Validate defined probe points (#20572)

This commit is contained in:
Jason Smith 2020-12-27 18:49:15 -08:00 committed by GitHub
parent 31af49e507
commit 81d7bd8f41
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
5 changed files with 79 additions and 53 deletions

View file

@ -801,10 +801,10 @@
//#define ASSISTED_TRAMMING
#if ENABLED(ASSISTED_TRAMMING)
// Define positions for probing points, use the hotend as reference not the sensor.
#define TRAMMING_POINT_XY { { 20, 20 }, { 200, 20 }, { 200, 200 }, { 20, 200 } }
// Define positions for probe points.
#define TRAMMING_POINT_XY { { 20, 20 }, { 180, 20 }, { 180, 180 }, { 20, 180 } }
// Define positions names for probing points.
// Define position names for probe points.
#define TRAMMING_POINT_NAME_1 "Front-Left"
#define TRAMMING_POINT_NAME_2 "Front-Right"
#define TRAMMING_POINT_NAME_3 "Back-Right"

View file

@ -21,6 +21,7 @@
*/
#include "../inc/MarlinConfigPre.h"
#include "../module/probe.h"
#if !WITHIN(TRAMMING_SCREW_THREAD, 30, 51) || TRAMMING_SCREW_THREAD % 10 > 1
#error "TRAMMING_SCREW_THREAD must be equal to 30, 31, 40, 41, 50, or 51."
@ -31,6 +32,10 @@ constexpr xy_pos_t screws_tilt_adjust_pos[] = TRAMMING_POINT_XY;
#define G35_PROBE_COUNT COUNT(screws_tilt_adjust_pos)
static_assert(G35_PROBE_COUNT >= 3, "TRAMMING_POINT_XY requires at least 3 XY positions.");
#define VALIDATE_TRAMMING_POINT(N) static_assert(N >= G35_PROBE_COUNT || Probe::build_time::can_reach(screws_tilt_adjust_pos[N]), \
"TRAMMING_POINT_XY point " STRINGIFY(N) " is not reachable with the default NOZZLE_TO_PROBE offset and PROBING_MARGIN.")
VALIDATE_TRAMMING_POINT(0); VALIDATE_TRAMMING_POINT(1); VALIDATE_TRAMMING_POINT(2); VALIDATE_TRAMMING_POINT(3); VALIDATE_TRAMMING_POINT(4);
extern const char point_name_1[], point_name_2[], point_name_3[]
#ifdef TRAMMING_POINT_NAME_4
, point_name_4[]

View file

@ -54,25 +54,9 @@ void ZStepperAlign::reset_to_default() {
#endif
);
constexpr xyz_pos_t dpo = NOZZLE_TO_PROBE_OFFSET;
#define LTEST(N) (xy_init[N].x >= _MAX(X_MIN_BED + PROBING_MARGIN_LEFT, X_MIN_POS + dpo.x) - 0.00001f)
#define RTEST(N) (xy_init[N].x <= _MIN(X_MAX_BED - PROBING_MARGIN_RIGHT, X_MAX_POS + dpo.x) + 0.00001f)
#define FTEST(N) (xy_init[N].y >= _MAX(Y_MIN_BED + PROBING_MARGIN_FRONT, Y_MIN_POS + dpo.y) - 0.00001f)
#define BTEST(N) (xy_init[N].y <= _MIN(Y_MAX_BED - PROBING_MARGIN_BACK, Y_MAX_POS + dpo.y) + 0.00001f)
static_assert(LTEST(0) && RTEST(0), "The 1st Z_STEPPER_ALIGN_XY X is unreachable with the default probe X offset.");
static_assert(FTEST(0) && BTEST(0), "The 1st Z_STEPPER_ALIGN_XY Y is unreachable with the default probe Y offset.");
static_assert(LTEST(1) && RTEST(1), "The 2nd Z_STEPPER_ALIGN_XY X is unreachable with the default probe X offset.");
static_assert(FTEST(1) && BTEST(1), "The 2nd Z_STEPPER_ALIGN_XY Y is unreachable with the default probe Y offset.");
#if NUM_Z_STEPPER_DRIVERS >= 3
static_assert(LTEST(2) && RTEST(2), "The 3rd Z_STEPPER_ALIGN_XY X is unreachable with the default probe X offset.");
static_assert(FTEST(2) && BTEST(2), "The 3rd Z_STEPPER_ALIGN_XY Y is unreachable with the default probe Y offset.");
#if NUM_Z_STEPPER_DRIVERS >= 4
static_assert(LTEST(3) && RTEST(3), "The 4th Z_STEPPER_ALIGN_XY X is unreachable with the default probe X offset.");
static_assert(FTEST(3) && BTEST(3), "The 4th Z_STEPPER_ALIGN_XY Y is unreachable with the default probe Y offset.");
#endif
#endif
#define VALIDATE_ALIGN_POINT(N) static_assert(N >= NUM_Z_STEPPER_DRIVERS || Probe::build_time::can_reach(xy_init[N]), \
"Z_STEPPER_ALIGN_XY point " STRINGIFY(N) " is not reachable with the default NOZZLE_TO_PROBE offset and PROBING_MARGIN.")
VALIDATE_ALIGN_POINT(0); VALIDATE_ALIGN_POINT(1); VALIDATE_ALIGN_POINT(2); VALIDATE_ALIGN_POINT(3);
#else // !defined(Z_STEPPER_ALIGN_XY)

