|
||||||
all double numbers are single precision on the Arduino. (True double precision will not have
|
|
||||||
round off issues for CNC applications.) Single precision error can accumulate to be greater than
|
|
||||||
tool precision in some cases. Therefore, arc path correction is implemented.
|
|
||||||
|
|
||||||
Small angle approximation may be used to reduce computation overhead further. This approximation
|
|
||||||
holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
|
|
||||||
theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
|
|
||||||
to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
|
|
||||||
numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
|
|
||||||
issue for CNC machines with the single precision Arduino calculations.
|
|
||||||
|
|
||||||
This approximation also allows mc_arc to immediately insert a line segment into the planner
|
|
||||||
without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
|
|
||||||
a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
|
|
||||||
This is important when there are successive arc motions.
|
|
||||||
*/
|
|
||||||
// Vector rotation matrix values
|
|
||||||
float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
|
|
||||||
float sin_T = theta_per_segment;
|
|
||||||
|
|
||||||
float arc_target[4];
|
|
||||||
float sin_Ti;
|
|
||||||
float cos_Ti;
|
|
||||||
float r_axisi;
|
|
||||||
uint16_t i;
|
|
||||||
int8_t count = 0;
|
|
||||||
|
|
||||||
// Initialize the linear axis
|
|
||||||
arc_target[axis_linear] = position[axis_linear];
|
|
||||||
|
|
||||||
// Initialize the extruder axis
|
|
||||||
arc_target[E_AXIS] = position[E_AXIS];
|
|
||||||
|
|
||||||
for (i = 1; i<segments; i++) { // Increment (segments-1)
|
|
||||||
|
|
||||||
if (count < N_ARC_CORRECTION) {
|
|
||||||
// Apply vector rotation matrix
|
|
||||||
r_axisi = r_axis0*sin_T + r_axis1*cos_T;
|
|
||||||
r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
|
|
||||||
r_axis1 = r_axisi;
|
|
||||||
count++;
|
|
||||||
} else {
|
|
||||||
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
|
|
||||||
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
|
|
||||||
cos_Ti = cos(i*theta_per_segment);
|
|
||||||
sin_Ti = sin(i*theta_per_segment);
|
|
||||||
r_axis0 = -offset[axis_0]*cos_Ti + offset[axis_1]*sin_Ti;
|
|
||||||
r_axis1 = -offset[axis_0]*sin_Ti - offset[axis_1]*cos_Ti;
|
|
||||||
count = 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Update arc_target location
|
|
||||||
arc_target[axis_0] = center_axis0 + r_axis0;
|
|
||||||
arc_target[axis_1] = center_axis1 + r_axis1;
|
|
||||||
arc_target[axis_linear] += linear_per_segment;
|
|
||||||
arc_target[E_AXIS] += extruder_per_segment;
|
|
||||||
|
|
||||||
clamp_to_software_endstops(arc_target);
|
|
||||||
plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, extruder);
|
|
||||||
|
|
||||||
}
|
|
||||||
// Ensure last segment arrives at target location.
|
|
||||||
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, extruder);
|
|
||||||
|
|
||||||
// plan_set_acceleration_manager_enabled(acceleration_manager_was_enabled);
|
|
||||||
}
|
|
||||||
|
|
|
@ -1,32 +0,0 @@
|
||||||
/*
|
|
||||||
motion_control.h - high level interface for issuing motion commands
|
|
||||||
Part of Grbl
|
|
||||||
|
|
||||||
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
||||||
Copyright (c) 2011 Sungeun K. Jeon
|
|
||||||
|
|
||||||
Grbl is free software: you can redistribute it and/or modify
|
|
||||||
it under the terms of the GNU General Public License as published by
|
|
||||||
the Free Software Foundation, either version 3 of the License, or
|
|
||||||
(at your option) any later version.
|
|
||||||
|
|
||||||
Grbl is distributed in the hope that it will be useful,
|
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
||||||
GNU General Public License for more details.
|
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License
|
|
||||||
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#ifndef motion_control_h
|
|
||||||
#define motion_control_h
|
|
||||||
|
|
||||||
// Execute an arc in offset mode format. position == current xyz, target == target xyz,
|
|
||||||
// offset == offset from current xyz, axis_XXX defines circle plane in tool space, axis_linear is
|
|
||||||
// the direction of helical travel, radius == circle radius, isclockwise boolean. Used
|
|
||||||
// for vector transformation direction.
|
|
||||||
void mc_arc(float *position, float *target, float *offset, unsigned char axis_0, unsigned char axis_1,
|
|
||||||
unsigned char axis_linear, float feed_rate, float radius, unsigned char isclockwise, uint8_t extruder);
|
|
||||||
|
|
||||||
#endif
|
|
Loading…
Reference in a new issue