Merge pull request #8865 from thinkyhead/bf2_more_scara_scaling

[2.0.x] SCARA Feedrate Scaling for G2/G3 - using HYPOT
This commit is contained in:
Scott Lahteine 2017-12-24 19:18:13 -06:00 committed by GitHub
commit 869c89d83f
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
5 changed files with 62 additions and 42 deletions

View file

@ -427,7 +427,7 @@
#if ENABLED(DELTA) // apply delta inverse_kinematics
DELTA_RAW_IK();
DELTA_IK(raw);
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], in_raw[E_AXIS], fr, active_extruder);
#elif IS_SCARA // apply scara inverse_kinematics (should be changed to save raw->logical->raw)

View file

@ -29,6 +29,12 @@
#include "../../module/planner.h"
#include "../../module/temperature.h"
#if ENABLED(DELTA)
#include "../../module/delta.h"
#elif ENABLED(SCARA)
#include "../../module/scara.h"
#endif
#if N_ARC_CORRECTION < 1
#undef N_ARC_CORRECTION
#define N_ARC_CORRECTION 1
@ -113,7 +119,7 @@ void plan_arc(
* This is important when there are successive arc motions.
*/
// Vector rotation matrix values
float arc_target[XYZE];
float raw[XYZE];
const float theta_per_segment = angular_travel / segments,
linear_per_segment = linear_travel / segments,
extruder_per_segment = extruder_travel / segments,
@ -121,10 +127,10 @@ void plan_arc(
cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
// Initialize the linear axis
arc_target[l_axis] = current_position[l_axis];
raw[l_axis] = current_position[l_axis];
// Initialize the extruder axis
arc_target[E_AXIS] = current_position[E_AXIS];
raw[E_AXIS] = current_position[E_AXIS];
const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
@ -134,6 +140,14 @@ void plan_arc(
int8_t arc_recalc_count = N_ARC_CORRECTION;
#endif
#if ENABLED(SCARA_FEEDRATE_SCALING)
// SCARA needs to scale the feed rate from mm/s to degrees/s
const float inv_segment_length = 1.0 / (MM_PER_ARC_SEGMENT),
inverse_secs = inv_segment_length * fr_mm_s;
float oldA = stepper.get_axis_position_degrees(A_AXIS),
oldB = stepper.get_axis_position_degrees(B_AXIS);
#endif
for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
thermalManager.manage_heater();
@ -165,19 +179,34 @@ void plan_arc(
r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti;
}
// Update arc_target location
arc_target[p_axis] = center_P + r_P;
arc_target[q_axis] = center_Q + r_Q;
arc_target[l_axis] += linear_per_segment;
arc_target[E_AXIS] += extruder_per_segment;
// Update raw location
raw[p_axis] = center_P + r_P;
raw[q_axis] = center_Q + r_Q;
raw[l_axis] += linear_per_segment;
raw[E_AXIS] += extruder_per_segment;
clamp_to_software_endstops(arc_target);
clamp_to_software_endstops(raw);
planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
#if ENABLED(SCARA_FEEDRATE_SCALING)
// For SCARA scale the feed rate from mm/s to degrees/s.
// i.e., Complete the angular vector in the given time.
inverse_kinematics(raw);
ADJUST_DELTA(raw);
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder);
oldA = delta[A_AXIS]; oldB = delta[B_AXIS];
#else
planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder);
#endif
}
// Ensure last segment arrives at target location.
planner.buffer_line_kinematic(cart, fr_mm_s, active_extruder);
#if ENABLED(SCARA_FEEDRATE_SCALING)
inverse_kinematics(cart);
ADJUST_DELTA(cart);
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], cart[Z_AXIS], cart[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder);
#else
planner.buffer_line_kinematic(cart, fr_mm_s, active_extruder);
#endif
// As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position

View file

@ -121,7 +121,7 @@ void recalc_delta_settings() {
}while(0)
void inverse_kinematics(const float raw[XYZ]) {
DELTA_RAW_IK();
DELTA_IK(raw);
// DELTA_DEBUG();
}

View file

@ -76,17 +76,17 @@ void recalc_delta_settings();
#endif
// Macro to obtain the Z position of an individual tower
#define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
delta_diagonal_rod_2_tower[T] - HYPOT2( \
delta_tower[T][X_AXIS] - raw[X_AXIS], \
delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
) \
#define DELTA_Z(V,T) V[Z_AXIS] + _SQRT( \
delta_diagonal_rod_2_tower[T] - HYPOT2( \
delta_tower[T][X_AXIS] - V[X_AXIS], \
delta_tower[T][Y_AXIS] - V[Y_AXIS] \
) \
)
#define DELTA_RAW_IK() do { \
delta[A_AXIS] = DELTA_Z(A_AXIS); \
delta[B_AXIS] = DELTA_Z(B_AXIS); \
delta[C_AXIS] = DELTA_Z(C_AXIS); \
#define DELTA_IK(V) do { \
delta[A_AXIS] = DELTA_Z(V, A_AXIS); \
delta[B_AXIS] = DELTA_Z(V, B_AXIS); \
delta[C_AXIS] = DELTA_Z(V, C_AXIS); \
}while(0)
void inverse_kinematics(const float raw[XYZ]);

View file

@ -587,7 +587,7 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
// SERIAL_ECHOPAIR(" seconds=", seconds);
// SERIAL_ECHOLNPAIR(" segments=", segments);
#if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
#if ENABLED(SCARA_FEEDRATE_SCALING)
// SCARA needs to scale the feed rate from mm/s to degrees/s
const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
inverse_secs = inv_segment_length * _feedrate_mm_s;
@ -611,38 +611,29 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
}
LOOP_XYZE(i) raw[i] += segment_distance[i];
#if ENABLED(DELTA)
DELTA_RAW_IK(); // Delta can inline its kinematics
DELTA_IK(raw); // Delta can inline its kinematics
#else
inverse_kinematics(raw);
#endif
ADJUST_DELTA(raw); // Adjust Z if bed leveling is enabled
#if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
#if ENABLED(SCARA_FEEDRATE_SCALING)
// For SCARA scale the feed rate from mm/s to degrees/s
// Use ratio between the length of the move and the larger angle change
const float adiff = abs(delta[A_AXIS] - oldA),
bdiff = abs(delta[B_AXIS] - oldB);
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], max(adiff, bdiff) * inverse_secs, active_extruder);
oldA = delta[A_AXIS];
oldB = delta[B_AXIS];
// i.e., Complete the angular vector in the given time.
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder);
oldA = delta[A_AXIS]; oldB = delta[B_AXIS];
#else
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], _feedrate_mm_s, active_extruder);
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], _feedrate_mm_s, active_extruder);
#endif
}
// Since segment_distance is only approximate,
// the final move must be to the exact destination.
#if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
// For SCARA scale the feed rate from mm/s to degrees/s
// With segments > 1 length is 1 segment, otherwise total length
// Ensure last segment arrives at target location.
#if ENABLED(SCARA_FEEDRATE_SCALING)
inverse_kinematics(rtarget);
ADJUST_DELTA(rtarget);
const float adiff = abs(delta[A_AXIS] - oldA),
bdiff = abs(delta[B_AXIS] - oldB);
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], max(adiff, bdiff) * inverse_secs, active_extruder);
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], rtarget[Z_AXIS], rtarget[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder);
#else
planner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder);
#endif