View file

@ -77,6 +77,11 @@ constexpr xy_pos_t lf { (X_MIN_BED) + inset_lfrb[0], (Y_MIN_BED) + inset_lfrb[1]
*/
#if ENABLED(LEVEL_CORNERS_USE_PROBE)
#define VALIDATE_POINT(X, Y, STR) static_assert(Probe::build_time::can_reach((X), (Y)), \
"LEVEL_CORNERS_INSET_LFRB " STR " inset is not reachable with the default NOZZLE_TO_PROBE offset and PROBING_MARGIN.")
VALIDATE_POINT(lf.x, Y_CENTER, "left"); VALIDATE_POINT(X_CENTER, lf.y, "front");
VALIDATE_POINT(rb.x, Y_CENTER, "right"); VALIDATE_POINT(X_CENTER, rb.y, "back");
void _lcd_draw_probing() {
if (ui.should_draw()) MenuItem_static::draw((LCD_HEIGHT - 1) / 2, GET_TEXT(MSG_PROBING_MESH));
}

View file

@ -62,12 +62,12 @@ public:
#if HAS_PROBE_XY_OFFSET
// Return true if the both nozzle and the probe can reach the given point.
// Note: This won't work on SCARA since the probe offset rotates with the arm.
static inline bool can_reach(const float &rx, const float &ry) {
static bool can_reach(const float &rx, const float &ry) {
return position_is_reachable(rx - offset_xy.x, ry - offset_xy.y) // The nozzle can go where it needs to go?
&& position_is_reachable(rx, ry, ABS(PROBING_MARGIN)); // Can the nozzle also go near there?
}
#else
FORCE_INLINE static bool can_reach(const float &rx, const float &ry) {
static bool can_reach(const float &rx, const float &ry) {
return position_is_reachable(rx, ry, PROBING_MARGIN);
}
#endif
@ -81,7 +81,7 @@ public:
* Example: For a probe offset of -10,+10, then for the probe to reach 0,0 the
* nozzle must be be able to reach +10,-10.
*/
static inline bool can_reach(const float &rx, const float &ry) {
static bool can_reach(const float &rx, const float &ry) {
return position_is_reachable(rx - offset_xy.x, ry - offset_xy.y)
&& WITHIN(rx, min_x() - fslop, max_x() + fslop)
&& WITHIN(ry, min_y() - fslop, max_y() + fslop);
@ -89,13 +89,13 @@ public:
#endif
static inline void move_z_after_probing() {
static void move_z_after_probing() {
#ifdef Z_AFTER_PROBING
do_z_clearance(Z_AFTER_PROBING, true, true, true); // Move down still permitted
#endif
}
static float probe_at_point(const float &rx, const float &ry, const ProbePtRaise raise_after=PROBE_PT_NONE, const uint8_t verbose_level=0, const bool probe_relative=true, const bool sanity_check=true);
static inline float probe_at_point(const xy_pos_t &pos, const ProbePtRaise raise_after=PROBE_PT_NONE, const uint8_t verbose_level=0, const bool probe_relative=true, const bool sanity_check=true) {
static float probe_at_point(const xy_pos_t &pos, const ProbePtRaise raise_after=PROBE_PT_NONE, const uint8_t verbose_level=0, const bool probe_relative=true, const bool sanity_check=true) {
return probe_at_point(pos.x, pos.y, raise_after, verbose_level, probe_relative, sanity_check);
}
@ -105,21 +105,21 @@ public:
static bool set_deployed(const bool) { return false; }
FORCE_INLINE static bool can_reach(const float &rx, const float &ry) { return position_is_reachable(rx, ry); }
static bool can_reach(const float &rx, const float &ry) { return position_is_reachable(rx, ry); }
#endif
static inline void move_z_after_homing() {
static void move_z_after_homing() {
#ifdef Z_AFTER_HOMING
do_z_clearance(Z_AFTER_HOMING, true, true, true);
#elif BOTH(Z_AFTER_PROBING,HAS_BED_PROBE)
#elif BOTH(Z_AFTER_PROBING, HAS_BED_PROBE)
move_z_after_probing();
#endif
}
FORCE_INLINE static bool can_reach(const xy_pos_t &pos) { return can_reach(pos.x, pos.y); }
static bool can_reach(const xy_pos_t &pos) { return can_reach(pos.x, pos.y); }
FORCE_INLINE static bool good_bounds(const xy_pos_t &lf, const xy_pos_t &rb) {
static bool good_bounds(const xy_pos_t &lf, const xy_pos_t &rb) {
return (
#if IS_KINEMATIC
can_reach(lf.x, 0) && can_reach(rb.x, 0) && can_reach(0, lf.y) && can_reach(0, rb.y)
@ -137,8 +137,8 @@ public:
static constexpr xy_pos_t offset_xy = xy_pos_t({ 0, 0 }); // See #16767
#endif
static inline bool deploy() { return set_deployed(true); }
static inline bool stow() { return set_deployed(false); }
static bool deploy() { return set_deployed(true); }
static bool stow() { return set_deployed(false); }
#if HAS_BED_PROBE || HAS_LEVELING
#if IS_KINEMATIC
@ -146,41 +146,73 @@ public:
TERN_(DELTA, DELTA_PRINTABLE_RADIUS)
TERN_(IS_SCARA, SCARA_PRINTABLE_RADIUS)
);
static inline float probe_radius() {
return printable_radius - _MAX(PROBING_MARGIN, HYPOT(offset_xy.x, offset_xy.y));
static constexpr float probe_radius(const xy_pos_t &probe_offset_xy = offset_xy) {
return printable_radius - _MAX(PROBING_MARGIN, HYPOT(probe_offset_xy.x, probe_offset_xy.y));
}
#endif
static inline float min_x() {
static constexpr float _min_x(const xy_pos_t &probe_offset_xy = offset_xy) {
return TERN(IS_KINEMATIC,
(X_CENTER) - probe_radius(),
_MAX((X_MIN_BED) + (PROBING_MARGIN_LEFT), (X_MIN_POS) + offset_xy.x)
) - TERN0(NOZZLE_AS_PROBE, TERN0(HAS_HOME_OFFSET, home_offset.x));
(X_CENTER) - probe_radius(probe_offset_xy),
_MAX((X_MIN_BED) + (PROBING_MARGIN_LEFT), (X_MIN_POS) + probe_offset_xy.x)
);
}
static inline float max_x() {
static constexpr float _max_x(const xy_pos_t &probe_offset_xy = offset_xy) {
return TERN(IS_KINEMATIC,
(X_CENTER) + probe_radius(),
_MIN((X_MAX_BED) - (PROBING_MARGIN_RIGHT), (X_MAX_POS) + offset_xy.x)
) - TERN0(NOZZLE_AS_PROBE, TERN0(HAS_HOME_OFFSET, home_offset.x));
(X_CENTER) + probe_radius(probe_offset_xy),
_MIN((X_MAX_BED) - (PROBING_MARGIN_RIGHT), (X_MAX_POS) + probe_offset_xy.x)
);
}
static inline float min_y() {
static constexpr float _min_y(const xy_pos_t &probe_offset_xy = offset_xy) {
return TERN(IS_KINEMATIC,
(Y_CENTER) - probe_radius(),
_MAX((Y_MIN_BED) + (PROBING_MARGIN_FRONT), (Y_MIN_POS) + offset_xy.y)
) - TERN0(NOZZLE_AS_PROBE, TERN0(HAS_HOME_OFFSET, home_offset.y));
(Y_CENTER) - probe_radius(probe_offset_xy),
_MAX((Y_MIN_BED) + (PROBING_MARGIN_FRONT), (Y_MIN_POS) + probe_offset_xy.y)
);
}
static inline float max_y() {
static constexpr float _max_y(const xy_pos_t &probe_offset_xy = offset_xy) {
return TERN(IS_KINEMATIC,
(Y_CENTER) + probe_radius(),
_MIN((Y_MAX_BED) - (PROBING_MARGIN_BACK), (Y_MAX_POS) + offset_xy.y)
) - TERN0(NOZZLE_AS_PROBE, TERN0(HAS_HOME_OFFSET, home_offset.y));
(Y_CENTER) + probe_radius(probe_offset_xy),
_MIN((Y_MAX_BED) - (PROBING_MARGIN_BACK), (Y_MAX_POS) + probe_offset_xy.y)
);
}
static float min_x() { return _min_x() - TERN0(NOZZLE_AS_PROBE, TERN0(HAS_HOME_OFFSET, home_offset.x)); }
static float max_x() { return _max_x() - TERN0(NOZZLE_AS_PROBE, TERN0(HAS_HOME_OFFSET, home_offset.x)); }
static float min_y() { return _min_y() - TERN0(NOZZLE_AS_PROBE, TERN0(HAS_HOME_OFFSET, home_offset.y)); }
static float max_y() { return _max_y() - TERN0(NOZZLE_AS_PROBE, TERN0(HAS_HOME_OFFSET, home_offset.y)); }
// constexpr helpers used in build-time static_asserts, relying on default probe offsets.
class build_time {
static constexpr xyz_pos_t default_probe_xyz_offset =
#if HAS_BED_PROBE
NOZZLE_TO_PROBE_OFFSET
#else
{ 0 }
#endif
;
static constexpr xy_pos_t default_probe_xy_offset = { default_probe_xyz_offset.x, default_probe_xyz_offset.y };
public:
static constexpr bool can_reach(float x, float y) {
#if IS_KINEMATIC
return HYPOT2(x, y) <= sq(probe_radius(default_probe_xy_offset));
#else
return WITHIN(x, _min_x(default_probe_xy_offset) - fslop, _max_x(default_probe_xy_offset) + fslop)
&& WITHIN(y, _min_y(default_probe_xy_offset) - fslop, _max_y(default_probe_xy_offset) + fslop);
#endif
}
static constexpr bool can_reach(const xy_pos_t &point) { return can_reach(point.x, point.y); }
};
#if NEEDS_THREE_PROBE_POINTS
// Retrieve three points to probe the bed. Any type exposing set(X,Y) may be used.
template <typename T>
static inline void get_three_points(T points[3]) {
static void get_three_points(T points[3]) {
#if HAS_FIXED_3POINT
#define VALIDATE_PROBE_PT(N) static_assert(Probe::build_time::can_reach(xy_pos_t{PROBE_PT_##N##_X, PROBE_PT_##N##_Y}), \
"PROBE_PT_" STRINGIFY(N) "_(X|Y) is unreachable using default NOZZLE_TO_PROBE_OFFSET and PROBING_MARGIN");
VALIDATE_PROBE_PT(1); VALIDATE_PROBE_PT(2); VALIDATE_PROBE_PT(3);
points[0].set(PROBE_PT_1_X, PROBE_PT_1_Y);
points[1].set(PROBE_PT_2_X, PROBE_PT_2_Y);
points[2].set(PROBE_PT_3_X, PROBE_PT_3_Y);